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Series Editor's Preface 

This book on Sample Preparation for Trace Element Analysis, edited by Zoltan 
Mester and Ralph Sturgeon, is a useful addition to the Comprehensive 
Analytical Chemistry series. The impressive number of pages indicates the 
importance of sample preparation in the area of trace element determination. 
In a way, it follows the philosophy of a previous book in the series edited by 
Janusz Pawliszyn (Sampling and Sample Preparation for Field and Labora
tory, vol XXXVII), and devoted to organic analysis. In that work, the two editors 
of this volume contributed a chapter on sample preparation for trace element 
speciation. 

It is a pleasure for me to introduce such a comprehensive book with a total of 
39 chapters divided in four sections, including several introductory chapters on 
sampling, calibration, traceability and detection methods. These are followed 
by 17 chapters dealing with approaches to sample digestion and extraction. This 
is obviously one of the key issues in sample preparation, and for this reason a 
variety of chapters that include most of the methods in use - microwaves, solid 
phase microextraction, membrane extraction, laser ablation, flow injection etc. 
- are presented. The final 10 chapters cover specific applications to trace 
element speciation, dealing with different species and matrices, e.g. organotin, 
mercury, arsenic, metal-based drugs, chromium and also sequential extraction. 

The book includes a long list of recognised experts. In addition, many of them 
are previous contributors to books in this series dealing with speciation. In this 
respect, the present book is complementary to two previous volumes in the 
series - vol XXXIII on Elemental Speciation edited by Joe Caruso et al. and vol 
XXXTV on Discrete Sample Introduction Techniques for Inductively Coupled 
Plasma Mass Spectrometry by Diane Beauchemin and co-authors. With the 
publication of these three books the Comprehensive Analytical Chemistry series 
has extensively covered the area of elemental analysis, speciation and the very 
important bottleneck of sample preparation. I am sure tha t all three volumes 
will be a valuable reference for all researchers working in these fields. 

Finally I would like to thank not only the editors of the book but also the 
various authors for their contributions towards such a comprehensive, unique 
book on sample preparation for trace element analysis. 

Professor D. Barcelo 
Dept. of Environmental Chemistry 

IIQAB-CSIC 
Barcelona, Spain 
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Preface 

Two years ago we were asked to write a short review on sample preparation for 
trace metal speciation as a contribution to a book dealing with general sample 
preparation issues. Over the course of this work, we realized that this short 
review was rather an extended table of contents for a future project. We were 
also acutely aware that there was no comprehensive book devoted to sample 
preparation on the market dealing with the analysis of samples for trace 
elements. The stage was thus set. 

Following the collection of a sample, every analytical chemist will agree 
tha t its subsequent preservat ion and processing are of pa ramount 
importance. The availability of high performance analytical instrumentation 
has not diminished this need for careful selection of appropriate pretreat
ment methodologies, intelligently designed to synergistically elicit optimum 
function from these powerful measurement tools. These were the objectives 
of this book, to present, in a concise and comprehensive volume, an account 
of the state-of-the art of this subject matter. When considering the need for 
publication of a body of work such as this, it is wise to invest time appraising 
current literature; with the high cost of books, there can be no defense for 
simply making yet another one available. From our perspective, Sample 
Preparation for Trace Element Analysis was conceived because we believe 
there was no modern, comprehensive treatise at hand to satisfy the varied 
needs of the practicing analytical chemist. Without doubt, many of the 
subject areas targeted in this book have already received in-depth treatment 
by appropriate monographs. Assembling this knowledge into a single source 
proves advantageous to the user only if it is accomplished concisely and 
comprehensively. We hope the reader will vindicate our conclusions. 

This book is a multiauthor work, reflecting the diverse expertise arising 
from its highly qualified contributors. Efforts have been made to maintain a 
uniformity of style and diction, but readers will agree that the advantages 
which accrue from the talents of these individuals outweigh that arising 
from the simple uniformity gained with a single-author treatise. The 
cooperation of all the contributors in providing material for this book is thus 
deeply appreciated. 

The 39 chapters are authored by international leaders of their fields. The 
first five chapters deal with general issues related to the determination of 
trace metals in varied matrices, such as sampling, contamination control, 
reference materials, calibration and detection techniques. The second part of 

xliv 



Preface 

the book deals with extraction and sampling technologies (totaling 15 
chapters), providing theoretical and practical hints for the users on how to 
perform specific extractions. Subsequent chapters overview seven major 
representative matrices and the sample preparation involved in their 
characterization. This portion of the book is heavily based on the preceding 
chapters dealing with extraction technologies. The last ten chapters are 
dedicated to sample preparation for trace element speciation. 

