

ViSiT US AT

Syngress is committed to publishing high-quality books for IT Professionals and deliv-
ering those books in media and formats that f i t the demands of our customers. We are
also committed to extending the util ity of the book you purchase via additional mate-
rials available from our Web site.

SOLUTIONS WEB SITE
To register your book, visit www.syngress.com/solutions. Once registered, you can access
our solutions@syngress.com Web pages. There you may find an assortment of value-
added features such as free e-books related to the topic of this book, URLs of related
Web sites, FAQs from the book, corrections, and any updates from the author(s).

ULTIMATE CDs
Our Ultimate CD product line offers our readers budget-conscious compilations of some
of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to
extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS
For readers who can't wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING
Syngress has a well-established program for site licensing our e-books onto servers in
corporations, educational institutions, and large organizations. Contact us at sales@
syngress.com for more information.

CUSTOM PUBLISHING
Many organizations welcome the ability to combine parts of multiple Syngress books, as
well as their own content, into a single volume for their own internal use. Contact us at
sales@syngress.com for more information.

This Page Intentionally Left Blank

S

Jeremiah Grossman
Robert "RSnake" Hansen
Petko "pdp" D. Petkov
Anton Rager

Seth Fogie Technical Editor and Co-Author

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
"Makers") of this book ("the Work") do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS
and W I T H O U T WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or
consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or
limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media(g), Syngress(g), "Career Advancement Through Skill Enhancement(g)," "Ask the Author UPDATE(g),"
and "Hack Proofing(g)," are registered trademarks of Elsevier, Inc. "Syngress: The Definition of a Serious Security
Library"TM,"Mission Critical TM " and "The Only Way to Stop a Hacker is to Think Like One TM'' are trademarks of
Elsevier, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.

KEY SERIAL N U M B E R

001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 XVQ45LK89A
005 CVPLQ6WQ23
006 VBP965T5T5

007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Cross Site Scripting Attacks: XSS Exploits and Defense
Copyright �9 2007 by Elsevier, Inc.All rights reserved. Printed in the United States of America. Except as permitted
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN-10:1-59749-154-3
ISBN-13:978-1-59749-154-9

Publisher: Amorette Pedersen
Acquisitions Editor: Andrew Williams
Technical Editor: Seth Fogie

Page Layout and Art: Patricia Lupien
Copy Editor: Judy Eby
Cover Designer: Michael Kavish
Indexer: Richard Carlson

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and
Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

Jeremiah Grossman founded WhiteHat Security in 2001 and is currently
the Chief Technology Officer. Prior to WhiteHat, Jeremiah was an informa-
tion security officer at Yahoo! responsible for performing security reviews
on the company's hundreds of websites. As one of the world's busiest web
properties, with over 17,000 web servers for customer access and 600 web-
sites, the highest level of security was required. Before Yahoo!, Jeremiah
worked for Amgen, Inc.

A 6-year security industry veteran, Jeremiah's research has been featured
in USA Today, NBC, and ZDNet and touched all areas of web security. He
is a world-renowned leader in web security and frequent speaker at the
Blackhat Briefings, NASA, Air Force and Technology Conference,
Washington Software Alliance, ISSA, ISACA and Defcon.

Jeremiah has developed the widely used assessment tool "WhiteHat
Arsenal," as well as the acclaimed Web Server Fingerprinter tool and tech-
nology. He is a founder of the Website Security Consortium (WASC) and
the Open Website Security Project (OWASP), as well as a contributing
member of the Center for Internet Security Apache Benchmark Group.

For my family who puts up with the late nights, my friends who dare to test my
PoC code, and everyone else who is now afraid to click.

Rober t "RSnake" Hansen (CISSP) is the Chief Executive Officer of
SecTheory. SecTheory is a web application and network security consulting
firm. Robert has been working with web application security since the mid
90s, beginning his career in banner click fraud detection at ValueClick.
Robert has worked for Cable & Wireless heading up managed security ser-
vices, and eBay as a Sr. Global Product Manager of Trust and Safety, focusing
on anti-phishing, anti-cross site scripting and anti-virus strategies. Robert
also sits on the technical advisory board of ClickForensics and contributes to
the security strategy of several startup companies. Before SecTheory,
Robert's career fluctuated from Sr. Security Architect, to Director of Product
Management for a publicly traded Real Estate company, giving him a great

breath of knowledge of the entire security landscape. Robert now focuses on
upcoming threats, detection circumvention and next generation security
theory.

