WILSON & WILSON'S

COMPREHENSIVE ANALYTICAL CHEMISTRY

EDITED BY D. BARCELÓ

VOLUME XLI

SAMPLE PREPARATION FOR TRACE ELEMENT ANALYSIS

BY Z. MESTER R. STURGEON

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

COMPREHENSIVE ANALYTICAL CHEMISTRY

Wilson & Wilson's

COMPREHENSIVE ANALYTICAL CHEMISTRY

Edited by

D. BARCELÓ

Research Professor Department of Environmental Chemistry IIQAB-CSIC Jordi Girona 18-26 08034 Barcelona Spain

Wilson & Wilson's

COMPREHENSIVE ANALYTICAL CHEMISTRY

VOLUME XLI

SAMPLE PREPARATION FOR TRACE ELEMENT ANALYSIS

Edited by

Z. MESTER R. STURGEON

Institute for National Measurement Standards National Research Council 1500, Montreal Rd Ottawa, ON, KIA 0R6, Canada

2003 ELSEVIER AMSTERDAM – BOSTON – HEIDELBERG – LONDON – NEW YORK – OXFORD – PARIS – SAN DIEGO SAN FRANCISCO – SINGAPORE – SYDNEY – TOKYO

ELSEVIER B V Sara Burgerhartstraat 25 P.O. Box 211, 1000 AE Amsterdam, The Netherlands

© 2003 Elsevier B.V. All rights reserved.

This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK; phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier Science homepage (http://www.elsevier.com), by selecting 'Customer Support' and then 'Obtaining Permissions'.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (+44) 207 631 5555; fax: (+44) 207 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or distribution of such material.

Permission of the Publisher is required for the other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher. Address permissions requests to: Elsevier Science Global Rights Department, at the mail, fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2003

Library of Congress Cataloging in Publication Data

/ edited by Zoltán Mester and Ralph Sturgeon p. cm. -- (Comprehensive analytical chemistry ; v. 41) Includes bibliographical references and index. ISBN 0-444-51101-6 (pbk. : alk. paper) -- ISBN 0-444-51101-6 (hardbound : alk. paper) 1. xxxx 2. xxxx 3. xxxx I. Mester, Zoltán and Sturgeon, Ralph II Series OD75. W75 v. 41 [QD75.4.S24] 543'.02--dc21

2002072248

British Library Cataloguing in Publication Data A catalogue record from the British Library has been applied for.

ISBN: 0-444-51101-6 ISSN: 0166-526X

 The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).
 Printed in The Netherlands.

COMPREHENSIVE ANALYTICAL CHEMISTRY

ADVISORY BOARD

- Professor A.M. Bond Monash University, Clayton, Victoria, Australia
- Dr T.W. Collette US Environmental Protection Agency, Athens, GA, U.S.A.
- Professor M. Grasserbauer Director of the Environment Institute, European Commission' Joint Research Centre, Ispra, Italy
- Professor M.-C. Hennion Ecole Supérieure de Physique et de Chimie Industrielles, Paris, France
- Professor G. M. Hieftje Indiana University, Bloomington, IN, U.S.A.
- Professor G. Marko-Varga AstraZeneca, Lund, Sweden
- Professor D.L. Massart Vrije Universiteit, Brussels, Belgium

Professor M.E. Meyerhoff University of Michigan, Ann Arbor, MI, U.S.A.

CONTRIBUTORS TO VOLUME XLI

Freddy C. Adams Department of Chemistry, University of Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium. Adams@uia.ua.ac.be **Roberto Alzaga** Environmental Chemistry Department, IIQAB-CID-CSIC, Jordi Girona, 18, E-08034 Barcelona, Spain. Scott Anderson Air Liquide – Balazs Analytical Services, 46409 Landing Pky, Frement, CA 94538, USA. Kevin Ashley U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Mailstop R-7, Cincinnati, OH 45226-1998, USA. kashley@cdc.gov David P. Baldwin Ames Laboratory, Iowa State University, Ames, IA 50011,USA David Barclay CEM Corporation, 3100 Smith Farm Road, P.O. Box 200. Matthews. North Carolina 28106-0200. USA. David.Barclay@cem.com Ronald R. Barefoot Department of Geology, Earth Sciences Centre, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada. **Douglas C. Baxter** Division of Chemistry, Luleå University of Technology, SE-971 87 Luleå, Sweden. Douglas.Baxter@km.luth.se Josep M. Bayona Environmental Chemistry Department, IIQAB-CID-CSIC, Jordi Girona, 18, E-08034 Barcelona, Spain. jbtqam@cid.csic.es Maria Betti European Commission, JRC-ITU, P.O. Box 2340, 76125 Karlsruhe, Germany

Robert I. Botto

Analytical Services Laboratory, Baytown Chemical Plant Laboratory, 4500 Bayway Dr. Baytown, TX 77520, USA. bob.i.botto@exxonmobil.com

Brice Bouyssiere

CNRS UMR 5034 Helioparc 2, av. Pr. Angot F-64053 PAU, France.

Yong Cai

Department of Chemistry and Southeast Environmental Research Center, Florida International University, Miami, Florida 33199, USA. cai@fiu.edu

Carmen Camara

Departamento de Quimica Analitica Facultad de Ciencias Quimicas, Universidad Complutense de Madrid 28040 Madrid, Spain. ccamara@auim.ucm.es

Valérie Camel

Institut National Agronomique Paris-Grignon, Laboratoire de Chimie Analytique, 16 rue Claude Bernard, 75231 Paris Cedex 05, France. camel@inapg.inra.fr

Joseph A. Caruso

Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA. Joseph.Caruso@UC.EDU

Maria Dolores Luque de Castro

Department of Analytical Chemistry Annex C-3, Campus of Rabanales, University of Cordoba, E-14071 Cordoba (Spain). qa1@lucamuco.es. qa1lucam@uco.es

Fernand Claisse

2780 Bd de Monaco, Quebec QC, Canada G1P3H2.

fclaisse@videotron.ca

Ray Clement

Ministry of the Environment, 125 Resources Road, Etobicoke, Ontario, Canada M9P 3V6. ray.clement@ene.gov.on.ca

Alberto de Diego

Kimika Analitikoa Saila; Euskal Herriko Unibertsitatea; 644 P. K.; 48080, Bilbao, Spain. qapderoa@lg.ehu.es

Sergi Díez
Environmental Chemistry Department, IIQAB-CID-CSIC, Jordi
Girona, 18, E-08034 Barcelona, Spain.
Olivier F.X. Donard
CNRS. Laboratoire de Chimie Analytique Bio-inorganique et
Environnement. Hèlioparc. 2 avenue du President Angot. F-64000
Pau, France, Olivier.donard@univ-pau.fr
Peter Drouin
Spectroscopy Section, Laboratory Services Branch, Ontario Ministry
of the Environment, Ontario, Canada M9P 3V6.
Peter Drouin@ene.gov.on.ca
Les Ebdon
School of Environmental Sciences, University of Plymouth,
Drake Circus, Plymouth PL4 8AA, UK.
L.Ebdon@plvmouth.ac.uk
John Ezzell
Dionex Corporation, 1515 West 2200 South, Suite A, Salt Lake City,
UT 84119-7209, USA john ezzell@dionexslc.com
Zhao-Lun Fang
Research Center for Analytical Sciences, Northeastern University,
Chemistry Building, Box 332, Shenyang 110006, P.R. China.
fangzl@mail.hz.zj.cn
Jörg Feldmann
Department of Chemistry, University of Aberdeen, Meston Walk,
Old Aberdeen AB24 3UE, Scotland, UK.
j.feldmann@abdn.ac.uk
Andrew S. Fisher
School of Environmental Sciences, University of Phymouth,
Drake Circus, Phymouth PL4 8AA, UK.
a.fisher@phymouth.ac.uk
Jose Luis Luque García
Department of Analytical Chemistry Annex C-3, Campus of
Rabanales, University of Cordoba, E- 4071 Cordoba (Spain).
qal@lucamuco.es
Walter Goessler
Institute of Chemistry, Analytical Chemistry, Universitätsplatz 1,
8010 Graz, Austria. walter.goessler@uni-graz.at

Miguel de La Guardia

Gunter Knapp
Graz University of Technology, A-8010 Graz, Technikerstrasße 4,
Graz, Austria. Knapp@analytchem.tu-graz.ac.at
Byron G. Kratochvil
Department of Chemistry, University of Alberta, Edmonton, Alberta,
Canada T6G 2G2. ron.kratochvil@ualberta.ca
Eva Krupp
CNRS, Laboratoire de Chimie Analytique Bio-inorganique et
Environnement, Hèlioparc, 2 avenue du President Angot, F-64000
Pau, France.
Doris Kuehnelt
Institute of Chemistry, Analytical Chemistry, Universitätsplatz 1,
8010 Graz, Austria. doris.kuehnelt@uni-graz.at
Claudia Ponce de Leon
Department of Chemistry, University of Cincinnati, P.O. Box 210172,
Cincinnati, OH 45221-0172, USA.
Maurice Leroy
European Commission, JRC-170, P.O. Box 2340, 76125 Karlsruhe.
Germany
Fuhe Li
Air Liauide – Balazs Analytical Services, 46409 Landing Pky.
Frement, CA 94538. USA.
Ryszard Łobiński
CNRS UMR 5034 Helioparc 2. av. Pr. Angot F-64053 PAU. France.
rvszard.lobinski@univ-pau.fr
Yolanda Madrid
Departamento de Química Analítica Facultad de Ciencias Químicas.
Universidad Complutense de Madrid 28040 Madrid. Spain.
Lennart Mathiasson
Analytical Chemistry, Lund University, P.O. Box 124, S-221 00
Lund, Sweden, lennart, mathiasson@analvkem.lu.se
Henryk Matusiewicz
Politechnika Poznańska. Department of Analytical Chemistry.
60-965, Poznań, Poland, Henryk, Matusiewicz@put.poznan.pl
Zoltán Mester
NRC/INMS, 1500, Montreal Rd. Ottawa. ON. K1A 0R6. Canada
zoltan.mester@nrc.ca

Roberto Morabito ENEA, UTS PROT, SP Anguillarese 301, IT-00060 S. Maria di Galeria (Rome), Italy. morabito@casaccia.enea.it Angel Morales-Rubio Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr Moliner St. 50 Burjassot, 46100-Valencia, Spain. angel.morales@uv.es Taketoshi Nakahara Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan. nakahara@chem.osakafu-u.ac.jp Marie-Pierre Pavageau CNRS, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Hèlioparc, 2 avenue du President Angot, F-64000 Pau, France. Christophe Pécheyran CNRS, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Hèlioparc, 2 avenue du President Angot, F-64000 Pau, France. Philip J. Potts Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK. P.J.Potts@open.ac.uk Philippe Quevauviller European Commission, rue de la Loi 200, B-1049 Brussels, Belgium. Philippe.Quevauviller@cec.eu.int Gemma Rauret Departament de Quimica Analitica, Universitat de Barcelona, Martí i Franquès 1-11, 3a Planta, 08028 Barcelona, Spain. gemma.rauret@apolo.qui.ub.es Philip Robinson School of Earth Sciences-Centre for Ore Deposit Research, University of Tasmania, Hobart, Tasmania 7001, Australia. Phil.Robinson@utas.edu.au Ilia Rodushkin Analytica AB, Aurorum 10, SE-977 75 Luleå, Sweden. Ilia.Rodushkin@analytica.se

Richard E. Russo

Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA. RERusso@lbl.gov

Angels Sahuquillo

Departament de Quimica Analitica, Universitat de Barcelona, Martí i Franquès 1-11, 3a Planta, 08028 Barcelona, Spain. angels.sahuquillo@apolo.qui.ub.es

Peter Schramel

GSF-Forschungszentrum Institut für Oekologische Chemie AG, Spurenelementanalytik und Metallspeziation, Postfach 1129 (P.O. Box 1129), D-85758 Neuherberg.

peter.schramel@gsf.de

Ralph Sturgeon

NRC/INMS, 1500, Montreal Rd, Ottawa, ON, K1A 0R6, Canada. ralph.sturgeon@nrc.ca

Joanna Szpunar

CNRS UMR 5034 Hèlioparc 2, av. Pr. Angot F-64053 PAU, France. Anne P. Vonderheide

Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA.

Scott Willie

NRC/INMS 1500 Montreal Road, Ottawa, ON, K1A 0R6, Canada. scott.willie@nrc-cnrc.gc.ca

WILSON AND WILSON'S

COMPREHENSIVE ANALYTICAL CHEMISTRY

VOLUMES IN THE SERIES

Vol. IA	Analytical Processes
	Gas Analysis
	Inorganic Qualitative Analysis
	Organic Qualitative Analysis
	Inorganic Gravimetric Analysis
Vol. IB	Inorganic Titrimetric Analysis
	Organic Quantitative Analysis
Vol. IC	Analytical Chemistry of the Elements
Vol. IIA	Electrochemical Analysis
	Electrodeposition
	Potentiometric Titrations
	Conductometric Titrations
	High-Frequency Titrations
Vol. IIB	Liquid Chromatography in Columns
	Gas Chromatography
	Ion Exchangers
	Distillation
Vol. IIC	Paper and Thin Layer Chromatography
	Radiochemical Methods
	Nuclear Magnetic Resonance and Electron Spin Resonance Methods
	X-Ray Spectrometry
Vol. IID	Coulometric Analysis
Vol. III	Elemental Analysis with Minute Sample
	Standards and Standardization
	Separation by Liquid Amalgams
	Vacuum Fusion Analysis of Gases in Metals
	Electroanalysis in Molten Salts
Vol. IV	Instrumentation for Spectroscopy
	Atomic Absorption and Fluorescence Spectroscopy
	Diffuse Reflectance Spectroscopy
Vol. V	Emission Spectroscopy
	Analytical Microwave Spectroscopy
	Analytical Applications of Electron Microscopy
Vol. VI	Analytical Infrared Spectroscopy
Vol. VII	Thermal Methods in Analytical Chemistry
	Substoichiometric Analytical Methods
Vol. VIII	Enzyme Electrodes in Analytical Chemistry
	Molecular Fluorescence Spectroscopy
	Photometric Titrations
	Analytical Applications of Interferometry
Vol. IX	Ultraviolet Photoelectron and Photoion Spectroscopy
	Auger Electron Spectroscopy
	Plasma Excitation in Spectrochemical Analysis