Dating from the original discussions with the Publisher, this book has been 
realised in record time, requiring less than two years to advance from 
concept to fruition, thanks to excellent work of the over 70 contributing 
authors and the efforts of the Publisher. The editors and authors hope that 
readers will find this book useful and instructive and that it will be consulted 
frequently as a source of information which will make sample preparation 
less challenging for both the novice and seasoned expert alike. 

We wish to acknowledge the support of our home organization: the 
Institute for National Measurement Standards of the National Research 
Council of Canada, a stimulating environment and center of excellence for 
analytical chemistry research. 

Finally, we wish to thank the contributing authors for the privilege to 
work with them on this project and our families their patience and love for 
having forgone our company on many occasions. 

Zoltan Mester 
Ralph E. Sturgeon 
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PR photoresist 
PS-MS plasma source mass spectrometry 
PTFE polytetrafluoroethylene 
PTV programmed temperature vaporization 
PUF polyurethane foam 
PVC polyvinylchloride 
P-XRF portable XRF 
QA quality assurance 
QCM quality control material 
QF-AAS quartz furnace atomic absorption spectrometry 
QMS quadrupole mass filters 
QTA (heated) quartz tube atomizer 
QZ quartz 
RCC residual carbon content 
REE rare earth element 
RM reference material 
RNAA radiochemical separation neutron activation analysis 
ROMP ring-opening metathesis polymerization 
RP reverse phase 
RSD relative standard deviation 
RTD resistance temperature detector 
SA salicylic acid 
SDS sodium dodecyl sulfonate 
SEC size exclusion chromatography 
SE-FLR solvent extraction fluorometry (molecular) 
SEP sequential extraction procedure 
SF supercritical fluid 
SFE supercritical fluid extraction 
SF-ICP-MS sector field ICP-MS 
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Acronyms 

SGBM silica gel bound macrocycles 
SI Systeme International 
SI sequential injection 
SIA sequential injection analysis 
SIM selected ion monitoring 
SIMS secondary ion mass spectrometry 
SLM supported liquid membrane extraction 
SPE solid phase extraction 
SPME solid phase microextraction 
SPS solid phase spectrophotometry 
SRM standard reference material 
SS-MS spark source mass spectrometry 
STAT slotted tube atom trap 
T 4BPP tetra-(4-bromophenyl)-porphyrin 
TAL trialkyllead 
TBT tributyltin 
TCD thermal conductivity 
TCLP toxicity characteristic leaching procedure 
TD thermodesorption 
TeAL tetraalkyllead 
TeEL tetraethyllead 
TEL triethyllead 
TeML tetramethyllead 
TEA trifluoroacetylacetone 
THET-AAS: transverse heated graphite atomizer ET-AAS 

(THGA: transverse heated graphite atomizer) 
THF tetrahydrofuran 
TIMS thermal ionization mass spectrometry 
TMAB tetramethylammonium bromide 
TMAO trimethylarsine oxide 
TML trimethyllead 
TMOS tetramethoxy silane 
TOF-MS time of flight mass spectrometry 
TPB tetraphenylborate 
TPhT triphenyltin 
TprT tripropyltin 
TS-FF-AAS thermospray flame-furnace AAS 
T-XRF total reflection XRF 
UE ultrasonic extraction 
ULPA ultra low penetration air 
UPW ultrapure water 
US ultrasound 
US EPA United States Environmental Protection Agency 
UV-VIS ultraviolet visible spectrometry 
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Acronyms 

VG vapor generation 
VMC volatile metal(loid) compound 
VOCs volatile organic compounds 
VOL volumetry (titrimetry) 
VPD vapor phase deposition 
WHO World Health Organization 
WLR weighted linear regression 
XRA X-ray absorption 
XRF X-ray fluorescence spectrometry 
ZHE zero headspace extraction 
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Chapter 1 

Sampling and sample preservation for 
trace element analysis 
Byron Kratochvil 

1.1 INTRODUCTION 

Modern analytical methods and instrumentation make possible the measure
ment of increasingly smaller concentrations of even the most complex 
molecules and species in complex matrices. This has increased the importance 
of collecting, storing, and processing samples for analysis in a manner that 
keeps them as unaltered and contamination free as possible. In addition, 
improved measurement techniques and tools allow, or often require, the use of 
smaller analytical test portions to determine analyte concentrations. Small test 
portions mean more difficulty in achieving representativeness of the popu
lation, especially when analyzing for trace components. 

First of all, the quality of any analytical result depends on sample 
representativeness and integrity. Although many sources of error in an analysis 
can be controlled through use of blanks, standards, or reference samples, 
neither blank nor standard can repair the damage caused by an invalid sample. 
Keith [1], in the preface of a book on environmental sampling, says: 

"The logic is simple. If the right kinds of samples are not collected from 
the right areas at a site and then preserved, prepared, and analyzed 
correctly, wrong answers will be obtained. They may be precise and 
accurate answers, but they will be wrong in that they will not represent 
the condition of the site with respect to the absence, presence, or 
representative concentrations of the pollutants of interest." 