Robert is best known for founding the web application security lab at
ha.ckers.org and is more popularly known as "RSnake." Robert is a
member ofWASC, IACSR ISSA, and contributed to the OWASP 2.0
guide.

Petko " p d p " D. Petkov is a senior IT security consultant based in
London, United Kingdom. His day-to-day work involves identifying vul-
nerabilities, building attack strategies and creating attack tools and penetra-
tion testing infrastructures. Petko is known in the underground circles as
pdp or architect but his name is well known in the IT security industry for
his strong technical background and creative thinking. He has been working
for some of the world's top companies, providing consultancy on the latest
security vulnerabilities and attack technologies.

His latest project, GNUCITIZEN (gnucitizen.org), is one of the leading
web application security resources on-line where part of his work is dis-
closed for the benefit of the public. Petko defines himself as a cool hunter
in the security circles.

He lives with his lovely girlfriend Ivana without whom his contribution
to this book would not have been possible.

A n t o n Rager is an independent security researcher focused on vulnera-
bility exploitation, VPN security and wireless security. He is best known for
his WEPCrack tool, but has also authored other security tools including
XSS-Proxy, WEPWedgie, and IKECrack. He has presented at Shmoocon,
Defcon, Toorcon, and other conferences, and was a contributing technical
editor to the book Maximum Wireless Security.

vi

and Contributing Author
Seth Fogie is the Vice President of Dallas-based Airscanner Corporation
where he oversees the research & development of security products for
mobile platforms. Seth has co-authored several books, such as Maximum
Wireless Security, Ay.dressive Network Self Defense, Security Warrior, and even
contributed to PSP Hacks. Seth also writes articles for various online
resources, including Pearson Education's InformIT.com where he is acting
co-host for their security section. In addition, and as time permits, Seth
provides training on wireless and web application security and speaks at IT
and security related conferences and seminars, such as Blackhat, Defcon, and
RSA.