Volumes in the series

Vol. X	Organic Spot Tests Analysis
	The History of Analytical Chemistry
Vol. XI	The Application of Mathematical Statistics in
	Analytical Chemistry Mass Spectrometry
	Ion Selective Electrodes
Vol. XII	Thermal Analysis
	Part A. Simultaneous Thermoanalytical Examination by Means of
	the Derivatograph
	Part B. Biochemical and Clinical Applications of Thermometric and
	Thermal Analysis
	Part C. Emanation Thermal Analysis and other Radiometric
	Emanation Methods
	Part D. Thermophysical Properties of Solids
	Part E. Pulse Method of Measuring Thermophysical Parameters
Vol. XIII	Analysis of Complex Hydrocarbons
	Part A. Separation Methods
	Part B. Group Analysis and Detailed Analysis
Vol. XIV	Ion-Exchangers in Analytical Chemistry
Vol. XV	Methods of Organic Analysis
Vol. XVI	Chemical Microscopy
	Thermomicroscopy of Organic Compounds
Vol. XVII	Gas and Liquid Analysers
Vol. XVIII	Kinetic Methods in Chemical Analysis
	Application of Computers in Analytical Chemistry
Vol. XIX	Analytical Visible and Ultraviolet Spectrometry
Vol. XX	Photometric Methods in Inorganic Trace Analysis
Vol. XXI	New Developments in Conductometric and Oscillometric Analysis
Vol. XXII	Titrimetric Analysis in Organic Solvents
Vol. XXIII	Analytical and Biomedical Applications of Ion-Selective Field-Effect
	Transistors
Vol. XXIV	Energy Dispersive X-Ray Fluorescence Analysis
Vol. XXV	Preconcentration of Trace Elements
Vol. XXVI	Radionuclide X-Ray Fluorescence Analysis
Vol. XXVII	Voltammetry
Vol. XXVIII	Analysis of Substances in the Gaseous Phase
Vol. XXIX	Chemiluminescence Immunoassay
Vol. XXX	Spectrochemical Trace Analysis for Metals and Metalloids
Vol. XXXI	Surfactants in Analytical Chemistry
Vol. XXXII	Environmental Analytical Chemistry
Vol. XXXIII	Elemental Speciation – New Approaches for Trace Element Analysis
Vol. XXXIV	Discrete Sample Introduction Techniques for Inductively Coupled
	Plasma Mass Spectrometry
Vol. XXXV	Modern Fourier Transform Infrared Spectroscopy
Vol. XXXVI	Chemical Test Methods of Analysis
Vol. XXXVII	Sampling and Sample Preparation for Field and Laboratory
Vol. XXXVIII	Countercurrent Chromatography: The Support-Free Iiquid
	Stationary Phase
Vol. XXXIX	Integrated Analytical Systems
Vol. XL	Analysis and Fate of Surfactants in the Aquatic Environment

Contribu	tors to `	Vol XLI
Volumes	in the S	Series
Series Ed	litor's F	Preface
Preface.		· · · · · · · · · · · · · · · · · · ·
Acronym	s	· · · · · · · · · · · · · · · · · · ·
Chapter .	1. Samı	oling and sample preservation for trace
eleme	ent anal	vsis
Byro	n Krato	chvil
1.1	Introd	uction
1.2	Prelim	inary considerations
	1.2.1	Sampling variability 2
	1.2.2	Sampling strategies
	1.2.3	Uncertainties in sampling
1.3	Types	of samples
	1.3.1	Judgment samples
	1.3.2	Random samples 4
	1.3.3	Systematic samples
	1.3.4	Subsamples
	1.3.5	Composite samples
1.4	Planni	ing the sampling operation
	1.4.1	Defining goals
	1.4.2	Sampling plans 6
1.5	Statist	cical sampling
	1.5.1	Introduction
	1.5.2	Minimum number of increments 8
	1.5.3	Minimum size of increments in well-mixed
		particulate populations 9
	1.5.4	Sample increment size in segregated
		populations
	1.5.5	From where should increments be taken? 11
	1.5.6	Model-based sampling

		1.5.7 Balancing economic factors and purpose of data					
		collection against sample quality					
	1.6	Sample handling and preservation during collection,					
transport, and storage							
		1.6.1 Handling and storage of samples					
		1.6.2 Sampling equipment					
		1.6.3 Sample containers					
	1.7	Quality assurance in sampling [24,25]					
		1.7.1 Overall objectives					
		1.7.2 Quality control					
		1.7.3 Quality assessment					
	1.8	Glossary					
	Refer	ences					
	Select	ed bibliography					
Cha	pter 2	2. Sources of analyte contamination and loss during the					
	analy	tical process					
	Gunte	er Knapp and Peter Schramel					
	2.1	Introduction					
	2.2	Contamination					
		2.2.1 Materials					
		2.2.2 Reagents					
		2.2.3 Airborne particles					
	2.3	Losses					
	2.4	Sampling					
	2.5	Storage					
	2.6	Drying and homogenisation					
	2.7	Dilution, dissolution and digestion					
	2.8	Separation and preconcentration					
	2.9	Element measurement					
	Refer	ences					
Cha	ipter 3	8. Calibration approaches for trace element determination 47					
	- Doug	as C. Baxter and Ilia Rodushkin					
	3.1	Introduction					
	3.2	Basic assumptions and some terminology 48					
	3.3	Selection of the calibration approach					
	3.4	Statistical evaluation of recovery data					

5
6
9
4
7
8
0
2
4
5
6
8
9
0
1
1
5
6
8
0
0
3
3
4
6
6
7
9
9
0
2

	4.6.4	Use of reference materials			
	4.6.5	Traceability of reference materials 103			
4.7	Specin	nen banking			
4.8	Profici	ency testing			
4.9	Real-case achievement of traceability of trace				
	elemer	nt analysis			
	4.9.1	Total trace element determinations 106			
	4.9.2	Operationally defined trace element			
		determinations			
	4.9.3	Determinations of chemical forms of elements . 110			
4.10	Conclu	asions			
Refer	ences .				

eleme	nts		117
Les E	bdon, A	Andrew S. Fisher, Maria Betti and Maurice Leroy	
5.1	Introd	uction	117
5.2	Classic	cal methods	117
5.3	Flame	spectrometry	118
	5.3.1	Introduction	118
	5.3.2	Theory	118
	5.3.3	Instrumentation	119
	5.3.4	Interferences and background correction	
		techniques.	121
	5.3.5	Conventional nebulisation	123
	5.3.6	Alternative methods of sample introduction	127
5.4	Electro	othermal AAS	135
	5.4.1	Introduction	135
	5.4.2	Conventional ET-AAS.	136
	5.4.3	Multi-element ET-AAS	139
	5.4.4	Chemical vapour generation-ET-AAS	140
	5.4.5	Speciation.	141
5.5	Induct	ively coupled plasma-atomic emission	
	spectro	ometry	142
	5.5.1	Introduction	142
	5.5.2	Theory and interferences	142
	0.0.1		- 14

	5.5.3	Instrumentation	3
	5.5.4	Figures of merit	2
5.6	Induct	ively coupled plasma-mass spectrometry 15	2
	5.6.1	Introduction	2
	5.6.2	Theory	3
	5.6.3	Instrumentation	4
	5.6.4	Different types of analysis	6
	5.6.5	Interferences	6
	5.6.6	Sample introduction techniques	8
	5.6.7	Figures of merit	0
5.7	Atomic	c fluorescence spectrometry	0
	5.7.1	Introduction.	0
	5.7.2	Theory	2
	5.7.3	Instrumentation	2
	5.7.4	Sample introduction	3
	5.7.5	Interferences	3
	5.7.6	Figures of merit	3
5.8	Other	atomic absorption, emission and fluorescence	
	metho	ds of detection	4
	5.8.1	Microwave induced plasma	4
	5.8.2	Direct current plasma	5
5.9	Second	lary ion mass spectrometry	5
	5.9.1	Introduction	5
	5.9.2	Practical principles	7
	5.9.3	Sensitivity and quantification	8
5.10	Glow d	lischarge mass spectrometry	1
	5.10.1	Introduction	1
	5.10.2	Glow discharge processes	3
	5.10.3	Applications to trace element analysis 17	5
5.11	X-ray f	fluorescence spectrometry	6
	5.11.1	Introduction	6
	5.11.2	Instrumentation	7
	5.11.3	Matrix effects	7
	5.11.4	Quantitative and trace analysis	8
5.12	UV/Vis	sible spectrophotometric and chemiluminescence	
	technie	ques	9
	5.12.1	UV/Visible spectrophotometric techniques 17	9

	5.12.2	Molecular fluorescence and	
		chemiluminescence detection	181
5.13	Electro	ochemical methods	183
	5.13.1	Differential pulse anodic stripping voltammetry	183
	5.13.2	Cathodic and adsorptive stripping voltammetry	184
	5.13.3	Ion selective electrodes	185
Refe	rences .		186
DIGESTIC	ON AND I	EXTRACTION APPROACHES	
Chapter	6. Wet d	igestion methods	193
Henr	yk Matu	usiewicz	
6.1	Introd	uction and brief history	193
6.2	Nomer	nclature	194
6.3	Bibliog	graphy	194
6.4	Reager	nts and vessel materials for wet digestion	
	proced	ures	195
6.5 Wet acid digestion (decomposition and dissolution)		id digestion (decomposition and dissolution)	
	proced	lures	199
	6.5.1	Open systems	199
	6.5.2	Closed systems	203
	6.5.3	Flow systems	210
	6.5.4	Vapor-phase acid digestion (gas-phase reactions)	213
	6.5.5	Efficiency of wet digestion (decomposition and	
		dissolution) procedures	216
	6.5.6	Comparison of wet digestion techniques	219
	6.5.7	Digestion systems (instrumentation,	
		equipment, automation)	220
	6.5.8	Safety of acid digestions (sample acid	
		digestion safety)	221
6.6	Conclu	sions and future trends	224
Refe	rences .		228
Chapter	7. Drv a	shing	235
Mich	el Hoen	ig	
7.1	Genera	al considerations	235
7.2	Why d	ry ashing?	238
7.3	Oxidat	ion process and dissolution of the residue	240

	7.3.1	Particular case of plant matrices
7.4	Metho	dology
	7.4.1	Heating devices
	7.4.2	Ashing vessels
	7.4.3	Influence of the sample composition 246
	7.4.4	Operating modes for environmental samples 246
7.5	Partice	ular cases of arsenic and selenium
	7.5.1	Ashing aids
	7.5.2	What to do?
7.6	Conclu	isions
Refe	rences .	
Chapter	8. Micro	wave based extraction $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 257$
Edw	ard E. K	ing and David Barclay
8.1	Introd	uction
8.2	Brief h	nistory of industrial microwave devices
8.3	Microv	vave theory
8.4	Microv	vave laboratory equipment
	8.4.1	Magnetron
	8.4.2	Power application
	8.4.3	Waveguide
	8.4.4	Microwave cavity
	8.4.5	Reflected energy
	8.4.6	Mode stirrer and turntables
	8.4.7	Microwave compatible materials
8.5	Vessel	s
	8.5.1	Materials
	8.5.2	Structural components
	8.5.3	Safety
	8.5.4	Closed vessels
	8.5.5	Vent and reseal vessels
	8.5.6	Open vessels
8.6	Contro	ol systems
	8.6.1	Power/time
	8.6.2	Pressure
	8.6.3	Temperature

		8.6.4	Power optimization feedback	80
	8.7	Metho	dology	81
		8.7.1	Pressurized closed vessel extractions 2	82
		8.7.2	Atmospheric open vessel extractions 2	83
	8.8	Sample	e types	85
		8.8.1	Inorganic	85
		8.8.2	Leaches and other partial extractions 2	86
		8.8.3	Complete dissolutions	87
		8.8.4	High-temperature extractions	88
		8.8.5	Complex sequential extractions	90
		8.8.6	Organic	91
		8.8.7	Carbohydrates	292
		8.8.8	Proteins	293
		8.8.9	Fats, oils, and waxes	294
	8.9	Advan	ced applications	297
		8.9.1	Clean chemistry	297
		8.9.2	Concentration/evaporation	297
	8.10	Conclu	sions	298
	Ackno	owledge	ements	299
	Refer	ences.		299
Cho	apter 9	9. Fusio	n and fluxes	801
	Ferna	and Cla	isse	
	9.1	Introd	uction	801
	9.2	Fusion	in lithium borates	801
		9.2.1	General	801
	9.3	The ke	ey to successful fusion beads	305
		9.3.1	The concept of "neutrality"	805
		9.3.2	The optimal flux and crystallization	306
		9.3.3	Cracking of fused beads	307
		9.3.4	Loss and retention of sulfur.	308
	9.4	Applic	ation to trace element analysis	308
		9.4.1	Maximizing X-ray intensities	308
		9.4.2	Minimizing background	309
	9.5	Featur	res of fusion for trace elements \ldots \ldots \ldots	309
	Refer	ences .		310

Chapter 2	10. Supercritical fluid extraction
Rober	rto Alzaga, Sergi Díez and Josep M. Bayona
10.1	Properties of supercritical fluids
10.2	Instrumentation
	10.2.1 Experimental solubility measurements 318
10.3	SFE of trace elements
	10.3.1 Ligand solubility in SFs
	10.3.2 Complex-SF solubility
	10.3.3 SFE process
10.4	Organometallic compounds
	10.4.1 Organotin compounds
	10.4.2 Organomercury compounds
	10.4.3 Organolead compounds
	10.4.4 Arsenic compounds
10.5	Conclusion
Refer	ences
Chapter 2	11. Accelerated solvent extraction of organometallic
and i	norganic compounds
John	L. Ezzell
11.1	Accelerated solvent extraction as a sample
	preparation technique
	11.1.1 Introduction
	11.1.2 Basic principles of ASE operation
	11.1.3 ASE instrumentation
	11.1.4 ASE methods development
	11.1.5 Application areas
	11.1.6 Summary
Refer	ences
<i>.</i> .	
Chapter .	12. Sonication as a sample preparation method for
eleme	ntal analysis
Kevir	Ashiey
12.1	Introduction
12.2	Methodological considerations
12.3	Historical background

	12.4	Applications—sonication and sample preparation	•	358
		12.4.1 Environmental analysis	•	358
		12.4.2 Industrial hygiene	•	360
		12.4.3 Biological tissues and fluids		363
		12.4.4 Other applications		364
	12.5	Summary		366
	Refer	ences	•	366
Cha	upter 1	13. Solid phase microextraction as a tool for trace		
	elemei	nt determination	•	371
	Zoltái	n Mester and Ralph Sturgeon		
	13.1	Introduction		371
	13.2	General description of solid phase microextraction . $% \left({{{\mathbf{F}}_{{\mathbf{F}}}} \right)$.	•	373
		13.2.1 Extraction modes		373
		13.2.2 Coatings		375
	13.3	Solid phase microextraction: step-by-step method		
		development	•	375
		13.3.1 Extraction mode selection		375
		13.3.2 Fiber coating selection		376
		13.3.3 Derivatization method selection		376
		13.3.4 Optimization of desorption conditions		376
		13.3.5 Sample volume optimization		376
		13.3.6 Optimization of the extraction time		377
		13.3.7 Optimization of extraction conditions		377
		13.3.8 Determination of the linear dynamic range		378
		13.3.9 Selection of the calibration method		378
		13.3.10 Precision of the method	•	379
		13.3.11 Automation of the method		379
	13.4	Solid phase microextraction for speciation analysis $\ .$	•	380
		13.4.1 Volatile metal species—gas chromatographic		
		determination	•	380
	13.5	Solid phase microextraction as an investigative tool .		388
	13.6	Limitations of solid phase microextraction		388
	13.7	Isotope dilution calibration in combination with solid		
		phase microextraction		389
	Refer	ences		390

