Methods in ENZYMOLOGY

Volume 427 MicroRNA Methods

Edited by

John J. Rossi Gregory J. Hannon

METHODS IN ENZYMOLOGY MicroRNA Methods

METHODS IN ENZYMOLOGY

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

METHODS IN ENZYMOLOGY MicroRNA Methods

EDITED BY

JOHN J. ROSSI

Graduate School of Biological Sciences Division of Molecular Biology Beckman Research Institute of the City of Hope Duarte, California

GREGORY J. HANNON

Cold Spring Laboratory Cold Spring Harbor, New York Howard Hughes Medical Institute Chevy Chase, Maryland

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101–4495, USA 84 Theobald's Road, London WC1X 8RR, UK

This book is printed on acid-free paper. \bigotimes

Copyright © 2007, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2007 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0076-6879/2007 \$35.00

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier. com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

For information on all Elsevier Academic Press publications visit our Web site at www.books.elsevier.com

ISBN: 978-0-12-373917-9

 PRINTED IN THE UNITED STATES OF AMERICA

 07
 08
 09
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

CONTENTS

Contributors Volumes in Series	
Section I. Identifying MicroRNAs and Their Targets	1
1. Identification of Viral MicroRNAs Christopher S. Sullivan and Adam Grundhoff	3
 Introduction Computational Prediction of Viral miRNA Candidates Array Confirmation of Viral miRNA Candidates Concluding Remarks References 	3 7 11 21 22
2. Robust Machine Learning Algorithms Predict MicroRNA Genes and Targets Pål Sætrom and Ola Snøve, Jr.	25
 Introduction Appropriate Use of Machine Learning One Deterministic and One Stochastic Algorithm miRNA Gene Prediction with Support Vector Machines miRNA Target Prediction with Boosted Genetic Programming Summary Acknowledgments References 	26 27 33 37 43 46 46 46
3. Identification of Virally Encoded MicroRNAs Sébastien Pfeffer	51
 Introduction Purification of Rnl2 (1–249) and Adenylation of 3' Adapter Oligonucleotide Isolation of the Small RNA Fraction Ligation of the Purified Small RNA to Adenylated 3' Adapter Ligation of the Small RNA-3' Adapter to the 5' Adapter Reverse Transcription of the Final Ligation Product 	52 55 55 56 56
o. Reverse manscription of the rinal Ligation Floudel	57

7. First PCR Amplification of the cDNA	57
8. Pme / Digestion of the PCR Product	58
9. Second PCR Amplification	58
10. Ban / Digestion of the Second PCR Product	59
11. Concatamerization of the Ban I-Digested DNA	59
12. End Tailing of Concatamers and Cloning into T/A Vector	59
13. Sequencing and Annotation of the Library	60
14. Concluding Remarks	60
References	61
4. Computational Methods for MicroRNA Target Prediction	65
Yuka Watanabe, Masaru Tomita, and Akio Kanai	
1. Introduction	66
2. Principles of miRNA Target Recognition	69
3. Resources for Analysis of miRNA Target Genes	73
4. Software Useful for miRNA Target Prediction	74
5. Original Strategies for Prediction of miRNA Target Genes	79
6. Validation of Computational Predictions	81
7. Concluding Remarks	82
Acknowledgments	83
References	83
Section II. MicroRNA Expression, Maturation,	
and Functional Analysis	87
5. In Vitro and In Vivo Assays for the Activity of	
Drosha Complex	89
Yoontae Lee and V. Narry Kim	
1. Introduction	89
2. Assay Methods	94
Acknowledgments	105
References	105
6. Microarray Analysis of miRNA Gene Expression	107
J. Michael Thomson, Joel S. Parker, and Scott M. Hammond	
1. Introduction	107
2. Overview of miRNA Biogenesis and Effector Pathways	109
3. miRNA Expression Analysis Strategies	110
4. Considerations for miRNA Microarrays	111
5. Data Analysis and Interpretation	112

