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CHAPTER 1

1.1 Harmonic Signals and Exponentials

Before we begin to talk about wireless, we briefl y remind the reader of a previous 
acquaintance with three concepts that are ubiquitous in radio engineering: sinusoidal signals, 
complex numbers, and imaginary exponentials. The reader who is familiar with such matters 
can skip this section without harm.

Almost everything in radio is done by making tiny changes—modulations—of a signal that 
is periodic in time. The archetype of a smooth periodic signal is the sinusoid (Figure 1.1), 
typically written as the product of the angular frequency ω and time t.

Both of these functions alternate between a maximum value of 1 and minimum value of �1; 
cosine starts at �1, and sine starts at 0, when the argument is zero. We can see that cosines 
and sines are identical except for an offset in the argument (the phase):

 cos( ) sinω ω
π

t t� �
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  (1.1)

0 1 2 3

1

0.5

0

�0.5

�1

cos(vt )
sin(vt )

v � 2p f

Period
�1/f

Figure 1.1: Cosine and Sine Functions
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We say that the sine lags the cosine by 90 degrees. (Note that here, following common practice, 
we write angles in radians but often speak of them in degrees.) The cosine and sine are periodic 
with a period � (1/f ), where f � ω/2π is the frequency in cycles per second or hertz.

Let us now digress briefl y to discuss complex numbers, for reasons that will become clear in a 
page or two. Imaginary numbers, the reader will recall, are introduced to provide square roots 
of negative reals; the unit is i � �( 1). A complex number is the sum of a real number and 
an imaginary number, often written as, for example, z � a � bi. Electrical engineers often use 
j instead of i, so as to use i to represent an AC; we shall, however, adhere to the convention 
used in physics and mathematics. The complex conjugate z* is found by changing the sign of 
the imaginary part: z* � a � bi.

Complex numbers can be depicted in a plane by using the real part as the coordinate on the 
x- (real) axis, and the imaginary part for the y- (imaginary) axis (Figure 1.2). Operations on 
complex numbers proceed more or less the same way as they do in algebra, save that one 
must remember to keep track of the real and imaginary parts. Thus, the sum of two complex 
numbers can be constructed algebraically by

 ( a � bi) � (c � di) � [a � c] � [b � d]i (1.2)

and geometrically by regarding the two numbers as vectors forming two sides of a 
parallelogram, the diagonal of which is their sum (Figure 1.3).

Multiplication can be treated in a similar fashion, but it is much simpler to envision if we fi rst 
defi ne the length (also known as the modulus) and angle of a complex number. We defi ne 
a complex number of length 1 and angle θ to be equal to an exponential with an imaginary 

1 2 3 Real axis

2�3i3i

2i

i

Im
ag

in
ar

y 
ax

is

Complex plane

Figure 1.2: Complex Number Depicted as a Vector in the Plane
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argument equal to the angle (Figure 1.4). Any complex number (e.g., b in Figure 1.4) can then 
be represented as the product of the modulus and an imaginary exponential whose argument is 
equal to the angle of the complex number in radians.

Real axis

b�1�3 i
a�b�2�4 i

a�1� i

Im
ag

in
ar

y 
ax

is

Addition

Figure 1.3: Addition of Complex Numbers

Real axis

b�1�2 i
  �2.2ei1.1

ei1.1

2.2

1.1 radians

Im
ag

in
ar

y 
ax

is

Unit circle
(radius �1)

Exponential

Figure 1.4: Imaginary Exponentials and Complex Numbers

By writing a complex number as an exponential, multiplication of complex numbers becomes 
simple, once we recall that the product of two exponentials is an exponential with the sum of 
the arguments:

 ( ea) � (eb) � e[a�b] (1.3)

The product of two complex numbers is then constructed by multiplying their moduli and 
adding their angles (Figure 1.5).