Chapter	14. Solid-phase extraction
Valér	rie Camel
14.1	Introduction
14.2	Theory
	14.2.1 Presentation of the technique
	14.2.2 Operation
	14.2.3 Advantages of the technique
14.3	Step-by-step method development guide
	14.3.1 Selection of solid sorbent
	14.3.2 Influential parameters
14.4	Applications of SPE to the determination of some
	trace elements
	14.4.1 Chromium
	14.4.2 Iron
	14.4.3 Mercury
	14.4.4 Selenium
	14.4.5 Tin
14.5	Conclusion
Refer	ences
~ -	
Chapter .	15. Chelation solvent extraction for separation of
metal	459
Hide	yuki Itabashi and Taketoshi Nakahara
15.1	Introduction
15.2	Theoretical considerations
	15.2.1 General principles
	15.2.2 Preconcentration of metal ions 465
	15.2.3 Mutual separation of metal ions 467
	15.2.4 Speciation of metal ions in natural water 472
15.3	Adsorption of metal ions using chelating resins 474
	15.3.1 General principles
	15.3.2 Features of some chelating resins 475
15.4	Application of chelation to sample preparation for
	trace metal analysis
	15.4.1 Procedure for the extraction of metal ions
	from natural waters

	15.4.2 Procedure for the extraction of metal ions from
	high-purity materials and inorganic
	solid samples
	15.4.3 Procedure for the extraction of metal ions
	from biological samples
	15.4.4 Procedure for the speciation of metal ions in
	natural waters
Refer	ences
Chapter .	16. Cryogenic trapping for speciation analysis 495
Marie	e-Pierre Pavageau, Eva Krupp, Alberto de Diego,
Chris	tophe Pécheyran and Olivier F.X. Donard
16.1	Introduction
16.2	Definition of volatile species
16.3	Physico-chemical principles and processes associated
	with cryofocusing
16.4	Analytical constraints
	16.4.1 Removal of CO_2
	16.4.2 Water removal
16.5	Sample preservation and stability
16.6	Instrumentation for cryogenic trapping and selected
	applications
	16.6.1 Cryosampler for determination of industrial
	and environmental VMCs
	16.6.2 Cryogenic trapping for speciation analysis 523
Refer	rences
Chapter .	17. Biotrapping as an alternative to metal
preco	ncentration and speciation
Yolar	da Madrid and Carmen Cámara

											-												
17.1	Introdu	action.		•	•	•																	533
17.2	Genera	ıl chara	icte	ris	sti	\mathbf{cs}	of	f b	oio	lo	gi	ca	l s	su	bs	tr	at	es	5.				535
	17.2.1	Algae		•		•		•	•	•				•			•		•				535
	17.2.2	Bacter	ria .	•		•		•		•		•	•	•	•		•		•	•	•	•	536
	17.2.3	Fungi		•		•	•	•	•	•		•	•	•									537

	17.3	Uptake mechanisms
	17.4	Working procedures
		17.4.1 Immobilisation
	17.5	Applications
		17.5.1 Analytical applications
		17.5.2 Technological applications
	17.6	Conclusions
	Refer	ences
~1		
Ch	apter1	8
	Memt	$ rane \ extraction \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	Jan A	ke Jönsson and Lennart Mathiasson
	18.1	Introduction
	18.2	Membrane extraction techniques
		18.2.1 Supported liquid membrane extraction (SLM) . 560
		18.2.2 Microporous membrane liquid liquid
		extraction (MMLLE)
	18.3	Chemical principles for metal extraction
	18.4	Properties of membrane extraction
		18.4.1 Clean-up and selectivity
		18.4.2 Enrichment
		18.4.3 Automation and unattended operation 569
		18.4.4 Solvent consumption
	18.5	Experimental set-up
		18.5.1 Flow systems for membrane extraction 570
		18.5.2 How to set up a membrane extraction
		experiment for metal ions
	Ackn	owledgements
	Refer	ences
Ch	apter 1	19. Derivatization and vapor generation methods for
	trace	element analysis and speciation
	Yong	Cai
	19.1	Introduction
	19.2	Theory
		19.2.1 Grignard reactions
		19.2.2 Hydride generation

	19.2.3 Aqueous derivatization with tetraalkyl	
	(aryl)borates	580
19.3	Method development	583
	19.3.1 Grignard reactions	583
	19.3.2 Aqueous derivatization	584
19.4	Applications	585
Ackn	owledgements	590
Refer	ences	590
Chapter 2	20. Laser ablation sampling	593
Richa	ard E. Russo and David P. Baldwin	
20.1	Introduction	593
20.2	Experimental system	594
20.3	Ablation detection systems	599
20.4	Calibration	601
20.5	Fractionation	603
20.6	Conclusion	604
Ackn	owledgements	606
Refer	rences	606
Chapter 2	21. Flow injection techniques for sample pretreatment	611
Zhao	-Lun Fang	
21.1	Introduction	611
	21.1.1 General	611
	21.1.2 General features of flow injection on-line	
	sample pretreatment systems	612
	21.1.3 Classification of FI sample pretreatment	
	systems	612
	21.1.4 Principles and general guidelines for the	
	development of FI systems	613
	21.1.5 Practical hints for manipulation of FI equipment	614
21.2	FI liquid-liquid extraction systems.	615
	21.2.1 Introduction	615
	21.2.2 Apparatus for FI liquid-liquid extraction	617
	21.2.3 Guidelines for the development of FI	
	liquid–liquid extraction systems	623
	21.2.4 Typical manifolds for FI liquid-liquid extraction	624
21.3	FI solid phase extraction systems	626

		21.3.1	Introduction	626
		21.3.2	Sorption media for FI solid phase extraction	627
		21.3.3	Guidelines for the development of FI solid	
			phase extraction systems	629
		21.3.4	Typical manifolds for FI solid phase extraction.	630
2	1.4	FI vap	or generation systems	635
		21.4.1	Introduction.	635
		21.4.2	Gas-liquid separators for FI vapor generation.	635
		21.4.3	Guidelines for development of FI vapor	
			generation systems	636
		21.4.4	Typical FI manifolds for VG-AAS	638
2	1.5	FI gas	diffusion systems	641
		21.5.1	General	641
		21.5.2	Gas-diffusion separators	641
		21.5.3	Typical FI manifolds for gas-diffusion separation	
			and preconcentration	642
2	1.6	FI on-l	ine sample digestion	643
		21.6.1	Introduction	643
		21.6.2	FI on-line sample digestion systems for AAS	644
		21.6.3	FI digestion systems coupled to VG-AAS	644
		21.6.4	FI systems for digestion of solid samples in AAS	645
		21.6.5	FI pretreatment systems with on-line	
			photo-oxidation by UV irradiation	646
R	Refere	ences .		646
~1				
Chap	ter 2	2. Auto	mation of sample preparation	649
N	laria	Dolore	es Luque de Castro and Jose Luis Luque Garcia	
2	2.1	Introd		649
		22.1.1	Generalities	649
		22.1.2	Principal shortcomings in automating sample	
		00.1.0		650
		22.1.3	Batch versus serial approaches to automated	051
		00 1 4		051
		22.1.4	Bar codes: a necessary tool in automating	050
~		• •	routine analyses	652
2	Z.Z	Autom	ation of liquid sample preparation	053

	22.2.1	Continuous systems	653
	22.2.2	Discontinuous approaches	656
22.3	Autom	ation of solid sample preparation	659
	22.3.1	One-step approaches to automation and	
		acceleration of solid sample preparation	659
	22.3.2	Direct solid sampling	660
22.4	Roboti	cs	660
	22.4.1	Workstations, robots, modules and peripherals.	662
	22.4.2	The role of robots in the analytical process	670
	22.4.3	Analytical scope of robotics for sample	
		preparation	674
22.5	Advan	tages and disadvantages of automation	
	of sam	ple preparation	676
22.6	Future	prospects	677
Refer	ences .		678
MATRICE	S		
Chapter 2	23. Sam	ple preparation for crude oil, petroleum products	
and p	olymers	3	683
Robe	rt I. Bot	to	
23.1	Introd	uction	683
	23.1.1	Nature of petroleum crude, products and	
		polymers	683
	23.1.2	Element context and species in petroleum	
		crude, products and polymers	686
	23.1.3	Sample preparation challenges for trace	
		element analysis	691
23.2	Sample	e preparation techniques and instrumentation .	693
	23.2.1	Ashing techniques	693
	23.2.2	Acid mineralization techniques	697
	23.2.3	Oxygen combustion	704
	23.2.4	Sample component separations/extractive	
		sample preparation	706
	23.2.5	Organic sample dilutions and dissolutions	707

23	3.3	Cleanli	iness and quality assurance	713
		23.3.1	Equipment cleaning.	713
		23.3.2	Clean techniques and disposable equipment	714
		23.3.3	Quality assurance.	715
A	ckno	wledge	ments	718
R	efere	ences .		719
	, .	4 9		
Chapt	ter Z	4. Sam	ple preparation of geological samples, soils	
an	id se	diment	S	723
PI	hilip	J. Pott	s and Philip Robinson	
24	4.1	Introdu	action	723
24	4.2	Sample	e preparation	723
		24.2.1	Sample collection	724
		24.2.2	Crushing and grinding	726
		24.2.3	Selecting an appropriate test portion	727
24	4.3	Choice	of approach	728
		24.3.1	Fitness-for-purpose	728
		24.3.2	Choice of sample preparation procedure based	
			on choice of technique	728
		24.3.3	Choice of sample preparation based on the	
			characteristics of elements	729
24	4.4	Metho	ls that do not require any sample digestion—	
		in situ	methods of analysis	730
		24.4.1	Portable X-ray fluorescence	730
		24.4.2	Gamma spectrometry	732
		24.4.3	Laser ablation techniques and other microprobe	/
			microanalytical techniques	732
24	4.5	Metho	ls based on solid samples	733
		24.5.1	Direct determinations on powders	733
		24.5.2	Powder pellet for XRF	734
		24.5.3	Glass disks for XRF trace determinations	734
24	4.6	Dissolu	ition methods based on acid attack	735
		24.6.1	Properties of acids used in the decomposition of	
		_	geological materials.	736
		24.6.2	Open vessel and low-pressure acid digestion	738

		24.6.3	HF-HNO ₃ decomposition method in Savillex [®]	
			screw top vials	740
		24.6.4	Closed vessel high pressure acid digestion	740
		24.6.5	HF/H ₂ SO ₄ decomposition method in closed,	
			high pressure vessels	742
		24.6.6	HF/HClO ₄ -HCl decomposition method in closed	,
			high pressure vessels	742
		24.6.7	Microwave oven digestion	743
		24.6.8	Partial acid attack	744
		24.6.9	Difficult minerals	745
	24.7	Decom	position by molten salt fusion	750
		24.7.1	Total fusion	750
		24.7.2	A $LiBO_2$ fusion procedure $\ldots \ldots \ldots \ldots \ldots$	752
		24.7.3	Sintering	752
		24.7.4	Fire assay	752
	24.8	Pre-cor	ncentration and separation procedures	753
		24.8.1	Ion exchange	753
		24.8.2	Solvent extraction and co-precipitation	754
		24.8.3	Vapour generation	755
	24.9	Sequer	tial extractions and dissolutions	755
		24.9.1	Procedure of Tessier et al.	756
		24.9.2	The "BCR" method	757
		24.9.3	Selective extractions for geochemical	
			exploration	757
	24.10	Summa	ary and conclusions	758
	Refer	ences .		758
Cho	apter 2	25. Sam	ple preparation for food analysis	765
	Milan	ı Ihnat		
	25.1	Introdu	uction	765
	25.2	Literat	ure	766
		25.2.1	Books on sample treatment, decomposition	767
		25.2.2	Books including chapters, sections on or	
			discussing sample treatment, decomposition	767
		25.2.3	Reviews on sample treatment, decomposition $\ .$	767
		25.2.4	Other reviews including coverage of sample	
			treatment, decomposition	768

	25.2.5	Papers, publications, containing (major) writing
		on sample treatment
25.3	Pretrea	atment
25.4	Classif	ication of sample treatment methods 770
25.5	Compi	lation of sample treatment methods for foods 770
	25.5.1	No treatment
	25.5.2	Dry ashing
	25.5.3	Wet digestion—conventional
	25.5.4	Wet digestion-microwave-assisted 838
	25.5.5	Slurry sample preparation
25.6	Specifi	c cases: methods, elements, matrices 839
	25.6.1	Analytical method
	25.6.2	Elements
	25.6.3	Matrix and constituents
25.7	Examp	les of specific, recommended sample treatment
	proced	ures
	25.7.1	Conventional wet digestion with nitric and
		perchloric acids
	25.7.2	Dry ashing with or without ashing aid 845
	25.7.3	Microwave-assisted wet digestion
25.8	Closing	g remarks
Refei	ences .	
Chanter	26 The	determination of trace elements in water 857
Scott	N Will	ie
26.1	Direct	methods of determination
26.2	Precon	centration techniques—multielement 860
26.3	Precon	centration—individual elements.
26.4	Detern	nination of trace elements as volatile species
26.5	Mercu	rv
26.6	Lumin	escence 880
26.7	Voltam	metry
26.8	Total-r	eflection X-Ray fluorescence spectrometry 891
26.9	Conclu	sions
Refei	ences .	