Keith's statement applies with equal validity to all analytical sampling 
operations regardless of analyte, concentration, or matrix. 

This chapter outlines some general principles of sampling design and 
sample preservation. Specific sampling and sample preparation procedures for 
various matrices and individual elements are treated in subsequent chapters. 
A brief bibliography and glossary of selected sampling terms are provided at 
the end of this chapter. 

Comprehensive Analytical Chemistry XLI 
Mester and Sturgeon (Eds.) 
© 2003 Elsevier B.V. All rights reserved 1 



Β. Kratochvil 

2 

1.2 PRELIMINARY CONSIDERATIONS 

1.2.1 Sampling variabil i ty 

When obtaining an estimate of the uncertainty in an analytical result, the 
uncertainty in the sampling step is often significant, and frequently far larger 
than the measurement uncertainty. For random errors, the overall standard 
deviation, sG, is related to the standard deviation for the sampling operation, sS9 

and to that for the remaining analytical operations, s a, by: 

s
2

0=s
2

a + s
2

s (1.1) 

Measurements should be designed insofar as possible to allow the separate 
evaluation of sample and measurement variability. For measurements in a 
state of statistical control, s a can be determined by the analysis of reference 
materials or standards. Then, s s can be obtained from Eq. (1.1), because sQ is 
obtained by analysis of a series of samples. Alternatively, a set of replicate 
measurements on samples may be designed to evaluate both sa and s s. 

Youden [2] noted that further reduction in the analytical uncertainty is 
unimportant once it is one-third or less of the sampling uncertainty. So, if the 
sampling uncertainty is large, use of a rapid, approximate analytical method 
may be faster, simpler, and permit more samples to be tested, thereby reducing 
overall uncertainty without increasing time or effort. 

1.2.2 Sampling strategies 

Sampling strategies may be classified as judgmental (intuitive), statistical, or 
systematic. Judgment sampling relies on general knowledge gained by 
experience with the population (or similar ones). Therefore, any conclusions 
drawn from the resulting data are necessarily intuitive, in part. Statistical 
sampling is based on all parts of the population having an equal chance of 
being selected. With a statistical sampling strategy, conclusions may be 
drawn based on statistical probabilities. In systematic sampling, the sample 
increments are collected in a regular pattern throughout the population. It 
has the advantage that execution is usually more straightforward and less 
expensive. 

Protocol sampling is a form of sampling specified in defined circumstances, 
often by regulatory agencies or by groups, such as the American Society for 
Testing and Materials (ASTM), as a basis for decision-making in legal and 
commercial matters. For example, regulations may specify detailed sampling 
procedures, which, if not followed, could make the sample invalid for the 
intended purpose. The sampling procedure may be intuitive, statistical, or a 
combination, but must be followed explicitly. 
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1.2.3 Uncerta int ies in sampl ing 

Sampling uncertainties may arise either from the properties of the population, 
and therefore inherent to any sample taken from it, or from the sampling 
operation itself. These uncertainties may be reduced, but never completely 
eliminated, by careful execution of a properly designed sampling plan that 
incorporates identification of the population and sampling sites, along with the 
procedures required to deliver an uncontaminated, representative sample to 
the analytical laboratory. 

An important source of sampling uncertainty is systematic, non-random, 
bias caused by exclusion or inclusion in the sample of some components of the 
population over others owing to differences in size, mass, location, stickiness, 
and so on. Another is sample contamination or change during collection, 
transport, storage, or preparation for analysis (this topic is discussed in 
Section 1.6). Poor design or improper use of sampling equipment may also 
introduce bias, as may the omission of collateral measurements, such as flow 
rate or pressures, tha t affect results. 

1.3 TYPES OF SAMPLES 

1.3.1 Judgment samples 

Judgment samples are samples collected from a population on the basis 
of experience, intuition, and knowledge of the history or properties of the 
population (or related ones). Sometimes, the goal is to obtain a single sample 
that may be termed "representative" to connote that it is expected to exhibit 
the average properties of the population. 

Collection of a single sample may have validity in situations where the 
population is essentially homogeneous or made so prior to sample collection. It 
may also be legitimate when random sampling is difficult or impossible owing 
to safety or cost considerations. Under these conditions, however, the short
comings of the sampling operation and the limitations in data treatment should 
be clearly stated. Generally, a plan based on at least some elements of random 
sampling is recommended. 