vii

This Page Intentionally Left Blank

Contents

Chapter 1 Cross-site Scripting Fundamentals 1
I n t roduc t i on . 2

Web Appl ica t ion Secur i ty . 4

X M L and AJAX In t roduc t i on . 6

S u m m a r y . 11

Solut ions Fast Track . 11

Frequen t ly Asked Ques t ions . 12

Chapter 2 The XSS Discovery Toolkit 15
I n t roduc t i on . 16

B urp . 16

D e b u g g i n g D H T M L W i t h Firefox Extens ions 21

D O M Inspector . 21

Web Deve lope r Firefox Ex tens ion 26

Insert Edi t H T M L Picture . 27

XSS Example in Web Deve lope r Web Site 28

Fi reBug . 29

Analyzing H T T P Traffic w i th Firefox Extens ions 35

L i v e H T T P H e a d e r s . 35

M o d i f y H e a d e r s . 39

TamperDa ta . 42

G r e a s e M o n k e y . 46

G r e a s e M o n k e y Internals . 47

Crea t ing and Installing User Scripts 50

Pos t ln te rp re te r . 52

XSS Assistant . 54

Active Exp lo i t a t ion wi th G r e a s e M o n k e y 55

H a c k i n g wi th Bookmark le t s . 57

Us ing Technika . 60

S u m m a r y . 63

Solut ions Fast Track . 64

Frequen t ly Asked Ques t ions . 65

ix

x Contents

Chapter 3 XSS Theory . 67
In t roduc t ion . 68

Ge t t ing X S S ' e d . 68

Non-pe r s i s t en t . 69

D O M - b a s e d . 73

Persistent . 75

D O M - b a s e d XSS In Detai l . 75

Ident i fy ing D O M - b a s e d XSS Vulnerabilities 76

Explo i t ing Non-pe r s i s t e n t

D O M - b a s e d XSS Vulnerabilities 80

Explo i t ing Persistent D O M - b a s e d XSS Vulnerabilities . . . 8 2

Prevent ing D O M - b a s e d XSS Vulnerabilities 84

R e d i r e c t i o n . 86

R e d i r e c t i o n Services . 90

R e f e r r i n g U R L s . 91

C S R F . 93

Flash, Q u i c k T i m e , P D E O h M y . 97

Playing wi th Flash Fire . 98

H i d d e n P D F Features . 105

Q u i c k T i m e Hacks for Fun and Profit 116

B a c k d o o r i n g Image Files . 121

H T T P R e s p o n s e In jec t ion . 123

Source vs. D H T M L Rea l i ty . 125

Bypassing XSS Leng th Limitat ions 131

XSS Filter Evasion . 133

W h e n Script Gets Blocked . 139

Browser Peculiarities . 150

CSS Filter Evasion . 152

X M L Vectors . 154

At tack ing Obscure Filters . 155

E n c o d i n g Issues . 156

S u m m a r y . 159

Solut ions Fast Track . 159

Frequen t ly Asked Ques t ions . 162

Chapter 4 XSS Attack Methods . 163
In t roduc t ion . 164

His to ry Stealing . 164

Contents xi

JavaScr ip t /CSS API " g e t C o m p u t e d S t y l e " 164

C o d e for Fi refox/Mozi l la . May

W o r k In O t h e r Browsers . 164

Stealing Search Eng ine Quer i e s 167

JavaScript Conso le E r ro r Login C h e c k e r 167

In t ranet H a c k i n g . 173

Explo i t Procedures . 174

Persistent C o n t r o l . 174

O b t a i n i n g N A T ' e d IP Addresses 176

Por t Scanning . 177

Blind Web Server F inge rp r in t ing 180

Attack ing the In t ranet . 181

XSS Defacements . 184

S u m m a r y . 188

Solut ions Fast Track . 188

Frequent ly Asked Ques t ions . 189

References . 190

Chapter 5 Advanced XSS Attack Vectors 191
In t roduc t i on . 192

D N S P inn ing . 192

A n t i - D N S P inn ing . 194

A n t i - A n t i - D N S P inn ing . 196

A n t i - a n t i - a n t i - D N S P inn ing

A K A C i r c u m v e n t i n g A n t i - a n t i - D N S P inn ing 196

Addi t iona l Appl icat ions o f A n t i - D N S P inn ing 197

I M A P 3 . 199

M H T M L . 204

Expec t Vulnerabil i ty . 207

H a c k i n g J S O N . 209

S u m m a r y . 216

Frequen t ly Asked Ques t ions . 217

Chapter 6 XSS Exploited . 219
I n t roduc t i on . 220

XSS vs. Firefox Password Manage r 220

SeXXS Offenders . 223

Equi f raked . 228

Finding the B u g . 229

xii Contents

Building the Exploi t Code . 230

O w n i n g the Cingular Xpress Mail User 232

The Xpress Mail Personal Edi t ion Solut ion 232

Seven.corn . 234

The Ackid (AKA C u s t o m Session ID) 234

The Inbox . 235

The D o c u m e n t Folder . 236

E-mai l Cross-l inkage . 237

C S F R P roo f of Concepts . 238

Cook ie Grab . 238

Xpressmail Snarler . 241