Chapter 2	27. Aerosol sampling and sample preparation for	
eleme	ental analysis)3
Józse	ef Hlavay	
27.1	Introduction)3
	27.1.1 Objectives of monitoring)4
27.2	Sampling of aerosols)6
	27.2.1 General considerations)6
	27.2.2 Sampling of aerosol by impactors 90)9
	27.2.3 Ambient sampling for the respirable	
	fraction	16
	27.2.4 High-volume aerosol samplers	18
	27.2.5 Speciation aerosol sampling system 92	22
	27.2.6 Passive samplers	24
27.3	Sequential extraction schemes for aerosol samples 92	24
27.4	Discussion.	30
Ackn	owledgements	31
Gene	eral terms used in sampling.	31
Refer	rences	32
Chapter :	28. Sample preparation for industrial waste analysis	35
Peter	r Drouin and Ray E. Clement	
28.1	Types of industrial waste	35
28.2	Safety considerations for industrial waste analysis	36
28.3	Sample characteristics and industrial waste	,0
-0.0	sampling 99	36
28.4	Digestions 99	38
20.1	28.4.1 Aqueous sample types—US EPA methods 99	39
	28.4.2 Solid sample types—US EPA methods 94	12
	28.4.3 Reported studies—hot plate digestion 94	13
	28.4.4 Reported studies—microwave digestion	10
	methods.	45
		19
	28 4 5 Ultrasound-assisted extractions	
	28.4.5 Ultrasound-assisted extractions	19
	28.4.5 Ultrasound-assisted extractions 94 28.4.6 Alkaline digestions 94 28.4.7 Laboratory safety 95	19 19 50
28.5	28.4.5 Ultrasound-assisted extractions 94 28.4.6 Alkaline digestions 94 28.4.7 Laboratory safety 95 Leach procedures 95	19 50
28.5	28.4.5 Ultrasound-assisted extractions 94 28.4.6 Alkaline digestions 94 28.4.7 Laboratory safety 94 28.4.7 Laboratory safety 95 Leach procedures 95 28.5.1 Toxicity characteristic leaching procedure 95	49 50 50 51
	28.4.5 Ultrasound-assisted extractions 94 28.4.6 Alkaline digestions 94 28.4.7 Laboratory safety 96	19 50

	28.5.3 TCLP method summary
	28.5.4 TCLP applications
	28.5.5 TCLP and sequential extractions 954
	28.5.6 TCLP limitations
28.6	Certified reference materials
28.7	Summary and future developments
28.8	Useful World Wide Websites
Ackn	owledgements
Refer	rences
Chapter .	29. Sample preparation for semiconductor materials 965
Kats	u Kawabata, Yoko Kishi, Fuhe Li and Scott Anderson
29.1	Introduction
29.2	Contamination control
	29.2.1 Clean room
	29.2.2 Equipments, reagents and standards 971
29.3	Sample preparation
	29.3.1 Preparation and analysis of samples 978
29.4	Conclusion
Refer	rences
TRACE EI	LEMENT SPECIATION
Chapter .	30. Sampling and sample treatment in the analysis of
organ	notin compounds in environmental samples 991
Robe	rto Morabito
30.1	Introduction
30.2	Critical steps in organotin analysis
	30.2.1 Sampling
	30.2.2 Storage
	30.2.3 Sample treatment
30.3	Improving the quality of organotin measurements
	in Europe
30.4	Detailed procedure for the GC–MS determination of
	organotin compounds in environmental samples 1017
Ackn	owledgements
Refer	rences

Walter Goessler and Doris Kuehnelt31.1Introduction.31.2Occurrence and distribution of arsenicin the environment.102831.2.1Marine environment.102831.2.2Terrestrial environment103131.2.3Humans.103131.3Stability of arsenic compounds103331.3.1Arsenite and arsenate103431.3.2Methylarsonous acid and dimethylarsinousacid103531.3.3Methylarsonic acid and dimethylarsinic acid103531.3.4Arsenobetaine, arsenocholine, trimethylarsineoxide, and the tetramethylarsonium ion103731.4Extraction of arsenic compounds from environmentalsamples103831.5Conclusions1041References1041Chapter 32. Sample preparation for speciationof selenium104532.1Why selenium speciation?32.1Body fluid analysis32.3Mammals33.4Fish/birds34.4Fish/birds35.5Plants36.6Plants37.7Sample preparation38.7104539.8104631.9Pilants31.9Ibid analysis31.9Ibid analysis31.9Ibid analysis31.9Ibid analysis31.9Ibid analysis32.5Ibid Ibid analysis32.5Ibid Ibid Ibi	Chapter 3	1. Sample preparation for arsenic speciation 1027
31.1 Introduction .1027 31.2 Occurrence and distribution of arsenic .1028 31.2.1 Marine environment .1028 31.2.1 Marine environment .1031 31.2.2 Terrestrial environment .1031 31.2.3 Humans .1031 31.3 Stability of arsenic compounds .1033 31.3.1 Arsenite and arsenate .1034 31.3.2 Methylarsonous acid and dimethylarsinous .1035 31.3.1 Arsenobetaine, arsenocholine, trimethylarsine .1035 31.3.3 Methylarsonic acid and dimethylarsinic acid .1036 31.3.4 Arsenobetaine, arsenocholine, trimethylarsine .1037 31.3.5 Arsenobetaine, arsenocholine, trimethylarsine .1037 31.4 Extraction of arsenic compounds from environmental samples .1038 31.5 Conclusions .1041 References .1041 Chapter 32. Sample preparation for speciation .1045 .1045 32.1 Why selenium speciation? .1045 32.2 General sample preparation .1045 32.3	Walte	r Goessler and Doris Kuehnelt
31.2 Occurrence and distribution of arsenic in the environment .1028 31.2.1 Marine environment .1028 31.2.2 Terrestrial environment .1031 31.2.3 Humans .1031 31.3 Stability of arsenic compounds .1033 31.3 Stability of arsenic compounds .1033 31.3.1 Arsenite and arsenate .1034 31.3.2 Methylarsonous acid and dimethylarsinous .1035 acid	31.1	Introduction
in the environment 1028 31.2.1 Marine environment 1028 31.2.2 Terrestrial environment 1031 31.2.3 Humans 1031 31.3 Stability of arsenic compounds 1033 31.3 Stability of arsenic compounds 1033 31.3.1 Arsenite and arsenate 1034 31.3.2 Methylarsonous acid and dimethylarsinous acid acid	31.2	Occurrence and distribution of arsenic
31.2.1 Marine environment .1028 31.2.2 Terrestrial environment .1031 31.2.3 Humans .1031 31.3 Stability of arsenic compounds .1033 31.3 Stability of arsenic compounds .1033 31.3.1 Arsenite and arsenate .1034 31.3.2 Methylarsonous acid and dimethylarsinous acid .1035 31.3.3 Methylarsonic acid and dimethylarsinic acid .1036 31.3.4 Arsenobetaine, arsenocholine, trimethylarsine oxide, and the tetramethylarsonium ion .1037 31.3.5 Arsenosugars .1037 31.4 Extraction of arsenic compounds from environmental samples .1038 31.5 Conclusions .1041 References .1041 References .1041 Chapter 32. Sample preparation for speciation of selenium .1045 .1045 Claudia Ponce de Leon, Anne P. Vonderheide and Joseph A. Caruso .1045 .1045 32.3 Mammals .1045 .1045 32.3 Mammals .1046 .1046 .1046 32.3.1 Body fluid analysis .1046		in the environment
31.2.2 Terrestrial environment .1031 31.2.3 Humans .1031 31.3 Stability of arsenic compounds .1033 31.3 Stability of arsenic compounds .1033 31.3.1 Arsenite and arsenate .1034 31.3.2 Methylarsonous acid and dimethylarsinous .1035 acid .1035 31.3.3 Methylarsonic acid and dimethylarsinic acid .1036 31.3.4 Arsenobetaine, arsenocholine, trimethylarsine .1037 31.3.5 Arsenosugars .1037 31.4 Extraction of arsenic compounds from environmental .1037 31.4 Extraction of arsenic compounds from environmental .1038 31.5 Conclusions .1041 Chapter 32. Sample preparation for speciation .1041 Chapter 32. Sample preparation for speciation .1045 Claudia Ponce de Leon, Anne P. Vonderheide and Joseph A. Caruso 32.1 Why selenium speciation? .1045 32.3 Mammals .1046 32.3.1 Body fluid analysis .1046 32.3.2 Tissue sample analysis .1049 32.4 Fish/birds .1050 32.5 Plants .1051 32.5.1 Leafy plants .1052		31.2.1 Marine environment
31.2.3 Humans. .1031 31.3 Stability of arsenic compounds .1033 31.3.1 Arsenite and arsenate .1034 31.3.2 Methylarsonous acid and dimethylarsinous .1035 acid .1035 31.3.3 Methylarsonic acid and dimethylarsinic acid .1036 31.3.4 Arsenobetaine, arsenocholine, trimethylarsine .1037 31.3.5 Arsenosugars .1037 31.4 Extraction of arsenic compounds from environmental .1037 31.4 Extraction of arsenic compounds from environmental .1038 31.5 Conclusions .1041 References .1041 Chapter 32. Sample preparation for speciation .1045 Claudia Ponce de Leon, Anne P. Vonderheide and .1045 Joseph A. Caruso .1045 32.1 Why selenium speciation? .1045 32.3 Mammals .1046 32.3.1 Body fluid analysis .1046 32.3.2 Tissue sample analysis .1049 32.4 Fish/birds .1050 32.5 Plants .1051 32.5.1 Leafy plants .1052 32.5.2 Broccoli .1053		31.2.2 Terrestrial environment
31.3 Stability of arsenic compounds .1033 31.3.1 Arsenite and arsenate .1034 31.3.2 Methylarsonous acid and dimethylarsinous .1035 acid .1035 .1036 31.3.3 Methylarsonic acid and dimethylarsinic acid .1036 31.3.4 Arsenobetaine, arsenocholine, trimethylarsine .1037 31.3.5 Arsenosugars .1037 31.3.5 Arsenosugars .1037 31.4 Extraction of arsenic compounds from environmental .1038 samples .1038 .1041 References .1041 .1041 References .1041 .1041 Chapter 32. Sample preparation for speciation .1045 Claudia Ponce de Leon, Anne P. Vonderheide and .1045 Joseph A. Caruso .1045 32.1 Why selenium speciation? .1045 32.3 Mammals .1046 32.3.1 Body fluid analysis .1046 32.3.2 Tissue sample analysis .1046 32.3.4 Fish/birds .1050 32.5 Plants .1051 <td></td> <td>31.2.3 Humans</td>		31.2.3 Humans
31.3.1 Arsenite and arsenate .1034 31.3.2 Methylarsonous acid and dimethylarsinous .1035 acid .1035 31.3.3 Methylarsonic acid and dimethylarsinic acid .1036 31.3.4 Arsenobetaine, arsenocholine, trimethylarsine .1037 oxide, and the tetramethylarsonium ion .1037 31.3.5 Arsenosugars .1037 31.4 Extraction of arsenic compounds from environmental .1038 samples .1038 31.5 Conclusions .1041 References .1041 Chapter 32. Sample preparation for speciation .1045 Claudia Ponce de Leon, Anne P. Vonderheide and .1045 Joseph A. Caruso .1045 32.1 Why selenium speciation? .1045 32.3 Mammals .1046 32.3.1 Body fluid analysis .1046 32.3.2 Tissue sample analysis .1049 32.4 Fish/birds .1050 32.5 Plants .1051 32.5.1 Leafy plants .1052 32.5.2 Broccoli .1053	31.3	Stability of arsenic compounds
31.3.2 Methylarsonous acid and dimethylarsinous acid		31.3.1 Arsenite and arsenate
acid		31.3.2 Methylarsonous acid and dimethylarsinous
31.3.3 Methylarsonic acid and dimethylarsinic acid 1036 31.3.4 Arsenobetaine, arsenocholine, trimethylarsine oxide, and the tetramethylarsonium ion 1037 31.3.5 Arsenosugars		acid
31.3.4 Arsenobetaine, arsenocholine, trimethylarsine oxide, and the tetramethylarsonium ion		31.3.3 Methylarsonic acid and dimethylarsinic acid. 1036
oxide, and the tetramethylarsonium ion		31.3.4 Arsenobetaine, arsenocholine, trimethylarsine
31.3.5 Arsenosugars .1037 31.4 Extraction of arsenic compounds from environmental samples .1038 31.5 Conclusions .1041 References .1041 Chapter 32. Sample preparation for speciation of selenium .1045 Claudia Ponce de Leon, Anne P. Vonderheide and Joseph A. Caruso .1045 32.1 Why selenium speciation? .1045 32.2 General sample preparation .1045 32.3 Mammals .1046 32.3.1 Body fluid analysis .1046 32.4 Fish/birds .1050 32.5 Plants .1051 32.5.1 Leafy plants .1053		oxide, and the tetramethylarsonium ion 1037
31.4 Extraction of arsenic compounds from environmental samples 1038 31.5 Conclusions 1041 References 1041 Chapter 32. Sample preparation for speciation of selenium 1041 Chapter 32. Sample preparation for speciation 1041 Claudia Ponce de Leon, Anne P. Vonderheide and Joseph A. Caruso 1045 32.1 Why selenium speciation? 1045 32.3 Mammals 1046 32.3.1 Body fluid analysis 1046 32.3.2 Tissue sample analysis 1049 32.4 Fish/birds 1051 32.5 Plants 1051 32.5.1 Leafy plants 1053		31.3.5 Arsenosugars
samples	31.4	Extraction of arsenic compounds from environmental
31.5 Conclusions	0111	samples 1038
References	31.5	Conclusions 1041
Chapter 32. Sample preparation for speciation of selenium. .1045 Claudia Ponce de Leon, Anne P. Vonderheide and Joseph A. Caruso 32.1 Why selenium speciation? .1045 32.2 General sample preparation .1045 32.3 Mammals .1046 32.3.1 Body fluid analysis .1046 32.3.2 Tissue sample analysis .1049 32.4 Fish/birds .1050 32.5 Plants .1051 32.5.1 Leafy plants .1053	Refer	ences 1041
Chapter 32. Sample preparation for speciation .1045 of selenium. .1045 Claudia Ponce de Leon, Anne P. Vonderheide and .1045 Joseph A. Caruso .1045 32.1 Why selenium speciation? .1045 32.2 General sample preparation .1045 32.3 Mammals .1045 32.3.1 Body fluid analysis .1046 32.3.2 Tissue sample analysis .1049 32.4 Fish/birds .1050 32.5 Plants .1051 32.5.1 Leafy plants .1053	100101	
of selenium.	Chapter 3	22. Sample preparation for speciation
Claudia Ponce de Leon, Anne P. Vonderheide and Joseph A. Caruso32.1 Why selenium speciation?32.2 General sample preparation32.3 Mammals32.3.1 Body fluid analysis32.3.2 Tissue sample analysis32.4 Fish/birds32.5 Plants32.5.1 Leafy plants32.5.2 Broccoli32.5.2 Broccoli	of sele	nium
Joseph A. Caruso 32.1 Why selenium speciation?	Claud	lia Ponce de Leon. Anne P. Vonderheide and
32.1 Why selenium speciation?	Josep	h A. Caruso
32.2 General sample preparation	32.1	Why selenium speciation?
32.3 Mammals	32.2	General sample preparation
32.3.1 Body fluid analysis	32.3	Mammals
32.3.2 Tissue sample analysis		32.3.1 Body fluid analysis
32.4 Fish/birds		32.3.2 Tissue sample analysis
32.5 Plants.	32.4	Fish/birds
32.5.1 Leafy plants. 1052 32.5.2 Broccoli 1053	32.5	Plants
32.5.2 Broccoli		32.5.1 Leafy plants
		32.5.2 Broccoli
32.5.3 Spices (garlic, onion, white clover) 1053		32.5.3 Spices (garlic, onion, white clover) 1053
32.5.4 Grains		32.5.4 Grains
32.5.5 Nuts		32.5.5 Nuts

		32.5.6	Mushrooms	54
	32.6	Microo	rganisms	55
	32.7	Enviro	nmental	55
		32.7.1	Air	55
		32.7.2	Water	56
		32.7.3	Soil and sediments (solid matrices)	58
	Refer	ences .		59
Cho	apter 3	33. Sam	ple preparation for mercury speciation10	63
	Holge	er Hinte	lmann	
	33.1	Introdu	uction	63
	33.2	Aqueou	is solution chemistry of methylmercury 10	63
	33.3	Sample	e collection, preservation and storage 10	65
		33.3.1	Cleaning of sampling and laboratory	
			equipment	66
		33.3.2	Water sampling	66
		33.3.3	Preservation and storage of water samples 10	67
		33.3.4	Preservation and storage of tissue and	
			vegetation samples	68
		33.3.5	Preservation and storage of soil and sediment	
			samples	68
	33.4	Sample	e preparation	69
		33.4.1	Extraction of methylmercury from water 10	71
		33.4.2	Extraction of methylmercury from soils,	
			sediments and particles	72
		33.4.3	Extraction of methylmercury from biological	
			tissue	73
		33.4.4	Direct techniques involving no sample	
			preparation	74
		33.4.5	Extraction of mercury species other than	77.4
	22 5	Onality	methymercury	74 75
	00.0	Quanty	Artifactual formation of mathylmoreury 10	75
		33 5 9	Spike recoveries	76
		33 5 3	Reference materials	70
	Ackny	oo.o.o wladaa	monte 10	70
	Rofor	meuge	10 menus	19 70
	meter	ences.		19