 ρ ρ ρ ρθ θ θ θ
1 2 1 2

1 2 1 2e e ei i i( ) ( ) ⎡⎣ ⎤⎦· [ ]� �  (1.4)
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We took the trouble to introduce all these unreal quantities because they provide a particularly 
convenient way to represent harmonic signals. Because the x- and y-components of a unit 
vector at angle θ are just the cosine and sine, respectively, of the angle, our defi nition of an 
exponential with imaginary argument implies

 eiθ � cos(θ) � i sin(θ) (1.5)

Thus, if we use for the angle a linear function of time, we obtain a very general but 
simultaneously compact expression for a harmonic signal:

 e t i t
t i

i t( cos( sin(
cos( ) sin

ω φ ω φ ω φ
ω

� � � � �

� �

) ) )
[ (( )] [cos( sinω φ φt i⋅ ) ( )]�

 (1.6)

In this notation, the signal may be imagined as a vector of constant length rotating in time, 
with its projections on the real and imaginary axes forming the familiar sines and cosines 
(Figure 1.6). The phase offset φ represents the angle of the vector at t � 0.

In some cases we wish to use an exponential as an intermediate calculation tool to simplify 
phase shifts and other operations, converting to a real-valued function at the end by either simply 
taking only the real part or adding together exponentials of positive and negative frequency. 
(The reader may wish to verify, using equations [1.5] and [1.6], that the sum of exponentials of 
positive and negative frequencies forms a purely real or purely imaginary sinusoid.) However, in 
radio practice, a real harmonic signal cos(ωt � φ) may also be regarded as being the product of 
a real carrier cos(ωt) and a complex number I � iQ � [cos(φ) � i sin(φ)]/2, where the imaginary 
part is obtained through multiplication with sin(ωt) followed by fi ltering. (Here I and Q denote 
“in-phase” and “quadrature,” that is, 90 degrees out of phase, respectively.) We’ll have more to 
say about the uses of such decompositions when we discuss radios in Chapter 3.

b � 1�2 i � 2.2ei (1.1)�3.2ei (1.9)

a � 1� i � 1.4ei (0.8)

a ·b��1�3 i
2.2

1.4

3.2

Im
ag

in
ar

y 
ax

is

Multiply lengths

Multiplication

Add angles

Real axis

Figure 1.5: Multiplication of Complex Numbers
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Finally, we note one other uniquely convenient feature of exponentials: differentiation and 
integration of an exponential with a linear argument simply multiply the original function by 
the constant slope of the argument:

 d

d
d

x
x( )e ae e

a
eax ax ax ax� �� 1  (1.7)

1.2 Electromagnetic Waves and Multiplexing

Now that we are armed with the requisite tools, let us turn our attention to the main topic of our 
discussion: the use of electromagnetic waves to carry information. An electric current element 
J at some location [1] induces a potential A at other remote locations, such as [2]. If the current 
is harmonic in time, the induced potential is as well. The situation is depicted in Figure 1.7.

The magnitude of the induced potential falls inversely as the distance and shifts in phase 
relative to the phase of the current. (The reader may wish to verify that the time dependence of 
A is equivalent to a delay by r/c.) The induced potential in turn may affect the fl ow of electric 
current at position [2], so that by changing a current J[1] we create a delayed and attenuated 
but still detectable change in current J[2]: we can potentially communicate between remote 
locations by using the effects of the electromagnetic disturbance A.

In principle, every current induces a potential at every location. It is this universality of 
electromagnetic induction that leads to a major problem in using electromagnetic waves 
in communications. The potential at our receiver, A, can be regarded as a medium of 
communications that is shared by every possible transmitter J. How do we detect only the 
signal we are interested in?

The sharing of a communications channel by multiple users is known as multiplexing. There 
are a number of methods to successfully locate the signals we wish to receive and reject others. 

Harmonic function

reiw t

si
n(
w

t)

cos(w t )

Tim
e

Figure 1.6: An Imaginary Exponential Can Represent Sinusoidal Voltages or Currents
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A few important examples are the following:

• Frequency-division multiplexing: only receive signals with a given periodicity and 
shape (sinusoidal, of course).