Judgment sampling requires assumptions about the degree to which 
the samples may be considered representative. Because the validity of the 
assumptions depends on the experience of the one making them, it is difficult to 
know the degree to which they are acceptable for a given application. A major 
advantage of judgment sampling is that it is usually less costly than rigorous 
random sampling. For regulatory or legal purposes, however, personal bias 
should be reduced or eliminated as much as possible. Often a combination of 
judgment and random sampling provides the best compromise between 
unacceptable costs and data quality. 

3 
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1.3.2 Random samples 

Analyses are almost always performed to obtain information about a 
population that is larger than the test portions being measured. If the samples 
under examination are biased, inferences made from them will be biased. The 
difference between the target population to which conclusions are applied, and 
the samples from which the test portions for analyses are drawn, may be 
minimized by selecting samples in a manner that gives each part of the 
population an equal chance of selection. This process, called random sampling, 
allows the user of the resulting analytical data to make statistical generaliz
ations based on mathematical probabilities. 

Selecting truly random samples is difficult; random in this context does not 
mean haphazard. A recommended method for a population consisting of units 
such as pharmaceutical tablets is to use random numbers to select units for 
analysis. Each unit is assigned a number, and units are selected by use of a 
random number generator.

1
 Bulk materials may be divided into a number of 

real or imaginary segments; the segments may be areas on a two-dimensional 
surface or volumes for a three-dimensional population. 

Data obtained by measurements on random samples can be analyzed by 
statistical methods to identify whether systematic relations among results 
exist due to trends or biases in the measurements. 

1.3.3 Systematic samples 

Because of its simplicity, sampling at evenly spaced intervals over a population 
is often used in place of random sampling. The criterion that all parts of the 
population have an equal chance of selection may be satisfied for evenly spaced 
sampling by imposing a random start time or sampling location on the process. 
This allows the application of classical statistical tests to the data. A potential 
problem with systematic sampling is tha t results may be biased if the analyte of 
interest is distributed in a periodic fashion within the population. 

It is also sometimes useful to collect samples in a systematic manner to 
reflect or test a hypothesis, such as the presence of systematic changes in 
population composition with time, temperature, or spatial location. Under 
specified conditions, each sample may be considered as a separate discrete 
population but the results may still be statistically tested for the significance of 
apparent differences. 

1
 Random numbers may be obtained from several sources on the Internet. A good example 
is http://www.fourmilab.ch/hotbits/, which generates sequences of random numbers 
based on radioactive decay of krypton-85. A Geiger-Muller tube is interfaced to a 
computer and the times between successive pairs of radioactive decays measured and 
provided as bytes. Once the bytes are delivered, they are discarded. 

4 
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1.3.4 Subsamples 

Field samples are typically placed in containers and sent to the laboratory for 
further processing. Sometimes, transport of all the field increments to the 
laboratory is deemed too inefficient or costly. In this case, the increments may be 
homogenized, after crushing or grinding if needed, and subsampled on site prior 
to transport. The work needed to reduce particle size, blend, or otherwise to 
process a bulk field sample before withdrawing subsamples for analysis depends 
on the variability in composition of the material constituting the original sample 
and on the extent of mixing required. Care must be taken to avoid contamination 
or loss that may introduce bias. Generally, processing and subsampling in a 
clean, controlled environment whenever possible provide better quality control. 

When subsampling is done in the field, the sampling plan, discussed in 
Section 1.4.2, should specify that the sampler have sufficient training and 
knowledge of sampling theory to subsample properly. Also, the analyst should 
be provided with all available information on prior subsampling and 
homogenizing operations. 

1.3.5 Composite samples 

Sometimes, increments are combined to produce a laboratory sample that is 
defined as representative. Advantages of compositing include reduced sample 
handling and analytical effort. It provides an estimate of the average 
concentration of the analyte, but not of its distribution. A variety of sampling 
systems and mixing procedures have been developed to produce composites 
from both liquid and solid materials. 

Compositing of increments is attractive when costs of analytical measure
ments are greater than the costs of sampling. But potentially useful 
information, such as the presence of hot spots, may be lost. Analysis of 
individual increments allows not only estimation of the distribution of the 
analyte within the population, but also evaluation of apparent differences 
within and among samples. Garner et al. [3] discuss the advantages and 
limitations of composite sampling for environmental monitoring. 

1.4 PLANNING THE SAMPLING OPERATION 

1.4.1 Defining goals 

Several key decisions should be made before sampling is initiated. These 
include defining the population to be studied, the substance(s) to be measured, 
the precision required in the result, and the extent to which speciation and 
distribution within the population is needed. Any assumptions about the 
population should be clearly identified. Decision-makers should preferably 
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Fig. 1.1. Elements of the overall analytical process. 

include the client for the data, sampling personnel, the person responsible for 
the analytical work, and someone knowledgeable about statistics. 