Freddy C. Adams and Monika Heisterkamp 34.1 Introduction	Chapter 3	34. Sample preparation for speciation of lead
34.1 Introduction 1081 34.2 Toxicity of organolead compounds 1083 34.3 The history of leaded gasoline 1085 34.4 Properties of organolead compounds 1088 34.5 Synthesis of organolead compounds 1090 34.6 The biogeochemical cycle of lead 1092 34.7 Analytical techniques for speciation analysis of organolead compounds 1092 34.7.1 Hyphenated techniques for organometal determinations 1093 34.7.2 Sample preparation 1096 34.7.3 Sample preparation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1101 34.7.6 Detection of organolead compounds after chromatography. 1104 34.7.7 Procedures for the determination of organolead compounds in dust material 1107 34.7.8 Comparison of the different hyphenated systems 1107 34.7.8 Comparison of the different hyphenated systems 1119 Miguel de la Guardia and Angel Mora	Frede	ly C. Adams and Monika Heisterkamp
34.2 Toxicity of organolead compounds 1083 34.3 The history of leaded gasoline 1085 34.4 Properties of organolead compounds 1088 34.5 Synthesis of organolead compounds 1090 34.6 The biogeochemical cycle of lead 1092 34.7 Analytical techniques for speciation analysis of organolead compounds 1092 34.7.1 Hyphenated techniques for organometal determinations 1093 34.7.2 Sample preparation 1096 34.7.3 Sample preparation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1097 34.7.6 Detection of organolead compounds after chromatography. 1101 34.7.7 Procedures for the determination of organolead compounds in dust material 1107 34.7.8 Comparison of the different hyphenated systems 1107 34.7.8 Comparison of the different hyphenated systems 1119 S5.1 The element and its reactivity 1115 35.2 <	34.1	Introduction
34.3 The history of leaded gasoline 1085 34.4 Properties of organolead compounds 1088 34.5 Synthesis of organolead compounds 1090 34.6 The biogeochemical cycle of lead 1092 34.7 Analytical techniques for speciation analysis of organolead compounds 1092 34.7 Analytical techniques for speciation analysis of organolead compounds 1092 34.7.1 Hyphenated techniques for organometal determinations 1093 34.7.2 Sample preparation 1096 34.7.3 Sample preparation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1097 34.7.6 Detection of organolead compounds after chromatography. 1101 34.7.7 Procedures for the determination of organolead compounds in dust material 1107 34.7.8 Comparison of the different hyphenated systems 1109 References 1110 1115 1119 S5.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical method	34.2	Toxicity of organolead compounds
34.4 Properties of organolead compounds 1088 34.5 Synthesis of organolead compounds 1090 34.6 The biogeochemical cycle of lead 1092 34.7 Analytical techniques for speciation analysis of organolead compounds 1092 34.7 Analytical techniques for speciation analysis of organolead compounds 1092 34.7.1 Hyphenated techniques for organometal determinations 1093 34.7.2 Sample preparation 1096 34.7.3 Sample pretreatment using gas chromatographic separation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1101 34.7.6 Detection of organolead compounds after chromatography. 1104 34.7.7 Procedures for the determination of organolead compounds in dust material 1107 34.7.8 Comparison of the different hyphenated systems 1109 References 1115 1115 Miguel de la Guardia and Angel Morales-Rubio 1115 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of C	34.3	The history of leaded gasoline
34.5 Synthesis of organolead compounds 1090 34.6 The biogeochemical cycle of lead 1092 34.7 Analytical techniques for speciation analysis of 1092 34.7 Analytical techniques for speciation analysis of 1092 34.7.1 Hyphenated techniques for organometal 1093 34.7.2 Sample preparation 1096 34.7.3 Sample preparation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1101 34.7.6 Detection of organolead compounds after 1104 chromatography 1104 34.7.7 Procedures for the determination of organolead 1104 34.7.7 Procedures for the determination of organolead 1107 34.7.8 Comparison of the different hyphenated systems 1109 References 1110 35.1 The element and its reactivity 1115 Miguel de la Guardia and Angel Morales-Rubio 35.1 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination <tr< td=""><td>34.4</td><td>Properties of organolead compounds</td></tr<>	34.4	Properties of organolead compounds
34.6 The biogeochemical cycle of lead .1092 34.7 Analytical techniques for speciation analysis of .1092 34.7 Hyphenated techniques for organometal .1092 34.7.1 Hyphenated techniques for organometal .1093 34.7.2 Sample preparation .1093 34.7.3 Sample preparation .1096 34.7.4 Extraction recovery .1100 34.7.5 Separation .1097 34.7.6 Detection of organolead compounds after .1101 34.7.7 Procedures for the determination of organolead .1104 34.7.7 Procedures for the determination of organolead .1107 34.7.8 Comparison of the different hyphenated .1109 systems .1109 References .1111 Chapter 35. Sample preparation for chromium speciation .1115 .1115 Miguel de la Guardia and Angel Morales-Rubio 35.1 The element and its reactivity .1115 35.2 The presence of Cr in nature and industrial processes .1117 35.3 Chemical species of Cr present in real samples .1118 35.4 Analytical methodol	34.5	Synthesis of organolead compounds
34.7 Analytical techniques for speciation analysis of organolead compounds .1092 34.7.1 Hyphenated techniques for organometal determinations .1093 34.7.2 Sample preparation .1096 34.7.3 Sample preparation .1096 34.7.4 Extraction recovery .1007 34.7.5 Separation .1097 34.7.4 Extraction recovery .1100 34.7.5 Separation .1097 34.7.6 Detection of organolead compounds after chromatography. .1104 34.7.7 Procedures for the determination of organolead compounds in dust material .1107 34.7.8 Comparison of the different hyphenated systems .1109 References .1111 .1111 Chapter 35. Sample preparation for chromium speciation .1115 Miguel de la Guardia and Angel Morales-Rubio .1115 35.1 The element and its reactivity .1115 35.2 The presence of Cr in nature and industrial processes .1117 35.3 Chemical species of Cr present in real samples .1118 35.4 Analytical methodologies available for determination of Cr .1120	34.6	The biogeochemical cycle of lead
organolead compounds .1092 34.7.1 Hyphenated techniques for organometal determinations .1093 34.7.2 Sample preparation .1096 34.7.3 Sample preparation .1096 34.7.4 Extraction recovery .1007 34.7.4 Extraction recovery .1100 34.7.5 Separation .1097 34.7.6 Detection of organolead compounds after chromatography. .1101 34.7.6 Detection of organolead compounds after chromatography. .1104 34.7.7 Procedures for the determination of organolead compounds in dust material .1107 34.7.8 Comparison of the different hyphenated systems .1109 References .1110 .1115 Miguel de la Guardia and Angel Morales-Rubio .1115 35.1 The element and its reactivity .1115 35.2 The presence of Cr in nature and industrial processes .1117 35.3 Chemical species of Cr present in real samples .1118 35.4 Analytical methodologies available for determination of Cr .1120 35.5.1 Speciation of chromium in aqueous matrices .1121	34.7	Analytical techniques for speciation analysis of
34.7.1 Hyphenated techniques for organometal determinations 1093 34.7.2 Sample preparation 1096 34.7.3 Sample pretreatment using gas chromatographic separation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1100 34.7.6 Detection of organolead compounds after chromatography. 1101 34.7.7 Procedures for the determination of organolead compounds in dust material 1104 34.7.7 Procedures for the determination of organolead compounds in dust material 1107 34.7.8 Comparison of the different hyphenated systems 1109 References 1111 1111 Chapter 35. Sample preparation for chromium speciation 1115 Miguel de la Guardia and Angel Morales-Rubio 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination of Cr 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5 Analytical methodologies for Cr s		organolead compounds
determinations 1093 34.7.2 Sample preparation 1096 34.7.3 Sample pretreatment using gas 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1100 34.7.6 Detection of organolead compounds after 1101 34.7.7 Procedures for the determination of organolead 1104 34.7.7 Procedures for the determination of organolead 1107 34.7.8 Comparison of the different hyphenated 1109 systems 1109 1111 Chapter 35. Sample preparation for chromium speciation 1115 Miguel de la Guardia and Angel Morales-Rubio 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed 1121 </td <td></td> <td>34.7.1 Hyphenated techniques for organometal</td>		34.7.1 Hyphenated techniques for organometal
34.7.2 Sample preparation 1096 34.7.3 Sample pretreatment using gas 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1100 34.7.6 Detection of organolead compounds after 1101 34.7.7 Procedures for the determination of organolead 1104 34.7.7 Procedures for the determination of organolead 1107 34.7.8 Comparison of the different hyphenated 1109 systems 1101 1115 Miguel de la Guardia and Angel Morales-Rubio 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed 1121		determinations
34.7.3 Sample pretreatment using gas chromatographic separation		34.7.2 Sample preparation
chromatographic separation 1097 34.7.4 Extraction recovery 1100 34.7.5 Separation 1101 34.7.6 Detection of organolead compounds after 1101 34.7.6 Detection of organolead compounds after 1104 34.7.6 Detection of organolead compounds after 1104 34.7.7 Procedures for the determination of organolead 1104 34.7.7 Procedures for the determination of organolead 1107 34.7.8 Comparison of the different hyphenated 1107 34.7.8 Comparison of the different hyphenated 1109 References 1109 1111 Chapter 35. Sample preparation for chromium speciation 1115 Miguel de la Guardia and Angel Morales-Rubio 1115 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speci		34.7.3 Sample pretreatment using gas
34.7.4 Extraction recovery		chromatographic separation
34.7.5 Separation 1101 34.7.6 Detection of organolead compounds after 1104 34.7.6 Detection of organolead compounds after 1104 34.7.7 Procedures for the determination of organolead 1104 34.7.7 Procedures for the determination of organolead 1107 34.7.8 Comparison of the different hyphenated 1107 34.7.8 Comparison of the different hyphenated 1109 References 1109 1115 Miguel de la Guardia and Angel Morales-Rubio 1115 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed 1121		34.7.4 Extraction recovery
34.7.6 Detection of organolead compounds after chromatography. 1104 34.7.7 Procedures for the determination of organolead compounds in dust material 1107 34.7.8 Comparison of the different hyphenated systems 1107 34.7.8 Comparison of the different hyphenated 		34.7.5 Separation
chromatography. 1104 34.7.7 Procedures for the determination of organolead compounds in dust material 1107 34.7.8 Comparison of the different hyphenated systems 1109 References 1109 1111 Chapter 35. Sample preparation for chromium speciation 1115 Miguel de la Guardia and Angel Morales-Rubio 1115 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination of Cr 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed 1121 35.5.3 Brotreatments and tochnique applied 1122		34.7.6 Detection of organolead compounds after
34.7.7 Procedures for the determination of organolead compounds in dust material		chromatography
compounds in dust material		34.7.7 Procedures for the determination of organolead
34.7.8 Comparison of the different hyphenated systems 1109 References 1109 References 1111 Chapter 35. Sample preparation for chromium speciation 1115 Miguel de la Guardia and Angel Morales-Rubio 1115 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed 1121 35.5 3 Protreatments and techniques applied 1122		compounds in dust material
systems 1109 References 1111 Chapter 35. Sample preparation for chromium speciation 1111 Miguel de la Guardia and Angel Morales-Rubio 35.1 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination of Cr 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed 1121 35.5.3 Protreatments and tochniques applied 1122		34.7.8 Comparison of the different hyphenated
References 1111 Chapter 35. Sample preparation for chromium speciation 1115 Miguel de la Guardia and Angel Morales-Rubio 35.1 35.1 The element and its reactivity 1115 35.2 The presence of Cr in nature and industrial processes 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination of Cr 1120 35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed 1121 35.5 A protreatments and tochnique applied 1122		systems
 Chapter 35. Sample preparation for chromium speciation 1115 Miguel de la Guardia and Angel Morales-Rubio 35.1 The element and its reactivity	Refer	rences
Chapter 35. Sample preparation for chromium speciation 1115 Miguel de la Guardia and Angel Morales-Rubio 35.1 The element and its reactivity		
 Miguel de la Guardia and Angel Morales-Rubio 35.1 The element and its reactivity	Chapter	25 Sample preparation for chromium enception 1115
 35.1 The element and its reactivity	Mion	el de la Guardia and Angel Morales-Rubio
 35.2 The presence of Cr in nature and industrial processes . 1117 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination of Cr	35.1	The element and its reactivity 1115
 35.3 Chemical species of Cr present in real samples 1118 35.4 Analytical methodologies available for determination of Cr	35.2	The presence of Cr in nature and industrial processes 1117
 35.4 Analytical methodologies available for determination of Cr	35.3	Chemical species of Cr present in real samples 1118
of Cr	35.4	Analytical methodologies available for determination
35.5 Analytical methodologies for Cr speciation in water 1120 35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed	00.1	of Cr 1120
35.5.1 Speciation of chromium in aqueous matrices 1121 35.5.2 Types of samples analyzed	35.5	Analytical methodologies for Cr speciation in water 1120
35.5.2 Types of samples analyzed	00.0	35.5.1 Speciation of chromium in aqueous matrices 1121
3553 Protroatmonte and techniques annlied 1102		35.5.2 Types of samples analyzed
JULIE DE LE		35.5.3 Pretreatments and techniques applied 112

	35.5.4 Speciation chromium using atomic spectrometry	
	and MS-based techniques	24
	35.5.5 Determination of chromium speciation using	
	molecular spectrophotometry	30
35.6	Analytical methodologies for Cr speciation in biological	
	fluids	36
	35.6.1 Speciation of chromium in biological fluids 113	36
	35.6.2 Types of samples analyzed	37
	35.6.3 Pretreatments and techniques applied 113	37
	35.6.4 Chromium speciation using atomic	
	spectrometry detection	38
	35.6.5 Chromium speciation using molecular	
	spectrophotometry detection	4 3
35.7	Analytical methodologies for speciation of Cr in solid	
	samples	1 5
	35.7.1 Speciation of chromium in solid samples 114	1 5
	35.7.2 Types of samples analyzed	4 5
	35.7.3 Solid sample treatments for speciation of	
	chromium	55
35.8	Final considerations	57
Refe	rences	58
Chapter	36. Sample preparation for metal-based drugs 11	73
Rona	ald R. Barefoot	
36.1	Introduction.	73
36.2	Platinum-based drugs	73
	36.2.1 Preparation of biological samples	75
	36.2.2 Cisplatin	76
	36.2.3 Carboplatin	77
	36.2.4 Oxaliplatin	77
	36.2.5 Ormaplatin	78
	36.2.6 Lobaplatin	78
	$36.2.7 JM216. \ldots 11$	78
	36.2.8 Validated methods of analysis	79
36.3	Gold-based drugs	30
	36.3.1 Sample preparation	75

36.4	Mercury					•	•	•	•	•	•	•	•	•		•	•	•	•	•	. 1181
36.5	Vanadium .											•	•		•					•	. 1181
36.6	Lead									•						•	•	•			. 1182
36.7	Conclusions																•	•		•	. 1182
References							. 1182														