O w n i n g the D o c u m e n t s . 248

Alternate XSS: Outs ide the B o X X S 248

O w n i n g the O w n e r . 249

The SILICA and CANVAS 249

Building the Scripted Share 250

O w n i n g the O w n e r . 251

Lessons Learned and Free Advertising 252

A i rpwned wi th XSS . 252

XSS Injection: XSSing Protected Systems 256

The Decompi l ed Flash M e t h o d 256

Applicat ion M e m o r y M a s s a g i n g -

XSS via an Executable . 261

XSS Old S c h o o l - W i n d o w s Mobi le PIE 4.2 262

Cross-frame Scripting Illustrated 263

XSSing Firefox Extensions . 267

GreaseMonkey Backdoors . 267

GreaseMonkey Bugs . 270

XSS the Backend: S n o o p w n e d 275

XSS A n o n y m o u s Script Storage - T i n y U R L 0day 277

XSS Exploitat ion: P o i n t - C l i c k - O w n wi th EZPhotoSales . .285

S u m m a r y . 288

Solutions Fast Track . 288

Frequent ly Asked Quest ions . 291

Chapter 7 Exploit F rameworks . 293
In t roduc t ion . 294

AttackAPI . 294

Contents xiii

Enumera t i ng the Cl ient . 298

At tacking Ne tworks . 307

Hi jacking the Browser . 315

Contro l l ing Zombies . 319

BeEF . 322

Installing and Conf igur ing BeEF 323

Cont ro l l ing Zombies . 323

BeEF Modules . 325

Standard Browser Exploits . 327

Port Scanning wi th BeEF . 327

In te r -pro tocol Exploi ta t ion

and C o m m u n i c a t i o n wi th BeEF 328

CAL9000 . 330

XSS Attacks, Chea t Sheets, and Checklists 331

Encoder , Decoders , and Miscellaneous Tools 334

H T T P Reques t s /Responses and Automat ic Testing 335

O v e r v i e w of XSS-Proxy . 338

XSS-Proxy Hi jacking Expla ined 341

Browser Hi jacking Details . 343

Attacker Cont ro l Interface 346

Using XSS-Proxy: Examples . 347

Setting U p XSS-Proxy . 347

Inject ion and Initialization Vectors For XSS-Proxy .350

H a n d o f f and CSP, F W i t h Hijacks 352

Sage and F i l e : / / H i j a c k W i t h Malicious RSS Feed .354

S u m m a r y . 371

Solutions Fast Track . 371

Frequent ly Asked Quest ions . 372

Chapte r 8 XSS W o r m s . 375
In t roduc t ion . 376

Exponent ia l XSS . 376

XSS Warhol W o r m . 379

Linear XSS W o r m . 380

Samy Is M y Hero . 386

S u m m a r y . 391

Solutions Fast Track . 391

Frequent ly Asked Quest ions . 393

xiv Contents

Chapter 9 Preventing XSS Attacks 395
I n t r o d u c t i o n . 396

Fi l te r ing . 396

Inpu t E n c o d i n g . 400

O u t p u t E n c o d i n g . 402

W e b Browser 's Secur i ty . 402

Browser Select ion . 403

A d d M o r e Secur i ty To Your W e b Browser 403

Disabl ing Features . 404

Use a Vir tual M a c h i n e . 404

D o n ' t Cl ick O n Links in E-mai l , A lmos t Ever 404

D e f e n d your W e b Mai l . 404

Beware o f Ove r ly L o n g URL ' s 404

U R L Shor teners . 405

Secrets Ques t ions and Lost Answers 405

S u m m a r y . 406

Solut ions Fast Track . 406

F requen t ly Asked Ques t ions . 407

Appendix A The Owned List . 409

Index . 439

Chapter 1

Solutions in this chapter:

History of Cross-site Scripting

Web Application Security

XML and AJAX Introduction

Summary

PI Solutions Fast Track

PI Frequently Asked Questions

Chapter 1 �9 Cross-site Scripting Fundamentals

Introduction
Cross-site scripting vulnerabilities date back to 1996 during the early days of the World
Wide Web (Web). A time when e-commerce began to take off, the bubble days of
Netscape,Yahoo, and the obnoxious blink tag. When thousands of Web pages were
under construction, littered with the little yellow street signs, and the "cool" Web sites
used Hypertext Markup Language (HTML) Frames. The JavaScript programming lan-
guage hit the scene, an unknown harbinger of cross-site scripting, which changed the
Web application security landscape forever. JavaScript enabled Web developers to create
interactive Web page effects including image rollovers, floating menus, and the despised
pop-up window. Unimpressive by today's Asynchronous JavaScript and XML (AJAX) appli-
cation standards, but hackers soon discovered a new unexplored world of possibility.