Decisions made at this point establish the goals of the work, and are the 
first step in the overall analytical process (Fig. 1.1). With this information in 
hand, a viable sampling plan can be drafted. 

1.4.2 Sampling plans 

The wide variety of populations sampled for chemical analysis makes the 
establishment of a single overall protocol impossible; accordingly, each matrix 
requires its own sampling plan. Often, regulatory agencies issue documents 
covering analytical methodologies that include sampling procedures. Examples 
include the US Environmental Protection Agency (US EPA), the International 
Organization for Standardization (ISO), and the ASTM. In addition, many 
specialty groups, such as the American Water Works Association, provide 
information on sampling protocols, tools, and techniques applicable to specific 
matrices. Where the analytical data may involve potential legal issues 
regarding compliance with environmental regulation, with workplace safety, 
or with commercial contract agreements, protocols recommended by recognized 
associations or agencies should be used whenever possible. 

All valid sampling plans and protocols have basic elements in common. 
These elements include specification of the size, number, and location of sample 
increments, the extent of compositing where warranted, and steps for 
subsampling (after particle size reduction, if applicable, and mixing) of the 
initial increments to produce laboratory samples and test portions. The plan 
should be in the form of a written protocol that includes procedures for all steps, 
from initial sample collection to final preparation of test portions for analysis. 
The protocol should tell when, where, and how to collect sample increments. It 
should include criteria for rejection of material not part of the population, as 
for example stones above a defined size in a soil sample being analyzed for 
available trace nutrients. It should also specify who performs the sampling, 
sample logging and chain of custody procedures, the type and size of containers 
to be used, cleaning procedures for equipment and containers, preservatives, 
conditions of sample storage and, as appropriate, auxiliary information such as 
temperature or flow velocity in a stream. It should also list the qualifications 
and training required of the personnel carrying out the operations. A checklist, 
adapted from Ref. [4], is provided in Table 1.1. 

6 
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Once the sampling plan is drafted, it is worthwhile to have it reviewed by 
independent experts. This is especially important when assumptions have 
been made, or when all or part of the plan is based on judgment. For 
populations whose characteristics are little known, time and effort may be 
saved by collecting and analyzing a preliminary set of samples, using 
experience and intuition as a guide to make them as representative as 
possible. On the basis of this information, a more efficient and cost-effective 
plan can be prepared. 

7 

TABLE 1.1 

Checklist for elements of a sampling protocol (after Ref. [4]) 

Apparatus and equipment checklist 
• Sampling tools and apparatus 
• Sample containers of appropriate type, material, and size 
• Cleaning supplies for tools, equipment, and containers 
• Preservatives, including provision for cooling of samples if necessary 
• Labels, tape, waterproof pens, packaging materials 
• Chain of custody forms, sample seals, log books 
• Safety equipment, including protective clothing 

Instructions checklist for presampling 
• Recording of observations at sampling sites 
• Cleaning of apparatus before and after sampling 
• Calibration of apparatus 
• Cleaning and handling of sample containers 
• Safety procedures 

• Procedure if problems prevent strict adherence to protocol 

Instructions checklist for sampling 
• Number, type, and size of exploratory, regular, and quality assurance samples 
• Number, type, and size of sample increments 
• Procedure for identifying locations from which increments are to be collected 
• Procedure for operation of apparatus and collection of increments 
• Special sampling precautions or conditions of collection, including criteria for rejection 

of foreign material 
• Procedure for compositing, if applicable 
• Use of preservatives 
Instructions checklist for postsampling 
• Completion of auxiliary information on sample labels and in logbooks 
• Chain of custody forms 
• Sample packaging, transport, and conditions for travel and storage, including maximum 

holding time for samples prior to analysis 

General 
• Information on analytical methods, limits of detection, interferences 
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Where feasible, it is useful to have the analyst perform or supervise the 
sampling operation. Otherwise he or she should, in addition to helping prepare 
the written protocol, ensure that the sample collectors are well trained and 
understand the importance of each step so that bias and contamination are 
minimized. The training should emphasize the importance of accurate sample 
labeling and logging, and of a chain of custody to ensure sample integrity from 
collection to measurement. 

For bulk materials, local homogeneity affects sample size. Increments 
should be large enough to not be biased with respect to the different sizes and 
types of particles present in the material. Where available sampling equipment 
precludes collection of larger increments, two or more smaller ones may be taken 
adjacent to each other. These may be composited or analyzed separately. 
(Separate analysis can provide information on the extent of local heterogeneity.) 

When sampling a material whose properties are unknown, a good approach 
is to collect a small number of exploratory samples, using experience and 
judgment to make them as representative as possible, and analyze them for the 
substance of interest. From this preliminary information, a more refined 
sampling plan can be developed. 