Chapter 3	37. Sample preparation for speciation analysis for
metal	lobiomolecules
Joani	na Szpunar, Brice Bouyssiere and Ryszard Lobinski
37.1	Introduction
37.2	Elemental species in biological systems:
	metallobiomolecules
37.3	Tailoring sample preparation: definition of
	the analyte moiety
37.4	Homogenization and analyte recovery using
	unreactive buffers
37.5	Analyte recovery through partial degradation
	of sample matrix
	37.5.1 Extraction with protein denaturating
	reagents
	37.5.2 Enzymatic extraction of organometallic
	compounds
	37.5.3 Controlled enzymatic degradation prior to
	speciation of metal complexes
	37.5.4 Sequential enzymatic extractions for the
	evaluation of the bioaccessibility of metals in
	foodstuffs
37.6	Fractionation of metal species according to the
	molecular weight prior to analytical chromatography
	or capillary electrophoresis
	37.6.1 Ultrafiltration
	37.6.2 Gel filtration
37.7	Multidimensional LC clean-up procedures prior to
	characterization of metal species by electrospray MS . 1195
37.8	Sample preparation prior to speciation analysis of
	biological fluids

	37.8.1 Arsenic in urine
	37.8.2 Selenium in urine
	37.8.3 Metal complexes in biological fluids
	37.8.4 Metallodrug metabolites in biological fluids 1199
37.9	Sample preparation prior to speciation analysis in
	solid matrices
	37.9.1 Organoarsenic species in marine biota and
	foodstuffs
	37.9.2 Low-molecular organoselenium species in yeast
	and plants
	37.9.3 High-molecular selenium species in animal
	tissues and yeast
	37.9.4 Metal complexes with metallothioneins 1203
37.10) Sources of error
Refer	rences
Chapter .	38. Sample preparation for the analysis of volatile
metal	ls species
Jörg	Feldmann
38.1	Introduction
38.2	Species of interest
38.3	Characterization of gas samples
38.4	Sample preparation strategies
	38.4.1 Sampling
	38.4.2 Preconcentration
38.5	Specific procedures
	38.5.1 Cryotrapping methods
	38.5.2 Solid phase micro extraction
	38.5.3 Adsorption method
38.6	Problems and future studies
Refer	rences
Chanton	20 Sequential extraction 1922
Ango	la Sahuquilla and Camma Raurat
20 1	Sequential extraction procedures: a special case of
09.1	sample dissolution

	39.1.1 A brief historical introduction	33
	39.1.2 Definition of sequential extraction procedures .12	34
39.2	Types, uses and limitations of SEPs	:35
	39.2.1 Characteristics of the extraction agents 12	35
	39.2.2 SEPs more widely used	235
	39.2.3 Types of matrices and elements analysed 12	239
	39.2.4 Use of the information obtained	41
	39.2.5 Limitations of SEPs	242
39.3	Sample pre-treatment for SEPs	246
	39.3.1 Drying	246
	39.3.2 Grinding and sieving steps	248
	39.3.3 Use of inert atmosphere	249
	39.3.4 Recommendations	250
39.4	Application of other extraction techniques to SEPs 12	250
	39.4.1 Microwave	250
	39.4.2 Ultrasound	251
	39.4.3 Other alternatives	251
	39.4.4 Conclusions	251
39.5	Quality control for SEPs	252
Refer	rences	253
Index		257

Series Editor's Preface

This book on Sample Preparation for Trace Element Analysis, edited by Zoltan Mester and Ralph Sturgeon, is a useful addition to the *Comprehensive Analytical Chemistry* series. The impressive number of pages indicates the importance of sample preparation in the area of trace element determination. In a way, it follows the philosophy of a previous book in the series edited by Janusz Pawliszyn (*Sampling and Sample Preparation for Field and Laboratory*, vol XXXVII), and devoted to organic analysis. In that work, the two editors of this volume contributed a chapter on sample preparation for trace element speciation.

It is a pleasure for me to introduce such a comprehensive book with a total of 39 chapters divided in four sections, including several introductory chapters on sampling, calibration, traceability and detection methods. These are followed by 17 chapters dealing with approaches to sample digestion and extraction. This is obviously one of the key issues in sample preparation, and for this reason a variety of chapters that include most of the methods in use – microwaves, solid phase microextraction, membrane extraction, laser ablation, flow injection etc. – are presented. The final 10 chapters cover specific applications to trace element speciation, dealing with different species and matrices, e.g. organotin, mercury, arsenic, metal-based drugs, chromium and also sequential extraction.

The book includes a long list of recognised experts. In addition, many of them are previous contributors to books in this series dealing with speciation. In this respect, the present book is complementary to two previous volumes in the series – vol XXXIII on *Elemental Speciation* edited by Joe Caruso et al. and vol XXXIV on *Discrete Sample Introduction Techniques for Inductively Coupled Plasma Mass Spectrometry* by Diane Beauchemin and co-authors. With the publication of these three books the *Comprehensive Analytical Chemistry* series has extensively covered the area of elemental analysis, speciation and the very important bottleneck of sample preparation. I am sure that all three volumes will be a valuable reference for all researchers working in these fields.

Finally I would like to thank not only the editors of the book but also the various authors for their contributions towards such a comprehensive, unique book on sample preparation for trace element analysis.

Professor D. Barceló Dept. of Environmental Chemistry IIQAB-CSIC Barcelona, Spain

Preface

Two years ago we were asked to write a short review on sample preparation for trace metal speciation as a contribution to a book dealing with general sample preparation issues. Over the course of this work, we realized that this short review was rather an extended table of contents for a future project. We were also acutely aware that there was no comprehensive book devoted to sample preparation on the market dealing with the analysis of samples for trace elements. The stage was thus set.

Following the collection of a sample, every analytical chemist will agree that its subsequent preservation and processing are of paramount importance. The availability of high performance analytical instrumentation has not diminished this need for careful selection of appropriate pretreatment methodologies, intelligently designed to synergistically elicit optimum function from these powerful measurement tools. These were the objectives of this book, to present, in a concise and comprehensive volume, an account of the state-of-the art of this subject matter. When considering the need for publication of a body of work such as this, it is wise to invest time appraising current literature; with the high cost of books, there can be no defense for simply making yet another one available. From our perspective, Sample Preparation for Trace Element Analysis was conceived because we believe there was no modern, comprehensive treatise at hand to satisfy the varied needs of the practicing analytical chemist. Without doubt, many of the subject areas targeted in this book have already received in-depth treatment by appropriate monographs. Assembling this knowledge into a single source proves advantageous to the user only if it is accomplished concisely and comprehensively. We hope the reader will vindicate our conclusions.

This book is a multiauthor work, reflecting the diverse expertise arising from its highly qualified contributors. Efforts have been made to maintain a uniformity of style and diction, but readers will agree that the advantages which accrue from the talents of these individuals outweigh that arising from the simple uniformity gained with a single-author treatise. The cooperation of all the contributors in providing material for this book is thus deeply appreciated.

The 39 chapters are authored by international leaders of their fields. The first five chapters deal with general issues related to the determination of trace metals in varied matrices, such as sampling, contamination control, reference materials, calibration and detection techniques. The second part of

Preface

the book deals with extraction and sampling technologies (totaling 15 chapters), providing theoretical and practical hints for the users on how to perform specific extractions. Subsequent chapters overview seven major representative matrices and the sample preparation involved in their characterization. This portion of the book is heavily based on the preceding chapters dealing with extraction technologies. The last ten chapters are dedicated to sample preparation for trace element speciation.

Dating from the original discussions with the Publisher, this book has been realised in record time, requiring less than two years to advance from concept to fruition, thanks to excellent work of the over 70 contributing authors and the efforts of the Publisher. The editors and authors hope that readers will find this book useful and instructive and that it will be consulted frequently as a source of information which will make sample preparation less challenging for both the novice and seasoned expert alike.

We wish to acknowledge the support of our home organization: the Institute for National Measurement Standards of the National Research Council of Canada, a stimulating environment and center of excellence for analytical chemistry research.

Finally, we wish to thank the contributing authors for the privilege to work with them on this project and our families their patience and love for having forgone our company on many occasions.

> Zoltán Mester Ralph E. Sturgeon

2-MBT	2-mercaptobenzothiazole
8-HQ	8-hydroxyquinoline
AAS	atomic absorption spectrometry
ACN	acetonitrile
ACP	alternating current plasma
AED	atomic emission detection
AFM	atomic force microscopy
AFS	atomic fluorescence spectrometry
ANOVA	analysis of variance
ARC	anti-reflective coating
AsB	arsenobetaine
AsC	arsenocholine
ASE	accelerated solvent extraction
ASTM	American Society for Testing and Materials
ASV	anodic stripping voltammetry
BEC	background equivalent concentration
CCD	charge coupled device
CCFA	completely continuous flow analysis
CCP	capacitively coupled plasma
CE	capillary electrophoresis
CEA	combustion elemental analysis
CGC	capillary gas chromatography
CL	chemiluminescence
CPG	controlled pore glass
CPX	complexation
CRM	certified reference material
CSV	cathodic stripping voltammetry
CTF	centrifugation
CV	coefficient of variation
CV-AAS	cold vapour atomic absorption spectrometry
CZE-UV	capillary zone electrophoresis ultraviolet
	spectrophotometry
DAD	diode array detector
DAL	dialkyllead
DBT	dibutyltin
DC arc emission	direct current arc emission spectrometry

DCP	direct current plasma
DCP-OES	direct coupled plasma optical emission spectrometry
DE	diatomaceous earth
DEL	diethyllead
DESe	diethyl selenide
DIN	direct injection nebulizer
DIW	deionized water
DLF-AAS	diode laser flame atomic absorption spectrometry.
DMA	dimethylarsinic acid
DMA(III)	dimethylarsinous acid
DMDSe	dimethyl diselenide
DML	dimethyllead
DMSe	dimethyl selenide
DOM	dissolved organic material
DP-ASV	differential pulse anodic stripping voltammetry
DPCSV	differential pulse cathodic stripping voltammetry
DPhT	diphenyltin
DRC-ICP-MS	dynamic reaction cell ICP-MS
DSI	direct sample insertion
DTA	diethylenetriamine
DZ	dithizone
ECD	electron capture detection
ED-XRF	energy dispersive X ray fluorescence
EL-MS	electron impact ionization mass spectrometry
EL.	ethyl lactate
ESI	electrospray ionization
Et	othyl
ET AAS	electrothermal (graphite furnace) atomic
EI-AAO.	absorption spectrometry
F+OH	othanol
FTV	electrothermal vanorization
EIV FYT	liquid extraction
EAI	flame atomic absorption spectrometry
FAR	fast atom hombardment
TAD F AFS	fame atomic emission spectrometry
F-ALS	flow injection analysis
	flow injection distortion
	fuorimetric detection
	flame photometric detection
FTICD MS	fourier transform ion evelotron resonance mass
r 1-1011-1418	spectrometry
БЛЛЛ	filtration
	as chromatography with electron canture detection
	graphitized carbon black
GUD	graphilized carbon black

•

GC-MS	gas chromatography-mass spectrometry
GD-MS	glow discharge mass spectrometry
GF-AAS	graphite furnace atomic absorption spectrometry
GLP	good laboratory practice
GTF	glucose tolerance factor
HEPA	high efficiency particulate air
HG	hydride generation
HMDE	hanging mercury drop electrode
HMW	high molecular weight
HPA	high pressure ashing
HPLC	high performance liquid chromatography
HRGC	high resolution gas chromatography
HR-ICP-MS	high resolution (sector field) ICP-MS
HSAB	hard-soft acid-base
HT18C6TO	hexathia-18-crown-6-tetraone
HTA	high temperature ash
IAEA	International Atomic Energy Agency
IBMK	isobutyl methyl ketone
IC	ion chromatography
ICP	inductively coupled plasma
ICP-MS	inductively coupled plasma mass spectrometry
ICP-OES	inductively coupled plasma (atomic) optical
	emission spectrometry
ICP-QMS	ICP-quadrupole MS
ICP-RC-MS	ICP-reaction cell-MS
ICP-TOF-MS	ICP-time of flight-MS
ID-MS	isotope dilution mass spectrometry
ID-ICP-MS	isotope dilution inductively coupled plasma
	mass spectrometry
ID-TIMS	isotope dilution thermal ionization mass spectrometry
INAA	instrumental neutron activation analysis (NAA)
IP	ion pair
IR	infra-red
IRMM	Institute for Reference Materials and Measurements
ISE	ion selective electrode
ISO	International Organization for Standardization
ITRS	International Technology Roadmap for
	Semiconductors
IUPAC	International Union of Pure and Applied Chemistry
KR	knotted reactor
LAS	light absorption spectrometry (molecular
	UV-visible absorption)
LC	liquid chromatography
LEAF(S)	laser excited atomic fluorescence (spectrometry)
	- •

xlviii

LIBS	laser induced breakdown spectrometry
LiM	lithium metaborate, LiBO ₂
LIMS	laboratory information management system
LiT	lithium tetraborate, $Li_2B_4O_7$
LLE	liquid-liquid extraction
LMW	low molecular weight
LOD	limit of detection
LOV	lab-on-valve
LRM	laboratory reference material
LSASV	linear sweep anodic stripping voltammetry
LSE	liquid-solid extraction
LTA	low temperature ashing
MA	methylarsonic acid
MA(III)	methylarsonous acid
MALDI	matrix assisted laser desorption mass spectrometry
MBE	molecular beam epitaxy
MBT	monobutyltin
Mo	methyl
MEKC	micellar electrokinetic chromatography
MAOH	methanol
MIP	microwave induced plasma
MLS	master laboratory station
MMA	master hastratory station monomethyarsonic acid
MMIIF	microporous membrane liquid-liquid extraction
MOCVD	molecular organic compound vapor deposition
MPD	microwave-induced plasma detector
MDLT	mononhenvitin
MPT	microwave plasma torch
MS	mass spectrometry
MT	mass specificity motallothionein
	mierowaya
	neutron activation analysis
NCU	neeuproine
NUES	Notional Institute for Environmental Studies
NICSU	National Institute of Occupational Safety and Health
NIUSH	National Institute of Standards and Technology
NISI	measured gas volume in liter at 0°C
	nueloor magnetic resonance
NDCC	National Research Council of Canada
NRCU	near fold scapping ontical microscopy
	non-watting agents
	A-(N-octvl)diethylenetriamine
ODEIA	antical amission spectrometry
	optical emission specification
ULR	orumary micar regression