• Spatial multiplexing: limit signals to a specifi c geographical area. Recall that induced 
potentials fall off as (1/distance) in the ideal case, and in practice attenuation of a 
signal with distance is often more rapid due to obstacles of various kinds. Thus, by 
appropriate choice of signal power, location, and sensitivity, one can arrange to receive 
only nearby signals.

• Time-division multiplexing: limit signals to a specifi c set of time slots. By appropriate 
coordination of transmitter and receiver, only the contents of the desired time slot will 
be received.

• Directional multiplexing: only listen to signals arriving from a specifi c angle. This 
trick may be managed with the aid of antennas of high directivity.

• Code-division multiplexing: only listen to signals multiplied by specifi c code. Rather 
in the fashion that we can listen to a friend’s remarks even in a crowded and noisy 
room, in code-division multiplexing we select a signal by the pattern it obeys. In 
practice, just as in conversation, to play such a trick it is necessary that the desired 
signal is at least approximately equal to other undesired signals in amplitude or power, 
so that it is not drowned out before we have a chance to apply our pattern-matching 
template.
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Figure 1.7: A Harmonic Current at [1] Induces a Harmonic Potential at [2]
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In real communications systems, some or all of these techniques may be simultaneously
used, but almost every modern wireless system begins with frequency-division multiplexing 
by transmitting its signals only within a certain frequency band. (We briefl y examine
the major exception to this rule, ultrawideband communications, in section 1.5.) We are so 
accustomed to this approach that we often forget how remarkable it is: the radio antenna
that provides us with music or sports commentary at 105 MHz is also exposed to AM
signals at hundreds to around a thousand kHz, broadcast television at various frequencies 
between 50 and 800 MHz, aeronautical communications at 108–136 MHz, public safety 
communications at 450 MHz, cellular telephony at 880 and 1940 MHz, and cordless 
telephones, wireless local area networks (WLANs), and microwave ovens in the 2400-MHz 
band, to name just a few.

All these signals can coexist harmoniously because different frequencies are orthogonal.
That is, let us choose a particular frequency, say ωc, that we wish to receive. To extract only 
the part of an incoming signal that is at the desired frequency, we multiply the incoming 
unknown signal s(t) by a sine or cosine (or more generally by an exponential) at the wanted 
frequency ωc and add up the result for some time—that is, we integrate over a time interval T, 
presumed long compared with the periodicity 1/f (equation [1.8]). The reader may recognize 
in equation [1.8] the Fourier cosine transform of the signal s over a fi nite domain. A similar 
equation may be written for the sine, or the two can be combined using an imaginary 
exponential.

 S
T

s t t t

T

( c cω ω) ( ) cos( )�
1

0

� d  (1.8)

If s(t) is another signal at the same frequency, the integral will wiggle a bit over each cycle but 
accumulate over time (Figure 1.8).

On the other hand, if the unknown signal is at a different frequency, say (ωc � δ), the test and 
unknown signals may initially be in phase, producing a positive product, but over the course 
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Figure 1.8: Unknown Signal at the Same Frequency as Wanted Signal
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of some time they will drift out of phase, and the product will change signs (Figure 1.9).
Thus, the integral will no longer accumulate monotonically, at least over times long compared
with the difference period (1/δ) (Figure 1.10); when we divide by T and allow T to become 
large, the value of S(ωc) will approach zero.
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Figure 1.9: Two Signals at Different Frequencies Do Not Remain in Phase
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Figure 1.10: Unknown Signal at a Different Frequency from Wanted Signal

Any signal that is periodic in time can be regarded as being composed of sinusoids of differing 
frequencies: in more formal terms we can describe a signal either as a function of time or as 
a function of frequency by taking its Fourier transform (i.e., by performing the integration 
[1.8] for each frequency ωc of interest.) The orthogonality of those differing frequencies 
makes it possible to extract the signal we want from a complex mess, even when the wanted 
signal is small compared with the other stuff. This operation is known generally as fi ltering. 
A simple example is shown in Figure 1.11. It is generally very easy when the frequencies are 
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widely separated, as in Figure 1.11, but becomes more diffi cult when frequencies close to the 
wanted frequency must be rejected. We examine some of the means to accomplish this task for 
WLAN radios in Chapter 3.
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Figure 1.11: Extraction of a Wanted Signal in the Presence of a Large Unwanted Signal

