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Chapter 1 �9 Cross-site Scripting Fundamentals 

Introduction 
Cross-site scripting vulnerabilities date back to 1996 during the early days of the World 
Wide Web (Web). A time when e-commerce began to take off, the bubble days of 
Netscape,Yahoo, and the obnoxious blink tag. When thousands of Web pages were 
under construction, littered with the little yellow street signs, and the "cool" Web sites 
used Hypertext Markup Language (HTML) Frames. The JavaScript programming lan- 
guage hit the scene, an unknown harbinger of cross-site scripting, which changed the 
Web application security landscape forever. JavaScript enabled Web developers to create 
interactive Web page effects including image rollovers, floating menus, and the despised 
pop-up window. Unimpressive by today's Asynchronous JavaScript and XML (AJAX) appli- 
cation standards, but hackers soon discovered a new unexplored world of possibility. 

Hackers found that when unsuspecting users visited their Web pages they could forcibly 
load any Web site (bank, auction, store, Web mail, and so on) into an HTML Frame within 
the same browser window. Then using JavaScript, they could cross the boundary between 
the two Web sites, and read from one frame into the other. They were able to pilfer user- 
names and passwords typed into HTML Forms, steal cookies, or compromise any confiden- 
tial information on the screen. The media reported the problem as a Web browser 
vulnerability. Netscape Communications, the dominant browser vendor, fought back by 
implementing the "same-origin policy," a policy restricting JavaScript on one Web site from 
accessing data from another. Browser hackers took this as a challenge and began uncovering 
many clever ways to circumvent the restriction. 

In December 1999, David Ross was working on security response for Internet Explorer 
at Microsoft. He was inspired by the work of Georgi Guninski who was at the time finding 
flaws in Internet Explorer's security model. David demonstrated that Web content could 
expose "Script Injection" effectively bypassing the same security guarantees bypassed by 
Georgi's Internet Explorer code flaws, but where the fault seemed to exist on the server side 
instead of the client side Internet Explorer code. David described this in a Microsoft-internal 
paper entitled "Script Injection."The paper described the issue, how it's exploited, how the 
attack can be persisted using cookies, how a cross-site scripting (XSS) virus might work, and 
Input/Output (I/O) filtering solutions. 

Eventually this concept was shared with CERT. The goal of this was to inform the 
public so that the issue would be brought to light in a responsible way and sites would get 
fixed, not just at Microsoft, but also across the industry. In a discussion around mid-January, 
the cross organization team chose "Cross Site Scripting" from a rather humorous list of pro- 

posals: 

�9 Unauthorized Site Scripting 

�9 Unofficial Site Scripting 

�9 Uniform Resource Locator (URL) Parameter Script Insertion 
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�9 Cross-site Scripting 

�9 Synthesized Scripting 

�9 Fraudulent Scripting 

On January 25, 2000, Microsoft met with the Computer Emergency Response Team 
(CERT), various vendors (e.g., Apache, and so forth) and other interested parties at a hotel 
in Bellevue, WA to discuss the concept. 

David re-wrote the internal paper with the help of Ivan Brugiolo, John Coates, and 
Michael Roe, so that it was suitable for public release. In coordination with CERT, 
Microsoft released this paper and other materials on February 2, 2000. Sometime during the 
past few years the paper was removed from Microsoft.com; however, nothing ever dies on 
the Internet. It can now be found at http://ha.ckers.org/cross-site-scripting.html 

During the same time, hackers of another sort made a playground of HTML chat 
rooms, message boards, guest books, and Web mail providers; any place where they could 
submit text laced with HTML/JavaScript into a Web site for infecting Web users. This is 
where the attack name "HTML Injection" comes from. The hackers created a rudimentary 
form of JavaScript malicious software (malware) that they submitted into HTML forms to 
change screen names, spoof derogatory messages, steal cookies, adjust the Web page's colors, 
proclaim virus launch warnings, and other vaguely malicious digital mischief. Shortly there- 
after another variant of the same attack surfaced. With some social engineering, it was found 
that by tricking a user to click on a specially crafted malicious link would yield the same 
results as HTML Injection. Web users would have no means of self-defense other than to 
switch offJavaScript. 