OXI	oxidation
PA	polyacrylate
PAA	photon activation analysis
PAAM	piconilic acid amide
PADMAP	2-(2-pyridylazo)-5-dimethylaminophenol
PAH	polyaromatic hydrocarbon
PAR	4-(2-pyridylazo)-porphyrin
PBMS	performance based measurement system
PDMS	polydimethyl siloxane
PE	polyethylene
PEC	power and event controller
PGC	porous graphitized carbon
Ph	phenyl
PIXE	proton induced x-ray emission spectrometry
PP	polypropylene
PR	photoresist
PS-MS	plasma source mass spectrometry
PTFE	polvtetrafluoroethylene
PTV	programmed temperature vaporization
PUF	polvurethane foam
PVC	polyvinylchloride
P-XRF	portable XRF
QA	quality assurance
Ô CM	quality control material
QF-AAS	quartz furnace atomic absorption spectrometry
QMS	quadrupole mass filters
QTA	(heated) quartz tube atomizer
QZ	quartz
RCC	residual carbon content
REE	rare earth element
RM	reference material
RNAA	radiochemical separation neutron activation analysis
ROMP	ring-opening metathesis polymerization
RP	reverse phase
RSD	relative standard deviation
RTD	resistance temperature detector
SA	salicylic acid
SDS	sodium dodecyl sulfonate
SEC	size exclusion chromatography
SE-FLR	solvent extraction fluorometry (molecular)
SEP	sequential extraction procedure
SF	supercritical fluid
SFE	supercritical fluid extraction
SF-ICP-MS	sector field ICP-MS

SGBM	silica gel bound macrocycles
SI	Systéme International
SI	sequential injection
SIA	sequential injection analysis
SIM	selected ion monitoring
SIMS	secondary ion mass spectrometry
SLM	supported liquid membrane extraction
SPE	solid phase extraction
SPME	solid phase microextraction
SPS	solid phase spectrophotometry
SRM	standard reference material
SS-MS	spark source mass spectrometry
STAT	slotted tube atom trap
T₄BPP	tetra-(4-bromophenyl)-porphyrin
TAL	trialkyllead
TBT	tributyltin
TCD	thermal conductivity
TCLP	toxicity characteristic leaching procedure
TD	thermodesorption
TeAL	tetraalkyllead
TeEL	tetraethyllead
TEL	triethyllead
TeML	tetramethyllead
TFA	trifluoroacetylacetone
THET-AAS:	transverse heated graphite atomizer ET-AAS
	(THGA: transverse heated graphite atomizer)
THF	tetrahydrofuran
TIMS	thermal ionization mass spectrometry
TMAB	tetramethylammonium bromide
TMAO	trimethylarsine oxide
TML	trimethyllead
TMOS	tetramethoxy silane
TOF-MS	time of flight mass spectrometry
TPB	tetraphenylborate
TPhT	triphenyltin
TprT	tripropyltin
TS-FF-AAS	thermospray flame-furnace AAS
T-XRF	total reflection XRF
UE	ultrasonic extraction
ULPA	ultra low penetration air
UPW	ultrapure water
US	ultrasound
US EPA	United States Environmental Protection Agency
UV-VIS	ultraviolet visible spectrometry

VG	vapor generation
VMC	volatile metal(loid) compound
VOCs	volatile organic compounds
VOL	volumetry (titrimetry)
VPD	vapor phase deposition
WHO	World Health Organization
WLR	weighted linear regression
XRA	X-ray absorption
XRF	X-ray fluorescence spectrometry
ZHE	zero headspace extraction

Chapter 1

Sampling and sample preservation for trace element analysis

Byron Kratochvil

1.1 INTRODUCTION

Modern analytical methods and instrumentation make possible the measurement of increasingly smaller concentrations of even the most complex molecules and species in complex matrices. This has increased the importance of collecting, storing, and processing samples for analysis in a manner that keeps them as unaltered and contamination free as possible. In addition, improved measurement techniques and tools allow, or often require, the use of smaller analytical test portions to determine analyte concentrations. Small test portions mean more difficulty in achieving representativeness of the population, especially when analyzing for trace components.

First of all, the quality of any analytical result depends on sample representativeness and integrity. Although many sources of error in an analysis can be controlled through use of blanks, standards, or reference samples, neither blank nor standard can repair the damage caused by an invalid sample. Keith [1], in the preface of a book on environmental sampling, says:

"The logic is simple. If the right kinds of samples are not collected from the right areas at a site and then preserved, prepared, and analyzed correctly, wrong answers will be obtained. They may be precise and accurate answers, but they will be wrong in that they will not represent the condition of the site with respect to the absence, presence, or representative concentrations of the pollutants of interest."

Keith's statement applies with equal validity to all analytical sampling operations regardless of analyte, concentration, or matrix.

This chapter outlines some general principles of sampling design and sample preservation. Specific sampling and sample preparation procedures for various matrices and individual elements are treated in subsequent chapters. A brief bibliography and glossary of selected sampling terms are provided at the end of this chapter.

B. Kratochvil

1.2 PRELIMINARY CONSIDERATIONS

1.2.1 Sampling variability

When obtaining an estimate of the uncertainty in an analytical result, the uncertainty in the sampling step is often significant, and frequently far larger than the measurement uncertainty. For random errors, the overall standard deviation, s_o , is related to the standard deviation for the sampling operation, s_s , and to that for the remaining analytical operations, s_a , by:

$$s_0^2 = s_a^2 + s_s^2 \tag{1.1}$$

Measurements should be designed insofar as possible to allow the separate evaluation of sample and measurement variability. For measurements in a state of statistical control, s_a can be determined by the analysis of reference materials or standards. Then, s_s can be obtained from Eq. (1.1), because s_o is obtained by analysis of a series of samples. Alternatively, a set of replicate measurements on samples may be designed to evaluate both s_a and s_s .

Youden [2] noted that further reduction in the analytical uncertainty is unimportant once it is one-third or less of the sampling uncertainty. So, if the sampling uncertainty is large, use of a rapid, approximate analytical method may be faster, simpler, and permit more samples to be tested, thereby reducing overall uncertainty without increasing time or effort.

1.2.2 Sampling strategies

Sampling strategies may be classified as judgmental (intuitive), statistical, or systematic. Judgment sampling relies on general knowledge gained by experience with the population (or similar ones). Therefore, any conclusions drawn from the resulting data are necessarily intuitive, in part. Statistical sampling is based on all parts of the population having an equal chance of being selected. With a statistical sampling strategy, conclusions may be drawn based on statistical probabilities. In systematic sampling, the sample increments are collected in a regular pattern throughout the population. It has the advantage that execution is usually more straightforward and less expensive.

Protocol sampling is a form of sampling specified in defined circumstances, often by regulatory agencies or by groups, such as the American Society for Testing and Materials (ASTM), as a basis for decision-making in legal and commercial matters. For example, regulations may specify detailed sampling procedures, which, if not followed, could make the sample invalid for the intended purpose. The sampling procedure may be intuitive, statistical, or a combination, but must be followed explicitly. Sampling and sample preservation for trace element analysis

1.2.3 Uncertainties in sampling

Sampling uncertainties may arise either from the properties of the population, and therefore inherent to any sample taken from it, or from the sampling operation itself. These uncertainties may be reduced, but never completely eliminated, by careful execution of a properly designed sampling plan that incorporates identification of the population and sampling sites, along with the procedures required to deliver an uncontaminated, representative sample to the analytical laboratory.

An important source of sampling uncertainty is systematic, non-random, bias caused by exclusion or inclusion in the sample of some components of the population over others owing to differences in size, mass, location, stickiness, and so on. Another is sample contamination or change during collection, transport, storage, or preparation for analysis (this topic is discussed in Section 1.6). Poor design or improper use of sampling equipment may also introduce bias, as may the omission of collateral measurements, such as flow rate or pressures, that affect results.

1.3 TYPES OF SAMPLES

1.3.1 Judgment samples

Judgment samples are samples collected from a population on the basis of experience, intuition, and knowledge of the history or properties of the population (or related ones). Sometimes, the goal is to obtain a single sample that may be termed "representative" to connote that it is expected to exhibit the average properties of the population.

Collection of a single sample may have validity in situations where the population is essentially homogeneous or made so prior to sample collection. It may also be legitimate when random sampling is difficult or impossible owing to safety or cost considerations. Under these conditions, however, the shortcomings of the sampling operation and the limitations in data treatment should be clearly stated. Generally, a plan based on at least some elements of random sampling is recommended.

Judgment sampling requires assumptions about the degree to which the samples may be considered representative. Because the validity of the assumptions depends on the experience of the one making them, it is difficult to know the degree to which they are acceptable for a given application. A major advantage of judgment sampling is that it is usually less costly than rigorous random sampling. For regulatory or legal purposes, however, personal bias should be reduced or eliminated as much as possible. Often a combination of judgment and random sampling provides the best compromise between unacceptable costs and data quality.

B. Kratochvil

1.3.2 Random samples

Analyses are almost always performed to obtain information about a population that is larger than the test portions being measured. If the samples under examination are biased, inferences made from them will be biased. The difference between the target population to which conclusions are applied, and the samples from which the test portions for analyses are drawn, may be minimized by selecting samples in a manner that gives each part of the population an equal chance of selection. This process, called random sampling, allows the user of the resulting analytical data to make statistical generalizations based on mathematical probabilities.

Selecting truly random samples is difficult; random in this context does not mean haphazard. A recommended method for a population consisting of units such as pharmaceutical tablets is to use random numbers to select units for analysis. Each unit is assigned a number, and units are selected by use of a random number generator.¹ Bulk materials may be divided into a number of real or imaginary segments; the segments may be areas on a two-dimensional surface or volumes for a three-dimensional population.

Data obtained by measurements on random samples can be analyzed by statistical methods to identify whether systematic relations among results exist due to trends or biases in the measurements.

1.3.3 Systematic samples

Because of its simplicity, sampling at evenly spaced intervals over a population is often used in place of random sampling. The criterion that all parts of the population have an equal chance of selection may be satisfied for evenly spaced sampling by imposing a random start time or sampling location on the process. This allows the application of classical statistical tests to the data. A potential problem with systematic sampling is that results may be biased if the analyte of interest is distributed in a periodic fashion within the population.

It is also sometimes useful to collect samples in a systematic manner to reflect or test a hypothesis, such as the presence of systematic changes in population composition with time, temperature, or spatial location. Under specified conditions, each sample may be considered as a separate discrete population but the results may still be statistically tested for the significance of apparent differences.

¹ Random numbers may be obtained from several sources on the Internet. A good example is http://www.fourmilab.ch/hotbits/, which generates sequences of random numbers based on radioactive decay of krypton-85. A Geiger-Muller tube is interfaced to a computer and the times between successive pairs of radioactive decays measured and provided as bytes. Once the bytes are delivered, they are discarded.

Sampling and sample preservation for trace element analysis

1.3.4 Subsamples

Field samples are typically placed in containers and sent to the laboratory for further processing. Sometimes, transport of all the field increments to the laboratory is deemed too inefficient or costly. In this case, the increments may be homogenized, after crushing or grinding if needed, and subsampled on site prior to transport. The work needed to reduce particle size, blend, or otherwise to process a bulk field sample before withdrawing subsamples for analysis depends on the variability in composition of the material constituting the original sample and on the extent of mixing required. Care must be taken to avoid contamination or loss that may introduce bias. Generally, processing and subsampling in a clean, controlled environment whenever possible provide better quality control.

When subsampling is done in the field, the sampling plan, discussed in Section 1.4.2, should specify that the sampler have sufficient training and knowledge of sampling theory to subsample properly. Also, the analyst should be provided with all available information on prior subsampling and homogenizing operations.

1.3.5 Composite samples

Sometimes, increments are combined to produce a laboratory sample that is defined as representative. Advantages of compositing include reduced sample handling and analytical effort. It provides an estimate of the average concentration of the analyte, but not of its distribution. A variety of sampling systems and mixing procedures have been developed to produce composites from both liquid and solid materials.

Compositing of increments is attractive when costs of analytical measurements are greater than the costs of sampling. But potentially useful information, such as the presence of hot spots, may be lost. Analysis of individual increments allows not only estimation of the distribution of the analyte within the population, but also evaluation of apparent differences within and among samples. Garner et al. [3] discuss the advantages and limitations of composite sampling for environmental monitoring.

1.4 PLANNING THE SAMPLING OPERATION

1.4.1 Defining goals

Several key decisions should be made before sampling is initiated. These include defining the population to be studied, the substance(s) to be measured, the precision required in the result, and the extent to which speciation and distribution within the population is needed. Any assumptions about the population should be clearly identified. Decision-makers should preferably

B. Kratochvil

Fig. 1.1. Elements of the overall analytical process.

include the client for the data, sampling personnel, the person responsible for the analytical work, and someone knowledgeable about statistics.

Decisions made at this point establish the goals of the work, and are the first step in the overall analytical process (Fig. 1.1). With this information in hand, a viable sampling plan can be drafted.

1.4.2 Sampling plans

The wide variety of populations sampled for chemical analysis makes the establishment of a single overall protocol impossible; accordingly, each matrix requires its own sampling plan. Often, regulatory agencies issue documents covering analytical methodologies that include sampling procedures. Examples include the US Environmental Protection Agency (US EPA), the International Organization for Standardization (ISO), and the ASTM. In addition, many specialty groups, such as the American Water Works Association, provide information on sampling protocols, tools, and techniques applicable to specific matrices. Where the analytical data may involve potential legal issues regarding compliance with environmental regulation, with workplace safety, or with commercial contract agreements, protocols recommended by recognized associations or agencies should be used whenever possible.

All valid sampling plans and protocols have basic elements in common. These elements include specification of the size, number, and location of sample increments, the extent of compositing where warranted, and steps for subsampling (after particle size reduction, if applicable, and mixing) of the initial increments to produce laboratory samples and test portions. The plan should be in the form of a written protocol that includes procedures for all steps, from initial sample collection to final preparation of test portions for analysis. The protocol should tell when, where, and how to collect sample increments. It should include criteria for rejection of material not part of the population, as for example stones above a defined size in a soil sample being analyzed for available trace nutrients. It should also specify who performs the sampling, sample logging and chain of custody procedures, the type and size of containers to be used, cleaning procedures for equipment and containers, preservatives, conditions of sample storage and, as appropriate, auxiliary information such as temperature or flow velocity in a stream. It should also list the qualifications and training required of the personnel carrying out the operations. A checklist, adapted from Ref. [4], is provided in Table 1.1.

Sampling and sample preservation for trace element analysis

TABLE 1.1

Checklist for elements of a sampling protocol (after Ref. [4])

Apparatus and equipment checklist

- Sampling tools and apparatus
- Sample containers of appropriate type, material, and size
- Cleaning supplies for tools, equipment, and containers
- Preservatives, including provision for cooling of samples if necessary
- · Labels, tape, waterproof pens, packaging materials
- Chain of custody forms, sample seals, log books
- Safety equipment, including protective clothing

Instructions checklist for presampling

- Recording of observations at sampling sites
- · Cleaning of apparatus before and after sampling
- Calibration of apparatus
- · Cleaning and handling of sample containers
- Safety procedures
- Procedure if problems prevent strict adherence to protocol

Instructions checklist for sampling

- Number, type, and size of exploratory, regular, and quality assurance samples
- Number, type, and size of sample increments
- Procedure for identifying locations from which increments are to be collected
- Procedure for operation of apparatus and collection of increments
- Special sampling precautions or conditions of collection, including criteria for rejection of foreign material
- · Procedure for compositing, if applicable
- Use of preservatives

Instructions checklist for postsampling

- · Completion of auxiliary information on sample labels and in logbooks
- Chain of custody forms
- Sample packaging, transport, and conditions for travel and storage, including maximum holding time for samples prior to analysis

General

• Information on analytical methods, limits of detection, interferences

Once the sampling plan is drafted, it is worthwhile to have it reviewed by independent experts. This is especially important when assumptions have been made, or when all or part of the plan is based on judgment. For populations whose characteristics are little known, time and effort may be saved by collecting and analyzing a preliminary set of samples, using experience and intuition as a guide to make them as representative as possible. On the basis of this information, a more efficient and cost-effective plan can be prepared.