	6. Validation Strategies	113
	7. miRNA Microarray Protocol	113
	8. Data Analysis	118
	Acknowledgments	119
	References	119
7.	Cloning and Detecting Signature MicroRNAs from	
	Mammalian Cells	123
	Guihua Sun, Haitang Li, and John J. Rossi	
	1. Introduction	124
	2. miRNA Cloning	126
	3. miRNA Identification	133
	4. Northern Hybridization to Verify <i>In Vivo</i> Expression of miRNA	134
	Acknowledgments	136
	References	136
8.	. Approaches for Studying MicroRNA and Small Interfering RNA	
	Methylation In Vitro and In Vivo	139
	Zhiyong Yang, Giedrius Vilkaitis, Bin Yu,	
	Saulius Klimašauskas, and Xuemei Chen	
	1. Introduction	140
	2. Expression and Purification of Recombinant HEN1 Proteins	141
	3. Small RNA Methyltransferase Assays with Recombinant HEN1 Proteins	144
	4. Reverse-Phase HPLC Analysis to Determine the	
	Position of the Methyl Group in Products of	
	HEN1-Catalyzed Reactions	148
	5. Immunoprecipitation and HEN1 Activity Assay	149
	6. Analysis of the <i>In Vivo</i> Methylation Status of miRNAs and siRNAs	151
	7. Concluding Remarks	152
	Acknowledgments References	152
	References	153
9.	. Analysis of Small RNA Profiles During Development	155
	Toshiaki Watanabe, Yasushi Totoki, Hiroyuki Sasaki,	
	Naojiro Minami, and Hiroshi Imai	
	1. Introduction	156
	2. Preparation of Low–Molecular-Weight RNA and	
	Urea-Polyacrylamide Gel Electrophoresis (Urea-PAGE)	158
	3. Cloning of Small RNAs	161

	Classification of Small RNAs	163
	5. Northern Blot Analysis	165
	References	167
10.	Dissecting MicroRNA-mediated Gene Regulation and	
	Function in T-Cell Development	171
	Tin Ky Mao and Chang-Zheng Chen	
	1. Introduction	172
	2. Characterizing miRNA Expression During T-Cell Development	172
	3. Retroviral Constructs for miRNA Expression	178
	4. Investigating miRNA Function in T-Cell Development	180
	5. Identification and Validation of Functionally	
	Relevant miRNA Target Genes	183
	6. Materials and Reagents	187
	Acknowledgments	188
	References	188
Se	ction III. MicroRNAs and Disease	191
		-/-
11.	Investigation of MicroRNAs Alterations in	
	Leukemias and Lymphomas	193
	George Adrian Calin and Carlo Maria Croce	
	1. MicroRNA Alterations are Involved in the Initiation	
	and Progression of Every Type of Human Cancer	194
	2. Genome-Wide MicroRNA Profiling by Microarray	195
	3. Identification and Validation of Targets for	
	Differentially Expressed miRNAs	205
	Acknowledgments	210
	References	210
12.	Discovery of Pathogen-Regulated Small RNAs in Plants	215
	Surekha Katiyar-Agarwal and Hailing Jin	
	1. Introduction	216
	2. Sequencing-Based Approaches for the Discovery	
	of Pathogen-Regulated Small RNAs	217
	3. Hybridization-Based Approaches of Identifying and	,
	Validating Pathogen-Inducible Small RNAs	219
	4. Concluding Remarks	225
	References	226

13. Protocols for Expression and Functional Analysis					
	of	Viral MicroRNAs	229		
	Eva	Gottwein and Bryan R. Cullen			
	1.	Introduction	230		
	2.	miRNA Expression Cassettes	232		
	3.	Vector Systems for Stable Delivery	233		
	4.	Protocol: Generation of miRNA-Expressing			
		Cell Lines Using pNL-SIN-CMV-BLR-Based miRNA Expression Vectors	235		
	5۰	Indicator Assays Establish miRNA Activity	237		
	6.	Protocol: Preparation of Virus Mixes and Indicator Assay	237		
	7.	Concluding Remarks	240		
	Acl	nowledgments	240		
	Ref	erences	240		
			245		
	Author Index				
Sul	Subject Index				