Over the years what was originally considered to be cross-site scripting, became simply 
known as a Web browser vulnerability with no special name. What was HTML Injection 
and malicious linking are what's now referred to as variants of cross-site scripting, or "persis- 
tent" and "non-persistent" cross-site scripting, respectively. Unfortunately this is a big reason 
why so many people are confused by the muddled terminology. Making matters worse, the 
acronym "CSS" was regularly confused with another newly born browser technology already 
claiming the three-letter convention, Cascading Style Sheets. Finally in the early 2000's, a 
brilliant person suggested changing the cross-site scripting acronym to "XSS" to avoid con- 

fusion. And just like that, it stuck. XSS had its own identity. Dozens of freshly minted white 
papers and a sea of vulnerability advisories flooded the space describing its potentially devas- 
tating impact. Few would listen. 

Prior to 2005, the vast majority of security experts and developers paid little attention to 
XSS. The focus transfixed on buffer overflows, botnets, viruses, worms, spyware, and others. 
Meanwhile a million new Web servers appear globally each month turning perimeter fire- 
walls into swiss cheese and rendering Secure Sockets Layer (SSL) as quaint. Most believed 
JavaScript, the enabler of XSS, to be a toy programming language. "It can't root an operating 
system or exploit a database, so why should I care? How dangerous could clicking on a link 

www.syngress.com 
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or visiting a Web page really be?" In October of 2005, we got the answer. Literally overnight 
the Samy Worm, the first major XSS worm, managed to shut down the popular social net- 
working Web site MySpace. The payload being relatively benign, the Samy Worm was 
designed to spread from a single MySpace user profile page to another, finally infecting more 
than a million users in only 24 hours. Suddenly the security world was wide-awake and 
research into JavaScript malware exploded. 

A few short months later in early 2006, JavaScript port scanners, intranet hacks, 
keystroke recorders, trojan horses, and browser history stealers arrived to make a lasting 
impression. Hundreds of XSS vulnerabilities were being disclosed in major Web sites and 
criminals began combining in phishing scams for an effective fraud cocktail. Unsurprising 
since according to WhiteHat Security more than 70 percent of Web sites are currently vul- 
nerable. Mitre's Common Vulnerabilities and Exposures (CVE) project, a dictionary of pub- 
licly known vulnerabilities in commercial and open source software products, stated XSS had 
overtaken buffer overflows to become the number 1 most discovered vulnerability. XSS 
arguably stands as the most potentially devastating vulnerability facing information security 
and business online. Today, when audiences are asked if they've heard of XSS, the hands of 
nearly everyone will rise. 

Web Application Security 
The Web is the playground of 800 million netizens, home to 100 million Web sites, and 
transporter of billions of dollars everyday. International economies have become dependent 
on the Web as a global phenomenon. It's not been long since Web mail, message boards, chat 
rooms, auctions, shopping, news, banking, and other Web-based software have become part 
of digital life. Today, users hand over their names, addresses, social security numbers, credit 
card information, phone numbers, mother's maiden name, annual salary, date of birth, and 
sometimes even their favorite color or name of their kindergarten teacher to receive finan- 
cial statements, tax records, or day trade stock. And did I mention that roughly 8 out of 10 
Web sites have serious security issues putting this data at risk? Even the most secure systems 
are plagued by new security threats only recently identified as Web Application Security, the 
term used to describe the methods of securing web-based software. 

The organizations that collect personal and private information are responsible for pro- 
tecting it from prying eyes. Nothing less than corporate reputation and personal identity is at 
stake. As vital as Web application security is and has been, we need to think bigger. We're 
beyond the relative annoyances of identity theft, script kiddy defacements, and full-disclosure 
antics. New Web sites are launched that control statewide power grids, operate hydroelectric 
dams, fill prescriptions, administer payroll for the majority of corporate America, run corpo- 
rate networks, and manage other truly critical functions. Think of what a malicious compro- 
mise of one of these systems could mean. It's hard to imagine an area of information 
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security that's more important. Web applications have become the easiest, most direct, and 
arguably the most exploited route for system compromise. 

Until recently everyone thought firewalls, SSL, intrusion detection systems, network 

scanners, and passwords were the answer to network security. Security professionals bor- 

rowed from basic military strategy where you set up a perimeter and defended it with every- 
thing you had. The idea was to allow the good guys in and keep the bad guys out. For the 
most part, the strategy was effective, that is until the Web and e-commerce forever changed 
the landscape. E-commerce requires firewalls to allow in Web (port 80 Hypertext Transfer 
Protocol [HTTP] and 443 Hypertext Transfer Protocol Secure sockets [HTTPS]) traffic. 
Essentially meaning you have to let in the whole world and make sure they play nice. 
Seemingly overnight the Internet moved from predominantly walled networks to a global e- 
commerce bazaar. The perimeter became porous and security administrators found them- 
selves without any way to protect against insecure Web applications. 