Hackers found that when unsuspecting users visited their Web pages they could forcibly
load any Web site (bank, auction, store, Web mail, and so on) into an HTML Frame within
the same browser window. Then using JavaScript, they could cross the boundary between
the two Web sites, and read from one frame into the other. They were able to pilfer user-
names and passwords typed into HTML Forms, steal cookies, or compromise any confiden-
tial information on the screen. The media reported the problem as a Web browser
vulnerability. Netscape Communications, the dominant browser vendor, fought back by
implementing the "same-origin policy," a policy restricting JavaScript on one Web site from
accessing data from another. Browser hackers took this as a challenge and began uncovering
many clever ways to circumvent the restriction.

In December 1999, David Ross was working on security response for Internet Explorer
at Microsoft. He was inspired by the work of Georgi Guninski who was at the time finding
flaws in Internet Explorer's security model. David demonstrated that Web content could
expose "Script Injection" effectively bypassing the same security guarantees bypassed by
Georgi's Internet Explorer code flaws, but where the fault seemed to exist on the server side
instead of the client side Internet Explorer code. David described this in a Microsoft-internal
paper entitled "Script Injection."The paper described the issue, how it's exploited, how the
attack can be persisted using cookies, how a cross-site scripting (XSS) virus might work, and
Input/Output (I/O) filtering solutions.

Eventually this concept was shared with CERT. The goal of this was to inform the
public so that the issue would be brought to light in a responsible way and sites would get
fixed, not just at Microsoft, but also across the industry. In a discussion around mid-January,
the cross organization team chose "Cross Site Scripting" from a rather humorous list of pro-

posals:

�9 Unauthorized Site Scripting

�9 Unofficial Site Scripting

�9 Uniform Resource Locator (URL) Parameter Script Insertion

Cross-site Scripting Fundamentals �9 Chapter 1 3

�9 Cross-site Scripting

�9 Synthesized Scripting

�9 Fraudulent Scripting

On January 25, 2000, Microsoft met with the Computer Emergency Response Team
(CERT), various vendors (e.g., Apache, and so forth) and other interested parties at a hotel
in Bellevue, WA to discuss the concept.

David re-wrote the internal paper with the help of Ivan Brugiolo, John Coates, and
Michael Roe, so that it was suitable for public release. In coordination with CERT,
Microsoft released this paper and other materials on February 2, 2000. Sometime during the
past few years the paper was removed from Microsoft.com; however, nothing ever dies on
the Internet. It can now be found at http://ha.ckers.org/cross-site-scripting.html

During the same time, hackers of another sort made a playground of HTML chat
rooms, message boards, guest books, and Web mail providers; any place where they could
submit text laced with HTML/JavaScript into a Web site for infecting Web users. This is
where the attack name "HTML Injection" comes from. The hackers created a rudimentary
form of JavaScript malicious software (malware) that they submitted into HTML forms to
change screen names, spoof derogatory messages, steal cookies, adjust the Web page's colors,
proclaim virus launch warnings, and other vaguely malicious digital mischief. Shortly there-
after another variant of the same attack surfaced. With some social engineering, it was found
that by tricking a user to click on a specially crafted malicious link would yield the same
results as HTML Injection. Web users would have no means of self-defense other than to
switch offJavaScript.

Over the years what was originally considered to be cross-site scripting, became simply
known as a Web browser vulnerability with no special name. What was HTML Injection
and malicious linking are what's now referred to as variants of cross-site scripting, or "persis-
tent" and "non-persistent" cross-site scripting, respectively. Unfortunately this is a big reason
why so many people are confused by the muddled terminology. Making matters worse, the
acronym "CSS" was regularly confused with another newly born browser technology already
claiming the three-letter convention, Cascading Style Sheets. Finally in the early 2000's, a
brilliant person suggested changing the cross-site scripting acronym to "XSS" to avoid con-

fusion. And just like that, it stuck. XSS had its own identity. Dozens of freshly minted white
papers and a sea of vulnerability advisories flooded the space describing its potentially devas-
tating impact. Few would listen.