1.3 Modulation and Bandwidth

1.3.1 Simple Modulations

So far the situation appears to be quite rosy. It would appear that one could communicate 
successfully in the presence of an unlimited number of other signals merely by choosing the 
appropriate frequency. Not surprisingly, things are not so simple: a single-frequency signal that 
is always on at the same phase and amplitude conveys no information. To actually transmit data, 
some aspect of our sinusoidal signal must change with time: the signal must be modulated. We 
can often treat the modulation as a slowly varying function of time (slow being measured relative 
to the carrier frequency) multiplying the original signal.

 

“ ”slowly varying sinusoidal vibration
modulatiion function at carrier frequency

f t m t( ) ( ) c� oos( )ωct

 (1.9)
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A simple example of a modulated signal may be obtained by turning the carrier on and 
off to denote, for example, 1 and 0, respectively: that is, m(t) � 1 or 0. This approach is 
known as on–off keying or OOK (Figure 1.12). OOK is no longer widely used in wireless 
communications, but this simple modulation technique is still common in fi ber optic signaling.
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Figure 1.12: Modulation by Turning the Carrier On or Off

A key consequence of imposing modulation on a signal at a frequency ωc is the inevitable 
appearance of components of the signal at different frequencies from that of the original 
carrier. The perfect orthogonality of every unique frequency present in the case of 
unmodulated signals is lost when we actually transmit data. Let us examine how this comes 
about for the particularly simple case of a sinusoidal modulation, m � cos(ωmt). Recall that 
the orthogonality of two different frequencies arose because contributions to the average from 
periods when the two signals are in phase are canceled by the periods when the signals are out 
of phase (Figure 1.9). However, the modulated signal is turned off during the periods when it 
is out of phase with the test signal at the different frequency (ωc � δ) so the contribution from 
these periods no longer cancels the in-phase part (Figure 1.13). The modulated carrier at (ωc) 
is now detected by a fi lter at frequency (ωc � δ).

The astute reader will have observed that this frustration of cancellation will only occur when the 
frequency offset δ is chosen so as to ensure that only the out-of-phase periods are suppressed. 
In the case of a periodic modulation, the offset must obviously be chosen to coincide with the 
frequency of the modulation: | δ | � ωm. In frequency space, a modulated carrier at frequency 
fc acquires power at sidebands displaced from the carrier by the frequency of the modulation 
(Figure 1.14).

In the case of a general modulating signal m(t), with Fourier transform M(ω), it can be shown 
that the effect of modulation is to translate the spectrum of the modulating or baseband signal 
up to the carrier frequency (Figure 1.15).

We can now see that data-carrying signals have a fi nite bandwidth around their nominal carrier 
frequency. It is apparent that to pursue our program of frequency-division multiplexing of 
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Figure 1.13: A Modulated Signal Is No Longer Orthogonal to All Other Frequencies
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Figure 1.15: The Spectrum of a Carrier Modulated by a General Signal m(t)

signals, we shall need to allocate bands of spectrum to signals in proportion to the bandwidth 
those signals consume. Although the spectrum of a random sequence of bits might be rather 
more complex than that of a simple sinusoid, Figure 1.14 nevertheless leads us to suspect that 
the faster we modulate the carrier, the more bandwidth we will require to contain the resulting 
sidebands. More data require more bandwidth (Figure 1.16).