Web developers are now responsible for security as well as creating applications that fuel 
Web business. Fundamental software design concepts have had to change. Prior to this trans- 
formation, the average piece of software was utilized by a relatively small number of users. 
Developers now create software that runs on Internet-accessible Web servers to provide ser- 
vices for anyone, anywhere. The scope and magnitude of their software delivery has 
increased exponentially, and in so doing, the security issues have also compounded. Now 
hundreds of millions of users all over the globe have direct access to corporate servers, any 
number of which could be malicious adversaries. New terms such as cross-site scripting, 
Structured Query Language (SQL) injection, and a dozen of other new purely Web-based 
attacks have to be understood and dealt with. 

Figure 1.1 Vulnerability Stack 

www.syngress.com 
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Web application security is a large topic encompassing many disciplines, technologies, 

and design concepts. Normally, the areas we're interested in are the software layers from the 
Web server on up the vulnerability stack as illustrated in Figure 1.1. This includes application 
servers such as JBoss, IBM WebSphere, BEA WebLogic, and a thousand others. Then we 
progress in the commercial and open source Web applications like PHP Nuke, Microsoft 
Outlook Web Access, and SAP. And after all that, there are the internal custom Web applica- 
tions that organizations develop for themselves. This is the lay of the land when it comes to 

Web application security. 
One of the biggest threats that Web application developers have to understand and know 

how to mitigate is XSS attacks. While XSS is a relatively small part of the Web application 
security field, it possible represents the most dangerous, with respect to the typical Internet 
user. One simple bug on a Web application can result in a compromised browser through 
which an attacker can steal data, take over a user's browsing experience, and more. 

Ironically, many people do not understand the dangers of XSS vulnerabilities and how 
they can be and are used regularly to attack victims. This book's main goal is to educate 
readers through a series of discussions, examples, and illustrations as to the real threat and 
significant impact that one XSS can have. 

XML and AJAX Introduction 
We are assuming that the average reader of this book is familiar with the fundamentals of 
JavaScript and HTML. Both of these technologies are based on standards and protocols that 
have been around for many years, and there is an unlimited amount of information about 
how they work and what you can do with them on the Internet. However, given the rela- 
tively new introduction of AJAX and eXtensible Markup Language (XML) into the Web 
world, we felt it was a good idea to provide a basic overview of these two technologies. 

AJAX is a term that is often considered as being strongly related to XML, as the XML 
acronym is used as part of the name. That's not always the case. AJAX is a synonym that 
describes new approaches that have been creeping into Web development practices for some 
time. At its basics, AJAX is a set of techniques for creating interactive Web applications that 
improve the user experience, provide greater usability, and increase their speed. 

The roots of AJAX were around long before the term was picked up by mainstream 
Web developers in 2005. The core technologies that are widely used today in regards to 
AJAX were initiated by Microsoft with the development of various remote-scripting tech- 
niques. The set of technologies that are defined by AJAX are a much better alternative than 
the traditional remote components such as the IFRAME and LAYER elements, defined in 
Dynamic Hyper Text Markup Language (DHTML) programming practices. 

The most basic and essential component of AJAX is the XMLHttpRequest JavaScript 
object. This object provides the mechanism for pulling remote content from a server without 
the need to refresh the page the browser has currently loaded. This object comes in many 
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different flavors, depending on the browser that is in use. The XMLHttpRequest object is 
designed to be simple and intuitive. The following example demonstrates how requests are 
made and used" 
// instantiate new XMLHttpRequest 

var request = new XMLHttpRequest; 

// handle request result 

request.onreadystatechange : function () { 

if (request.readyState :: 4) { 

//do something with the content 

}; 

alert(request.responseText) ; 

// open a request to /service.php 

request.open( 'GET', '/service.php', false) ; 

// send the request 

request, send (null) ; 

For various reasons, the XMLHttpRequest object is not implemented exactly the same 

way across all browsers. This is due to the fact that AJAX is a new technology, and although 
standards are quickly picking up, there are still situations where we need to resolve various 
browser incompatibilities problems. These problems are usually resolved with the help of  
AJAX libraries but we, as security researchers, often need to use the pure basics. 