Prior to 2005, the vast majority of security experts and developers paid little attention to
XSS. The focus transfixed on buffer overflows, botnets, viruses, worms, spyware, and others.
Meanwhile a million new Web servers appear globally each month turning perimeter fire-
walls into swiss cheese and rendering Secure Sockets Layer (SSL) as quaint. Most believed
JavaScript, the enabler of XSS, to be a toy programming language. "It can't root an operating
system or exploit a database, so why should I care? How dangerous could clicking on a link

www.syngress.com

4 Chapter 1 �9 Cross-site Scripting Fundamentals

or visiting a Web page really be?" In October of 2005, we got the answer. Literally overnight
the Samy Worm, the first major XSS worm, managed to shut down the popular social net-
working Web site MySpace. The payload being relatively benign, the Samy Worm was
designed to spread from a single MySpace user profile page to another, finally infecting more
than a million users in only 24 hours. Suddenly the security world was wide-awake and
research into JavaScript malware exploded.

A few short months later in early 2006, JavaScript port scanners, intranet hacks,
keystroke recorders, trojan horses, and browser history stealers arrived to make a lasting
impression. Hundreds of XSS vulnerabilities were being disclosed in major Web sites and
criminals began combining in phishing scams for an effective fraud cocktail. Unsurprising
since according to WhiteHat Security more than 70 percent of Web sites are currently vul-
nerable. Mitre's Common Vulnerabilities and Exposures (CVE) project, a dictionary of pub-
licly known vulnerabilities in commercial and open source software products, stated XSS had
overtaken buffer overflows to become the number 1 most discovered vulnerability. XSS
arguably stands as the most potentially devastating vulnerability facing information security
and business online. Today, when audiences are asked if they've heard of XSS, the hands of
nearly everyone will rise.

Web Application Security
The Web is the playground of 800 million netizens, home to 100 million Web sites, and
transporter of billions of dollars everyday. International economies have become dependent
on the Web as a global phenomenon. It's not been long since Web mail, message boards, chat
rooms, auctions, shopping, news, banking, and other Web-based software have become part
of digital life. Today, users hand over their names, addresses, social security numbers, credit
card information, phone numbers, mother's maiden name, annual salary, date of birth, and
sometimes even their favorite color or name of their kindergarten teacher to receive finan-
cial statements, tax records, or day trade stock. And did I mention that roughly 8 out of 10
Web sites have serious security issues putting this data at risk? Even the most secure systems
are plagued by new security threats only recently identified as Web Application Security, the
term used to describe the methods of securing web-based software.

The organizations that collect personal and private information are responsible for pro-
tecting it from prying eyes. Nothing less than corporate reputation and personal identity is at
stake. As vital as Web application security is and has been, we need to think bigger. We're
beyond the relative annoyances of identity theft, script kiddy defacements, and full-disclosure
antics. New Web sites are launched that control statewide power grids, operate hydroelectric
dams, fill prescriptions, administer payroll for the majority of corporate America, run corpo-
rate networks, and manage other truly critical functions. Think of what a malicious compro-
mise of one of these systems could mean. It's hard to imagine an area of information

Cross-site Scripting Fundamentals �9 Chapter 1 5

security that's more important. Web applications have become the easiest, most direct, and
arguably the most exploited route for system compromise.

Until recently everyone thought firewalls, SSL, intrusion detection systems, network

scanners, and passwords were the answer to network security. Security professionals bor-

rowed from basic military strategy where you set up a perimeter and defended it with every-
thing you had. The idea was to allow the good guys in and keep the bad guys out. For the
most part, the strategy was effective, that is until the Web and e-commerce forever changed
the landscape. E-commerce requires firewalls to allow in Web (port 80 Hypertext Transfer
Protocol [HTTP] and 443 Hypertext Transfer Protocol Secure sockets [HTTPS]) traffic.
Essentially meaning you have to let in the whole world and make sure they play nice.
Seemingly overnight the Internet moved from predominantly walled networks to a global e-
commerce bazaar. The perimeter became porous and security administrators found them-
selves without any way to protect against insecure Web applications.