This page intentionally left blank

CONTRIBUTORS

George Adrian Calin

Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio

Chang-Zheng Chen

Department of Microbiology and Immunology, Baxter Laboratory of Genetic Pharmacology, Stanford University School of Medicine, Stanford, California

Xuemei Chen

Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California—Riverside, Riverside, California

Carlo Maria Croce

Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio

Bryan R. Cullen

Center for Virology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina

Eva Gottwein

Center for Virology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina

Adam Grundhoff

Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany

Scott M. Hammond

Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina

Hiroshi Imai

Laboratory of Reproductive Biology, Department of Agriculture, Kyoto University, Kyoto, Japan

Hailing Jin

Department of Plant Pathology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California—Riverside, Riverside, California

Akio Kanai

Institute for Advanced Biosciences, Keio University, Tsuruoka, and Systems Biology Program, Graduate School of Media and Governance, and Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan

Surekha Katiyar-Agarwal

Department of Plant Pathology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California—Riverside, Riverside, California

V. Narry Kim

School of Biological Sciences, Seoul National University, Seoul, Korea

Saulius Klimašauskas

Laboratory of Biological DNA Modification, Institute of Biotechnology, Vilnius, Lithuania

Yoontae Lee

School of Biological Sciences, Seoul National University, Seoul, Korea

Haitang Li

Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California

Tin Ky Mao

Department of Microbiology and Immunology, Baxter Laboratory of Genetic Pharmacology, Stanford University School of Medicine, Stanford, California

Naojiro Minami

Laboratory of Reproductive Biology, Department of Agriculture, Kyoto University, Kyoto, Japan

Joel S. Parker

Constella Group, Durham, North California

Sébastien Pfeffer

Institut de Biologie Moléculaire des Plantes, CNRS, Strasbourg cedex, France

John J. Rossi

Graduate School of Biological Sciences, and Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California

Pål Sætrom

Interagon AS, Laboratoriesenteret, and Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway, and Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California

Hiroyuki Sasaki

Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, and Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan

Ola Snøve, Jr.

Interagon AS, Laboratoriesenteret, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway, and Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California

Christopher S. Sullivan

Department of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas

Guihua Sun

Graduate School of Biological Sciences, and Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California

J. Michael Thomson

Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina

Masaru Tomita

Institute for Advanced Biosciences, Keio University, Tsuruoka, and Systems Biology Program, Graduate School of Media and Governance, and Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan

Yasushi Totoki

Genome Annotation and Comparative Analysis Team, Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Tsurumi-ku, Yokohama, Kanagawa, Japan

Giedrius Vilkaitis

Laboratory of Biological DNA Modification, Institute of Biotechnology, Vilnius, Lithuania

Toshiaki Watanabe

Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, and Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan

Yuka Watanabe

Institute for Advanced Biosciences, Keio University, Tsuruoka, and Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan

Zhiyong Yang

Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California—Riverside, Riverside, California

Bin Yu

Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California—Riverside, Riverside, California This page intentionally left blank

METHODS IN ENZYMOLOGY

VOLUME I. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME II. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME III. Preparation and Assay of Substrates Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME IV. Special Techniques for the Enzymologist Edited by SIDNEY P. COLOWICK AND NATHAN O. KAPLAN VOLUME V. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VI. Preparation and Assay of Enzymes (Continued) Preparation and Assay of Substrates Special Techniques Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VII. Cumulative Subject Index Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VIII. Complex Carbohydrates Edited by ELIZABETH F. NEUFELD AND VICTOR GINSBURG VOLUME IX. Carbohydrate Metabolism Edited by WILLIS A. WOOD VOLUME X. Oxidation and Phosphorylation Edited by Ronald W. Estabrook and Maynard E. Pullman **VOLUME XI. Enzyme Structure** Edited by C. H. W. HIRS VOLUME XII. Nucleic Acids (Parts A and B) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE VOLUME XIII. Citric Acid Cycle Edited by J. M. LOWENSTEIN VOLUME XIV. Lipids Edited by J. M. LOWENSTEIN VOLUME XV. Steroids and Terpenoids

Edited by RAYMOND B. CLAYTON