1.5 STATISTICAL SAMPLING 

1.5.1 Introduction 

Statistics provides a number of useful tools to assist in determining how many 
sample increments to take from a population, how large they should be, and 
from where they should be taken in order to hold the sampling uncertainty to 
some specified level with a given level of confidence. Most statistical sampling 
theory is based on the population having a normal (Gaussian) distribution, but 
other distributions, such as lognormal, do occur in nature. 

1.5.2 Minimum number of increments 

Unless a population is known to be homogeneous, a valid sampling plan 
requires collection of increments from multiple locations. Assuming, for the 
moment, negligible measurement uncertainty relative to that for sampling, 
Provost [5] describes the minimum number of increments, ns, needed to hold 
the sampling uncertainty, Es, to a given level of confidence by the relation: 

ns = (ζσ8/Ε8)
2
 (1.2) 

where ζ is a stated level of confidence, say 95%. In most applications, σ 8 is either 
known from past history of the population or can be estimated from 
measurements on a set of preliminary samples to obtain values of s s and X. 

8 
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(Remember that if measurement uncertainties are not negligible relative to 
those of the sampling operations, then ss should be calculated by Eq. (1.1).) 

Since 

μ = -X ± (ts/y/n) (1.3) 

where t is obtained from statistical tables as an estimate of ζ from η 
measurements, the maximum acceptable sampling uncertainty, E8, can be 
defined by: 

Es = \\L-X\ = ts/Jns (1.4) 

Rearranging, 

ns = (tss/Es)
2
 (1.5) 

Initially, t can be set at 1.96 for 95% confidence limits and a first estimate of η 
can be calculated. The l va lue for this η is then substituted and the system 
iterated to constant n. 

1.5.3 Minimum size of increments in wel l -mixed particulate 
populat ions 

When sampling well-mixed populations of heterogeneous particles, as is often 
encountered in the subsampling of laboratory samples, Ingamells and Switzer 
[6] showed the relation: 

WR
2
 = Ks (1.6) 

to be applicable. Here W is the weight of sample analyzed, R is the relative 
standard deviation of sample composition in percent, and K8 is a constant equal 
to the weight of sample required to limit the sampling uncertainty to 1% 
relative with 68% confidence. In practice, Ks is determined by estimating s s 

from a series of samples of weight W. Once Ks is known, the minimum sample 
weight, W, required for any maximum relative standard deviation can be 
calculated. For poorly mixed or stratified materials, the calculated value of Ks 

increases as W increases. This provides a way of testing the homogeneity of the 
population. 

When sampling a mixture of particles, it is important to collect enough of 
each particle type to ensure representativeness. In some cases, where the 
element under test is present as only a small fraction of the particles (as in 
elemental gold or diamond deposits), quite large bulk samples must be taken, 
and particle size reduction and thorough mixing must be conducted before 
subsampling. For such populations the sampling standard deviation, σ(βχ), 
may be calculated using the Johnson equation [7]: 

crfci) = {(^Ι^Ι/6)[Χ/;(2Γ,)
3
]}

1 /2
 (1.7) 

9 
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where gx is the mass and άχ is the density of the sample particles containing 
the trace component, fi is the fraction by mass of the trace element in particle 
size class i, and is the radius of particles containing the trace element. 

If the element of interest is present in each of a mixture of two types of 
particles but the fraction of one type is small, Zheng and Kratochvil [8] have 
shown that a combination of the Johnson equation with one developed by 
Bennedetti-Pichler [9] is applicable. Here the standard deviation, σρ, expressed 
in percent, is given by: 

where Pi and P2 are the percentages of the trace element in each of the two 
types of particles in the mixture, g is the mass of sample, gi is the mass of the 
fraction of type 1 particles, and di is the density of the type 1 sample particles. 
The remaining terms are as defined in Eq. (1.7). 

Equations (1.7) and (1.8) show that the sampling standard deviation varies 
as the square root of the sample mass and number of particles. This means that 
for every 10-fold decrease in the percentage of sought for substance, test-
portion size must increase 100-fold for a given level of sampling error and 
particle size. It is therefore especially important that laboratory samples for 
trace analysis are adequately ground and mixed prior to removal of test 
portions for trace analysis. 

The general approach described in this section has been extended by Gao 
and Kratochvil [10] to the calculation of sampling uncertainty for well-mixed 
materials containing more than two types of particles. 