Web developers are now responsible for security as well as creating applications that fuel
Web business. Fundamental software design concepts have had to change. Prior to this trans-
formation, the average piece of software was utilized by a relatively small number of users.
Developers now create software that runs on Internet-accessible Web servers to provide ser-
vices for anyone, anywhere. The scope and magnitude of their software delivery has
increased exponentially, and in so doing, the security issues have also compounded. Now
hundreds of millions of users all over the globe have direct access to corporate servers, any
number of which could be malicious adversaries. New terms such as cross-site scripting,
Structured Query Language (SQL) injection, and a dozen of other new purely Web-based
attacks have to be understood and dealt with.

Figure 1.1 Vulnerability Stack

www.syngress.com

6 Chapter 1 �9 Cross-site Scripting Fundamentals

Web application security is a large topic encompassing many disciplines, technologies,

and design concepts. Normally, the areas we're interested in are the software layers from the
Web server on up the vulnerability stack as illustrated in Figure 1.1. This includes application
servers such as JBoss, IBM WebSphere, BEA WebLogic, and a thousand others. Then we
progress in the commercial and open source Web applications like PHP Nuke, Microsoft
Outlook Web Access, and SAP. And after all that, there are the internal custom Web applica-
tions that organizations develop for themselves. This is the lay of the land when it comes to

Web application security.
One of the biggest threats that Web application developers have to understand and know

how to mitigate is XSS attacks. While XSS is a relatively small part of the Web application
security field, it possible represents the most dangerous, with respect to the typical Internet
user. One simple bug on a Web application can result in a compromised browser through
which an attacker can steal data, take over a user's browsing experience, and more.

Ironically, many people do not understand the dangers of XSS vulnerabilities and how
they can be and are used regularly to attack victims. This book's main goal is to educate
readers through a series of discussions, examples, and illustrations as to the real threat and
significant impact that one XSS can have.

XML and AJAX Introduction
We are assuming that the average reader of this book is familiar with the fundamentals of
JavaScript and HTML. Both of these technologies are based on standards and protocols that
have been around for many years, and there is an unlimited amount of information about
how they work and what you can do with them on the Internet. However, given the rela-
tively new introduction of AJAX and eXtensible Markup Language (XML) into the Web
world, we felt it was a good idea to provide a basic overview of these two technologies.

AJAX is a term that is often considered as being strongly related to XML, as the XML
acronym is used as part of the name. That's not always the case. AJAX is a synonym that
describes new approaches that have been creeping into Web development practices for some
time. At its basics, AJAX is a set of techniques for creating interactive Web applications that
improve the user experience, provide greater usability, and increase their speed.

The roots of AJAX were around long before the term was picked up by mainstream
Web developers in 2005. The core technologies that are widely used today in regards to
AJAX were initiated by Microsoft with the development of various remote-scripting tech-
niques. The set of technologies that are defined by AJAX are a much better alternative than
the traditional remote components such as the IFRAME and LAYER elements, defined in
Dynamic Hyper Text Markup Language (DHTML) programming practices.

The most basic and essential component of AJAX is the XMLHttpRequest JavaScript
object. This object provides the mechanism for pulling remote content from a server without
the need to refresh the page the browser has currently loaded. This object comes in many

Cross-site Scripting Fundamentals �9 Chapter 1 7

different flavors, depending on the browser that is in use. The XMLHttpRequest object is
designed to be simple and intuitive. The following example demonstrates how requests are
made and used"
// instantiate new XMLHttpRequest

var request = new XMLHttpRequest;

// handle request result

request.onreadystatechange : function () {

if (request.readyState :: 4) {

//do something with the content

};

alert(request.responseText) ;

// open a request to /service.php

request.open('GET', '/service.php', false) ;

// send the request

request, send (null) ;

For various reasons, the XMLHttpRequest object is not implemented exactly the same

way across all browsers. This is due to the fact that AJAX is a new technology, and although
standards are quickly picking up, there are still situations where we need to resolve various
browser incompatibilities problems. These problems are usually resolved with the help of
AJAX libraries but we, as security researchers, often need to use the pure basics.