It would seem at fi rst glance that the bandwidth required to transmit is proportional to the data 
rate we wish to transmit and that faster links always require more bandwidth. However, note 
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that in Figure 1.16 we refer not to the bit rate but to the symbol rate of the transmitted
signal. In the case shown, a symbol is one of three possible amplitudes, corresponding
to a data value of 0, 1, or 2: this is an example of amplitude-shift keying (ASK), a 
generalization of OOK. (Note that in this and other examples we show abrupt transitions 
between different states of the carrier; in practice, the transitions are smoothed to
minimize the added sidebands.) Each symbol might be said to contain 3/2 bit. The bit
rate is thus 1.5 (symbol rate). More generally, we can envision a number of approaches
to sending many bits in a single symbol. For example, we could use more amplitudes:
if 8 amplitudes were allowed, one could transmit 3 bits in each symbol. Because the
width of the spectrum of the modulating signal is mainly dependent on the rate at which 
transitions (symbols) occur rather than exactly what the transition is, it is clear that by
varying the modulation scheme, we could send higher data rates without necessarily 
expanding the bandwidth consumed.
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Figure 1.16: Faster Symbol Rate � More Bandwidth
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We can nevertheless guess that a trade-off might be involved. For example, the use of 8 distinct 
amplitudes means that the difference between (say) a “3” and a “4” is smaller than the difference 
between an OOK “1” and “0” for the same overall signal power. It seems likely that the more 
bits we try to squeeze into a symbol, the more vulnerable to noise our signal will become.

With these possibilities in mind, let us examine some of the modulation schemes commonly 
used in data communications. The fi rst example, in Figure 1.17, is our familiar friend OOK. 
Here, in addition to showing the time-dependent signal, we have shown the allowed symbols 
as points in the phase/amplitude plane defi ned by the instantaneous phase and amplitude of 
the signal during a symbol. The error margin shows how much noise the receiver can tolerate 
before mistaking a 1 for a 0 (or vice versa).
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Figure 1.17: On–Off Keying (OOK)

Note that although we have shown the 1 symbol as a single point at a phase of 0 and amplitude 
1, a symbol at any other phase—that is, any point on the circle amplitude �1—would do as 
well. OOK is relatively easy to implement because the transmitter doesn’t need to maintain 
a constant phase but merely a constant power when transmitting a 1 and the receiver needs 
merely to detect the signal power, not the signal phase. On the down side, OOK only sends 
one bit with each symbol, so an OOK-modulated signal will consume a lot of bandwidth to 
transmit signals at a high rate.

As we mentioned previously, we might add more amplitudes to get more data: ASK
(Figure 1.18). The particular example in Figure 1.18 has four allowed amplitudes and is 
denoted 4ASK. Once again we have collapsed the allowed states onto points for clarity but 
with the understanding that any point on, for example, the 2/3 circle will be received as (10), 
etc. 4ASK allows us to transmit 2 bits per symbol and would be expected to provide twice 
the data rate of OOK with the same bandwidth (or the same data rate at half the bandwidth). 
However, the margin available before errors in determining what symbol has been received 
(i.e., before symbol errors occur) is obviously much smaller than in the case of OOK. 4ASK 
cannot tolerate as much noise for a given signal power as can OOK.
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Although it is obviously possible to keep adding amplitudes states to send more bits per 
symbol, it is equally apparent that the margin for error will decrease in inverse proportion to 
the number of amplitude states. A different approach to increasing the number of states per 
symbol might be useful: why not keep track of the phase of the signal?

The simplest modulation in which phase is used to distinguish symbols, binary phase-shift 
keying (BPSK), is depicted in Figure 1.19. The dots in the fi gure below the binary symbol 
values are placed at constant intervals; a 1 is transmitted with the signal peaks coincident 
with the dots, whereas a 0 has its peaks between dots: 180 degrees or π radians out of phase. 
In phase-shift keying, the nominal symbols are points in the phase plane rather than circles: 
the group of points is known as a signal constellation. However, as long as the signal is large 
enough for its phase to be determined, the signal amplitude has no effect: that is, any received 
signal on the right half of the phase-amplitude plane is interpreted as a 1 and any signal on 
the left half is interpreted as 0. The error margin is thus equal to the symbol amplitude and 
is twice as large as the error margin in OOK for the same peak power. BPSK is a robust 
modulation, resistant to noise and interference; it is used in the lowest rate longest range states 
of 802-11 networks.
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Figure 1.18: 4-Amplitude-Shift Keying (4ASK)
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Figure 1.19: Binary Phase-Shift Keying (BPSK)
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