1.5.4 Sample increment s ize in segregated populat ions 

Visman [11] demonstrated that for some segregated materials the variance of 
sampling could be expressed by: 

The constant A is related to Ingamells' subsampling constant Κ and the average 
composition of the analyte, *a v> by A = 10

4
jca v. The constant Β is related to the 

degree of segregation of the population. Values of A and Β must be obtained 
experimentally from the bulk population. This can be done in two ways. In the 
first, two sets of sample increments are collected, one with w as small as, and 
the other as large as, feasible. The two sets are analyzed, the sampling 
variances calculated and substituted into Eq. (1.9) to give values for A and B. 
In the second, arising out of published discussions by Duncan and Visman [12], 
Visman proposed collection of a set of increment pairs, each pair of increments 
being of the same weight and taken from adjacent sites in the population. From 
the analytical data on the increments, an intraclass correlation coefficient, r, is 
calculated, either directly or by ANOVA [13]. Values for A and Β are then 

(1.8) 

of = (A/wn) + {β I ή) (19) 

10 
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calculated from Eq. (1.9) and the relation r = Bm/A, where m is the average 
particle mass. Increasing either W or Ν will reduce uncertainty due to random 
variability, but only increasing the number of increments, n, will reduce 
uncertainty due to segregation. 

All the sampling equations discussed in this section have been derived for 
normally distributed populations. As mentioned earlier, not all populations 
follow a Gaussian distribution. Procedures to test data for normality and for 
dealing with non-normality by data transformation or use of other procedures 
or distribution functions are available in the statistical literature. 

Problems may arise when small regions of a population contain analyte in 
much higher concentrations than elsewhere. This so-called "nugget" or "hot 
spot" effect is often encountered when sampling populations such as gold ores 
or contaminated industrial sites, but it can also be a factor in less obvious 
situations. An example is microanalytical investigation of surfaces using 
current sophisticated microtechniques. In situ analytical measurements on 
heterogeneous surfaces with a probe only a few micrometers in diameter may 
produce significant errors if areas of unusually high or low concentration are 
missed or oversampled. There is also the danger that an unusually high result 
from a hot spot may be rejected as an anomalous outlier. The sampling plan 
should take into account the possibility of encountering hot spots and their 
potential effect on the goals of the sampling program. 

1.5.5 From where should increments be taken? 

The variety of populations of analytical, and therefore sampling, interest 
encompasses every part of nature and human activity. To ensure that all parts 
of a population have an equal chance of being selected for analysis requires a 
random element in the sampling strategy (see Section 1.3.2). Several strategies 
have been proposed to meet this requirement. These include, in addition to 
simple random sampling, systematic grid sampling with a random initial 
start point or with random sampling within individual grid areas or volumes. 
To improve sampling efficiency, other sampling schemes, including stratified, 
cluster, and two-stage sampling, have been developed. 

In simple random sampling, the target population is divided on paper into 
a set of units and a defined number of the units are randomly selected for 
sampling. The units may be one dimensional, as a drill core or objects on a 
production line; two dimensional, as an agricultural field or a surface film 
coating on a manufactured product; or three dimensional, as a lake, railway 
tank car, or the atmosphere in an industrial plant. 

In systematic grid sampling, the population is divided into a two- or three-
dimensional grid and samples are collected from within each grid area or 
volume. Systematic sampling is often used to increase the probability of 
locating possible hot spots in a population. It has little inherent bias but may 
require more samples to be as effective as random sampling. 
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In two-stage sampling, primary blocks or units are randomly selected 
within the population and two or more sample increments taken from locations 
within each unit. The locations may be selected systematically or randomly. 

Stratified random sampling involves division of the population into sections 
called strata. The number, size, and shape of strata are important to the design 
of an efficient and cost-effective sampling plan. If the goal is to estimate more 
precisely the average analyte concentration in the population, then each 
stratum should be as uniform in the elements of interest as possible. This 
reduces the number of sample increments needed to define analyte distribution 
within each stratum. If analyte distribution among separate strata is of 
interest, then the sampling plan may involve judgment as to size and location 
of the strata. 

In cluster sampling, a number of increments are collected from one or more 
small sections of the population. This method is used when specific sections 
have been identified, either through judgment or by previous sampling, to be 
likely to contain more of the substance of interest. 

1.5.6 Model-based sampling 

The sampling equations discussed in previous sections are all based on classical 
sampling theory, such as described by Cochran [14] and others. This approach, 
sometimes called design-based sampling, makes no assumptions about the 
population other than that it is fixed. Many sampling methodologies and 
statistical tools have been developed to handle various population distributions 
within this classical framework. 

A second approach, termed model-based sampling, employs one of several 
types of models to describe variability within a population. This methodology is 
most developed in the area of geostatistics. Borgman et al. [15] propose that, 
since the model-based approach views randomness as a property of a 
population, pure random sampling is no longer required and, in fact, may not 
be desirable because regularly spaced observations usually provide the best 
information about the degree of randomness present. A drawback is that the 
model must include information on expected patterns of variability within 
the population, though these patterns need not be completely understood to 
achieve reliable results. 