As we established previously in this section, the XMLHttpRequest object differs 
depending on the browser version. Microsoft Internet Explorer For example requires the use 
of ActiveXObject('Msxml2.XMLHTTP') or even ActiveXObject('Microsoft.XMLHTTP') to 
spawn similar objects to the standard XMLHttpRequest object. Other browsers may have dif- 
ferent ways to do the exact same thing. In order to satisfy all browser differences, we like to 
use Functions similar to the one defined here: 
function getXHR () { 

var xhr = null; 

if (window. XMLHttpRequest) { 

xhr = new XMLHttpRequest() ; 

} else if (window.createRequest) { 

xhr = window.createRequest() ; 

} else if (window.ActiveXObject) { 

try { 

xhr = new ActiveXObject('Msxml2.XMLHTTP') ; 

} catch (e) { 

w w w . s y n g r e s s . c o m  
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try { 
xhr = new ActiveXObject('Microsoft.XMLHTTP') ; 

} catch (e) {} 

}; 
return xhr; 

// make new XMLHttpRequest object 

var xhr = getXHR(); 

The XMLHttpRequest object has several methods and properties. Table 1.1 summarizes 
all of them. 

Table 1.1 XMLHttpRequest Methods and Properties 

Method/Property Description 
abort() 
getAIIResponseHeadersO 
getResponseHeader(name) 

setRequestHeader(name, value) 
open(method, URL) 
open(method, URL, 
asynchronous) 
open(method, URL, 
asynchronous, username) 
open(method, URL, 
asynchronous, username, 
password) 
on readysta techa nge 

readyState 

Abort the request. 
Retrieve the response headers as a string. 
Retrieve the value of the header specified by 
name. 
Set the value of the header specified by name. 
Open the request object by setting the method 
that will be used and the URL that will be 
retrieved. 

Optionally, you can specify whether the 
request is synchronous or asynchronous, and 
what credentials need to be provided if the 
requested URL is protected. 
This property can hold a reference to the event 
handler that will be called when the request 
goes through the various states. 
The readyState parameter defines the state of 
the request. The possible values are: 
0 -  uninitialized 
1 - open 
2 - sent 
3 - receiving 
4 -  loaded 

Continued 
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Table 1.1 cont inued XMLHttpRequest Methods and Properties 

Method/Property Description 

status 

status Text 

response Text 

responseXML 

The status property returns the response status 
code, which could be 200 if the request is suc- 
cessful or 302, when a redirection is required. 
Other status codes are also possible. 
This property returns the description that is 
associated with the status code. 
The response Text property returns the body of 
the respond. 
The responseXML is similar to responseText but 
if the server response is served as XML, the 
browser will convert it into a nicely accessible 
memory structure which is also know as 
Document Object Model (DOM) 

Notice the diFFerence between the response Text and responseXML properties. Both os 

them return the response body, but they differentiate by Function quite a bit. 

In particular, response Text is used when we retrieve textual documents, H T M L  pages, 

binary, and everything else that is not XML. When  we need to deal with XML, we use the 

responseXML property, which parses the response text into a D O M  object. 

We have already shown how the response Text works, so let's look at the use os 

responseXML. Before providing another example, we must explain the purpose of XML. 

XML was designed to give semantics rather then structure as is the case with HTML. 

XML is a mini language on its own, which does not possess any boundaries. Other  standards 

related to XML are XPath, Extensible Stylesheet Language Transformation (XSLT), XML 

Schema Definition (XSD), Xlink, XForms, Simple Object Access Protocol (SOAP), 

XML1KPC, and so on. We are not going to cover all of them, because the book will get 
quickly out of scope, but you can read about them at www.w3c.org. 

Both XML and HTML,  although different, are composed from the same building blocks 

that are known as elements or tags. XML and H T M L  elements are highly structured. They 

can be represented with a tree structure, which is often referred to as the DOM.  In reality, 

D O M  is a set of  specifications defined by the World Wide Web Consortium, which define 

how XML structures are created and what method and properties they need to have. As we 

established earlier, H T M L  can also be parsed into a D O M  tree. 

One of the most common D O M  functions is the getElementsByTagName, which returns 

an array of elements. Another popular function is getElementByld, which return a single ele- 

ment based on its identifier. For example, with the help of JavaScript we can easily extract all 

<p> elements and replace them with the message "Hello World!." For example: 

www.syngress.com 