B. Kratochvil

Where feasible, it is useful to have the analyst perform or supervise the sampling operation. Otherwise he or she should, in addition to helping prepare the written protocol, ensure that the sample collectors are well trained and understand the importance of each step so that bias and contamination are minimized. The training should emphasize the importance of accurate sample labeling and logging, and of a chain of custody to ensure sample integrity from collection to measurement.

For bulk materials, local homogeneity affects sample size. Increments should be large enough to not be biased with respect to the different sizes and types of particles present in the material. Where available sampling equipment precludes collection of larger increments, two or more smaller ones may be taken adjacent to each other. These may be composited or analyzed separately. (Separate analysis can provide information on the extent of local heterogeneity.)

When sampling a material whose properties are unknown, a good approach is to collect a small number of exploratory samples, using experience and judgment to make them as representative as possible, and analyze them for the substance of interest. From this preliminary information, a more refined sampling plan can be developed.

1.5 STATISTICAL SAMPLING

1.5.1 Introduction

Statistics provides a number of useful tools to assist in determining how many sample increments to take from a population, how large they should be, and from where they should be taken in order to hold the sampling uncertainty to some specified level with a given level of confidence. Most statistical sampling theory is based on the population having a normal (Gaussian) distribution, but other distributions, such as lognormal, do occur in nature.

1.5.2 Minimum number of increments

Unless a population is known to be homogeneous, a valid sampling plan requires collection of increments from multiple locations. Assuming, for the moment, negligible measurement uncertainty relative to that for sampling, Provost [5] describes the minimum number of increments, n_s , needed to hold the sampling uncertainty, E_s , to a given level of confidence by the relation:

$$n_{\rm s} = (z\sigma_{\rm s}/E_{\rm s})^2 \tag{1.2}$$

where z is a stated level of confidence, say 95%. In most applications, σ_s is either known from past history of the population or can be estimated from measurements on a set of preliminary samples to obtain values of s_s and X.

Sampling and sample preservation for trace element analysis

(Remember that if measurement uncertainties are not negligible relative to those of the sampling operations, then s_s should be calculated by Eq. (1.1).)

Since

$$\mu = -X \pm (ts/\sqrt{n}) \tag{1.3}$$

where t is obtained from statistical tables as an estimate of z from n measurements, the maximum acceptable sampling uncertainty, E_s , can be defined by:

$$E_{\rm s} = |\mu - X| = ts/\sqrt{n_{\rm s}} \tag{1.4}$$

Rearranging,

$$n_{\rm s} = (ts_{\rm s}/E_{\rm s})^2 \tag{1.5}$$

Initially, t can be set at 1.96 for 95% confidence limits and a first estimate of n can be calculated. The t-value for this n is then substituted and the system iterated to constant n.

1.5.3 Minimum size of increments in well-mixed particulate populations

When sampling well-mixed populations of heterogeneous particles, as is often encountered in the subsampling of laboratory samples, Ingamells and Switzer [6] showed the relation:

$$WR^2 = K_{\rm s} \tag{1.6}$$

to be applicable. Here W is the weight of sample analyzed, R is the relative standard deviation of sample composition in percent, and K_s is a constant equal to the weight of sample required to limit the sampling uncertainty to 1% relative with 68% confidence. In practice, K_s is determined by estimating s_s from a series of samples of weight W. Once K_s is known, the minimum sample weight, W, required for any maximum relative standard deviation can be calculated. For poorly mixed or stratified materials, the calculated value of K_s increases as W increases. This provides a way of testing the homogeneity of the population.

When sampling a mixture of particles, it is important to collect enough of each particle type to ensure representativeness. In some cases, where the element under test is present as only a small fraction of the particles (as in elemental gold or diamond deposits), quite large bulk samples must be taken, and particle size reduction and thorough mixing must be conducted before subsampling. For such populations the sampling standard deviation, $\sigma(g_1)$, may be calculated using the Johnson equation [7]:

$$\sigma(g_1) = \left\{ (\pi d_1 g_1 / 6) \left[\sum f_i (2r_i)^3 \right] \right\}^{1/2}$$
(1.7)

B. Kratochvil

where g_1 is the mass and d_1 is the density of the sample particles containing the trace component, f_i is the fraction by mass of the trace element in particle size class *i*, and r_i is the radius of particles containing the trace element.

If the element of interest is present in each of a mixture of two types of particles but the fraction of one type is small, Zheng and Kratochvil [8] have shown that a combination of the Johnson equation with one developed by Bennedetti-Pichler [9] is applicable. Here the standard deviation, $\sigma_{\rm P}$ expressed in percent, is given by:

$$\sigma_{\rm P} = \left[(P_1 - P_2)/g \right] \left\{ (\pi d_1/6) \left[\sum f_i (2r_i)^3 \right] g_1 \right\}^{1/2}$$
(1.8)

where P_1 and P_2 are the percentages of the trace element in each of the two types of particles in the mixture, g is the mass of sample, g_1 is the mass of the fraction of type 1 particles, and d_1 is the density of the type 1 sample particles. The remaining terms are as defined in Eq. (1.7).

Equations (1.7) and (1.8) show that the sampling standard deviation varies as the square root of the sample mass and number of particles. This means that for every 10-fold decrease in the percentage of sought for substance, testportion size must increase 100-fold for a given level of sampling error and particle size. It is therefore especially important that laboratory samples for trace analysis are adequately ground and mixed prior to removal of test portions for trace analysis.

The general approach described in this section has been extended by Gao and Kratochvil [10] to the calculation of sampling uncertainty for well-mixed materials containing more than two types of particles.

1.5.4 Sample increment size in segregated populations

Visman [11] demonstrated that for some segregated materials the variance of sampling could be expressed by:

$$\sigma_{\rm s}^2 = (A/wn) + (B/n) \tag{1.9}$$

The constant A is related to Ingamells' subsampling constant K and the average composition of the analyte, x_{aw} , by $A = 10^4 x_{av}$. The constant B is related to the degree of segregation of the population. Values of A and B must be obtained experimentally from the bulk population. This can be done in two ways. In the first, two sets of sample increments are collected, one with w as small as, and the other as large as, feasible. The two sets are analyzed, the sampling variances calculated and substituted into Eq. (1.9) to give values for A and B. In the second, arising out of published discussions by Duncan and Visman [12], Visman proposed collection of a set of increment pairs, each pair of increments being of the same weight and taken from adjacent sites in the population. From the analytical data on the increments, an intraclass correlation coefficient, r, is calculated, either directly or by ANOVA [13]. Values for A and B are then

Sampling and sample preservation for trace element analysis

calculated from Eq. (1.9) and the relation r = Bm/A, where *m* is the average particle mass. Increasing either *W* or *N* will reduce uncertainty due to random variability, but only increasing the number of increments, *n*, will reduce uncertainty due to segregation.

All the sampling equations discussed in this section have been derived for normally distributed populations. As mentioned earlier, not all populations follow a Gaussian distribution. Procedures to test data for normality and for dealing with non-normality by data transformation or use of other procedures or distribution functions are available in the statistical literature.

Problems may arise when small regions of a population contain analyte in much higher concentrations than elsewhere. This so-called "nugget" or "hot spot" effect is often encountered when sampling populations such as gold ores or contaminated industrial sites, but it can also be a factor in less obvious situations. An example is microanalytical investigation of surfaces using current sophisticated microtechniques. In situ analytical measurements on heterogeneous surfaces with a probe only a few micrometers in diameter may produce significant errors if areas of unusually high or low concentration are missed or oversampled. There is also the danger that an unusually high result from a hot spot may be rejected as an anomalous outlier. The sampling plan should take into account the possibility of encountering hot spots and their potential effect on the goals of the sampling program.

1.5.5 From where should increments be taken?

The variety of populations of analytical, and therefore sampling, interest encompasses every part of nature and human activity. To ensure that all parts of a population have an equal chance of being selected for analysis requires a random element in the sampling strategy (see Section 1.3.2). Several strategies have been proposed to meet this requirement. These include, in addition to simple random sampling, systematic grid sampling with a random initial start point or with random sampling within individual grid areas or volumes. To improve sampling efficiency, other sampling schemes, including stratified, cluster, and two-stage sampling, have been developed.

In simple random sampling, the target population is divided on paper into a set of units and a defined number of the units are randomly selected for sampling. The units may be one dimensional, as a drill core or objects on a production line; two dimensional, as an agricultural field or a surface film coating on a manufactured product; or three dimensional, as a lake, railway tank car, or the atmosphere in an industrial plant.

In systematic grid sampling, the population is divided into a two- or threedimensional grid and samples are collected from within each grid area or volume. Systematic sampling is often used to increase the probability of locating possible hot spots in a population. It has little inherent bias but may require more samples to be as effective as random sampling.

B. Kratochvil

In two-stage sampling, primary blocks or units are randomly selected within the population and two or more sample increments taken from locations within each unit. The locations may be selected systematically or randomly.

Stratified random sampling involves division of the population into sections called strata. The number, size, and shape of strata are important to the design of an efficient and cost-effective sampling plan. If the goal is to estimate more precisely the average analyte concentration in the population, then each stratum should be as uniform in the elements of interest as possible. This reduces the number of sample increments needed to define analyte distribution within each stratum. If analyte distribution among separate strata is of interest, then the sampling plan may involve judgment as to size and location of the strata.

In cluster sampling, a number of increments are collected from one or more small sections of the population. This method is used when specific sections have been identified, either through judgment or by previous sampling, to be likely to contain more of the substance of interest.

1.5.6 Model-based sampling

The sampling equations discussed in previous sections are all based on classical sampling theory, such as described by Cochran [14] and others. This approach, sometimes called design-based sampling, makes no assumptions about the population other than that it is fixed. Many sampling methodologies and statistical tools have been developed to handle various population distributions within this classical framework.

A second approach, termed model-based sampling, employs one of several types of models to describe variability within a population. This methodology is most developed in the area of geostatistics. Borgman et al. [15] propose that, since the model-based approach views randomness as a property of a population, pure random sampling is no longer required and, in fact, may not be desirable because regularly spaced observations usually provide the best information about the degree of randomness present. A drawback is that the model must include information on expected patterns of variability within the population, though these patterns need not be completely understood to achieve reliable results.

The biggest applications of model-based sampling have been for geostatistical estimations of underground ore reserves, but the method has also been applied to environmental studies [16]. A widely used form, called kriging, assumes a linear trend in concentration of the sought-for element.

A sampling approach that includes elements of model design has been developed by Gy [17]. Although Gy employs classical random sampling statistics, he systematically considers all possible errors that might be encountered in the collection of a valid sample, including population variability, prior to sampling. In effect, Gy recommends incorporation of all uncertainties Sampling and sample preservation for trace element analysis

that may affect representativeness of samples into the sampling design rather than assuming that randomness is the only source of variability.

1.5.7 Balancing economic factors and purpose of data collection against sample quality

Sampling is often costly, especially in terms of time commitment by trained personnel. Therefore, the sampling plan should consider ways of minimizing the cost and variance of the sampling operation. Suppose a stratified sampling design is formulated consisting of n_1 strata with n_2 samples taken from each stratum and n_3 analytical measurements on each sample. For strata equal in size and variance, the cost of determining a population mean to within a desired variance may be minimized as follows.

The total cost of the operation, c, is equal to the sum of the cost of selecting the strata c_1 , sampling within the strata c_2 , and performing the analysis c_3 :

$$c = n_1 c_1 + n_1 n_2 c_2 + n_1 n_2 n_3 c_3 \tag{1.10}$$

The overall variance for the population may be expressed as the sum of the variance contributions from the two stages of sampling and analyses:

$$\sigma^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_1 n_2} + \frac{\sigma_3^2}{n_1 n_2 n_3}$$
(1.11)

Bennett and Franklin [18] show that to minimize the total cost for a preselected overall variance, the values of n_1 , n_2 , and n_3 may be found from:

$$n_1 = \frac{\sqrt{\sigma_1^2/c_1}}{\sigma^2} \left(\sqrt{\sigma_1^2 c_1} + \sqrt{\sigma_2^2 c_2} + \sqrt{\sigma_3^2 c_3} \right)$$
(1.12)

$$n_2 = \sqrt{\frac{\sigma_2^2 c_1}{\sigma_1^2 c_2}} \tag{1.13}$$

$$n_3 = \sqrt{\frac{\sigma_3^2 c_2}{\sigma_2^2 c_3}} \tag{1.14}$$

Note that the optimum allocation of sampling effort after the first stage is independent of the desired overall variance. This means that when the goal is reduction in overall variance at minimum cost, one should increase the number of strata sampled and hold the other steps constant.

Similarly, for a fixed total cost; it was shown by Marcuse [19] that the optimum value for n_1 is given by:

$$n_1 = \frac{c\sqrt{\sigma_1^2/c_1}}{\sqrt{\sigma_1^2 c_1} + \sqrt{\sigma_2^2 c_2} + \sqrt{\sigma_3^2 c_3}}$$
(1.15)

B. Kratochvil

while the optimum values for n_2 and n_3 continue to be given by Eqs. (1.13) and (1.14). Thus, the optimum allocation beyond the first stage is the same for fixed total cost as for fixed total variance. The same principles can be applied to any number of stages in a nested sampling design.

If strata are not equal in size or in distribution of the analyte, appropriate weighting factors must be incorporated into these expressions.

1.6 SAMPLE HANDLING AND PRESERVATION DURING COLLECTION, TRANSPORT, AND STORAGE

1.6.1 Handling and storage of samples

Samples may undergo a variety of chemical or physical changes during collection, transport, storage, and preparation for analysis. Changes may include loss of sample through volatilization, chemical reactions among components of the sample, or reaction of sample components with sampling tools, sample containers, or transfer lines. Other sources of change include reactions of sample components with external agents such as oxygen, carbon dioxide, or water in the atmosphere, or with sampling equipment or containers. Decomposition during transport or storage may occur as a result of high temperatures or microbial action. Errors from these sources can be minimized by protecting samples from exposure to external agents, and by reducing rates of reaction through addition of preservatives and/or maintaining samples at low temperatures. Preservatives reduce decomposition by altering pH, redox conditions, or solubility; by converting species of interest into more stable forms; by blanketing or coating samples to prevent reaction; or by acting as biocides. Care must be taken that preservatives do not interfere with subsequent analytical measurements. In fact, the best preservation method is storage at temperatures that are as low as possible. Most materials may be stored without change for years at liquid nitrogen temperature $(-196^{\circ}C)$. though this method is costly and often difficult to implement.

Since samples may begin to change from the time they are taken, analysis should ideally be done immediately after collection. Where the analysis involves digestion or extraction, consideration should be given to implementing this step promptly after collection, then storing the processed sample until measurement can be made.

Procedures for sample collection, preservation, and storage are available from a variety of sources, such as the US Environmental Agency, for sampling of the environment, and the ASTM and ISO for industrial and commercial materials. An example of some of the recommendations provided by the US EPA for the evaluation of inland water and sediments is given in Table 1.2.