The biggest applications of model-based sampling have been for geostatis-
tical estimations of underground ore reserves, but the method has also been 
applied to environmental studies [16]. A widely used form, called kriging, 
assumes a linear trend in concentration of the sought-for element. 

A sampling approach that includes elements of model design has been 
developed by Gy [17]. Although Gy employs classical random sampling 
statistics, he systematically considers all possible errors that might be 
encountered in the collection of a valid sample, including population variability, 
prior to sampling. In effect, Gy recommends incorporation of all uncertainties 
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tha t may affect representativeness of samples into the sampling design rather 
than assuming that randomness is the only source of variability. 

1.5.7 Balanc ing economic factors and purpose of data col lect ion 
against sample quality 

Sampling is often costly, especially in terms of time commitment by trained 
personnel. Therefore, the sampling plan should consider ways of minimizing 
the cost and variance of the sampling operation. Suppose a stratified sampling 
design is formulated consisting of ni s t rata with n2 samples taken from each 
stratum and n3 analytical measurements on each sample. For strata equal in 
size and variance, the cost of determining a population mean to within a 
desired variance may be minimized as follows. 

The total cost of the operation, c, is equal to the sum of the cost of selecting 
the strata ci, sampling within the s trata c 2, and performing the analysis c 3: 

c
 = n

i
c
i + ^ i ^ 2

c
2 + nin2n3c3 (110) 

The overall variance for the population may be expressed as the sum of the 
variance contributions from the two stages of sampling and analyses: 

σ 2 =σ | + ^ | _ + ^ | _ ( 1 U) 

Bennett and Franklin [18] show that to minimize the total cost for a preselected 
overall variance, the values of τΐχ, n2, and n3 may be found from: 

*i = ο ν σ^ ι + Α /
σ
2 ^ + V<ic3 (1-12) 

» 2 = ΛΦ (1.13) 
<7fC2 

H8 = J4* (1.14) 
V

 a
2

C
S 

Note that the optimum allocation of sampling effort after the first stage is 
independent of the desired overall variance. This means that when the goal is 
reduction in overall variance at minimum cost, one should increase the number 
of strata sampled and hold the other steps constant. 

Similarly, for a fixed total cost; it was shown by Marcuse [19] that the 
optimum value for τι χ is given by: 

<Η/
σ
ι/°ι 

ηλ = -=^ -V= == (1.15) 
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while the optimum values for n2 and n3 continue to be given by Eqs. (1.13) and 
(1.14). Thus, the optimum allocation beyond the first stage is the same for fixed 
total cost as for fixed total variance. The same principles can be applied to any 
number of stages in a nested sampling design. 

If strata are not equal in size or in distribution of the analyte, appropriate 
weighting factors must be incorporated into these expressions. 

1.6 SAMPLE HANDLING AND PRESERVATION DURING 
COLLECTION, TRANSPORT, AND STORAGE 

1.6.1 Handl ing and storage of samples 

Samples may undergo a variety of chemical or physical changes during 
collection, transport, storage, and preparation for analysis. Changes may 
include loss of sample through volatilization, chemical reactions among 
components of the sample, or reaction of sample components with sampling 
tools, sample containers, or transfer lines. Other sources of change include 
reactions of sample components with external agents such as oxygen, carbon 
dioxide, or water in the atmosphere, or with sampling equipment or containers. 
Decomposition during transport or storage may occur as a result of high 
temperatures or microbial action. Errors from these sources can be minimized 
by protecting samples from exposure to external agents, and by reducing rates 
of reaction through addition of preservatives and/or maintaining samples at 
low temperatures. Preservatives reduce decomposition by altering pH, redox 
conditions, or solubility; by converting species of interest into more stable 
forms; by blanketing or coating samples to prevent reaction; or by acting as 
biocides. Care must be taken tha t preservatives do not interfere with 
subsequent analytical measurements. In fact, the best preservation method 
is storage at temperatures that are as low as possible. Most materials may be 
stored without change for years at liquid nitrogen temperature (— 196°C), 
though this method is costly and often difficult to implement. 

Since samples may begin to change from the time they are taken, analysis 
should ideally be done immediately after collection. Where the analysis 
involves digestion or extraction, consideration should be given to implementing 
this step promptly after collection, then storing the processed sample until 
measurement can be made. 

Procedures for sample collection, preservation, and storage are available 
from a variety of sources, such as the US Environmental Agency, for sampling 
of the environment, and the ASTM and ISO for industrial and commercial 
materials. An example of some of the recommendations provided by the US 
EPA for the evaluation of inland water and sediments is given in Table 1.2. 
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