As we established previously in this section, the XMLHttpRequest object differs
depending on the browser version. Microsoft Internet Explorer For example requires the use
of ActiveXObject('Msxml2.XMLHTTP') or even ActiveXObject('Microsoft.XMLHTTP') to
spawn similar objects to the standard XMLHttpRequest object. Other browsers may have dif-
ferent ways to do the exact same thing. In order to satisfy all browser differences, we like to
use Functions similar to the one defined here:
function getXHR () {

var xhr = null;

if (window. XMLHttpRequest) {

xhr = new XMLHttpRequest() ;

} else if (window.createRequest) {

xhr = window.createRequest() ;

} else if (window.ActiveXObject) {

try {

xhr = new ActiveXObject('Msxml2.XMLHTTP') ;

} catch (e) {

w w w . s y n g r e s s . c o m

8 Chapter 1 �9 Cross-site Scripting Fundamentals

try {
xhr = new ActiveXObject('Microsoft.XMLHTTP') ;

} catch (e) {}

};
return xhr;

// make new XMLHttpRequest object

var xhr = getXHR();

The XMLHttpRequest object has several methods and properties. Table 1.1 summarizes
all of them.

Table 1.1 XMLHttpRequest Methods and Properties

Method/Property Description
abort()
getAIIResponseHeadersO
getResponseHeader(name)

setRequestHeader(name, value)
open(method, URL)
open(method, URL,
asynchronous)
open(method, URL,
asynchronous, username)
open(method, URL,
asynchronous, username,
password)
on readysta techa nge

readyState

Abort the request.
Retrieve the response headers as a string.
Retrieve the value of the header specified by
name.
Set the value of the header specified by name.
Open the request object by setting the method
that will be used and the URL that will be
retrieved.

Optionally, you can specify whether the
request is synchronous or asynchronous, and
what credentials need to be provided if the
requested URL is protected.
This property can hold a reference to the event
handler that will be called when the request
goes through the various states.
The readyState parameter defines the state of
the request. The possible values are:
0 - uninitialized
1 - open
2 - sent
3 - receiving
4 - loaded

Continued

Cross-site Scripting Fundamentals �9 Chapter 1 9

Table 1.1 cont inued XMLHttpRequest Methods and Properties

Method/Property Description

status

status Text

response Text

responseXML

The status property returns the response status
code, which could be 200 if the request is suc-
cessful or 302, when a redirection is required.
Other status codes are also possible.
This property returns the description that is
associated with the status code.
The response Text property returns the body of
the respond.
The responseXML is similar to responseText but
if the server response is served as XML, the
browser will convert it into a nicely accessible
memory structure which is also know as
Document Object Model (DOM)

Notice the diFFerence between the response Text and responseXML properties. Both os

them return the response body, but they differentiate by Function quite a bit.

In particular, response Text is used when we retrieve textual documents, H T M L pages,

binary, and everything else that is not XML. When we need to deal with XML, we use the

responseXML property, which parses the response text into a D O M object.

We have already shown how the response Text works, so let's look at the use os

responseXML. Before providing another example, we must explain the purpose of XML.

XML was designed to give semantics rather then structure as is the case with HTML.

XML is a mini language on its own, which does not possess any boundaries. Other standards

related to XML are XPath, Extensible Stylesheet Language Transformation (XSLT), XML

Schema Definition (XSD), Xlink, XForms, Simple Object Access Protocol (SOAP),

XML1KPC, and so on. We are not going to cover all of them, because the book will get
quickly out of scope, but you can read about them at www.w3c.org.

Both XML and HTML, although different, are composed from the same building blocks

that are known as elements or tags. XML and H T M L elements are highly structured. They

can be represented with a tree structure, which is often referred to as the DOM. In reality,

D O M is a set of specifications defined by the World Wide Web Consortium, which define

how XML structures are created and what method and properties they need to have. As we

established earlier, H T M L can also be parsed into a D O M tree.

One of the most common D O M functions is the getElementsByTagName, which returns

an array of elements. Another popular function is getElementByld, which return a single ele-

ment based on its identifier. For example, with the help of JavaScript we can easily extract all

<p> elements and replace them with the message "Hello World!." For example:

www.syngress.com

