

ANNUAL REPORTS ON NMR SPECTROSCOPY

Volume 51

ANNUAL REPORTS ON

NMR SPECTROSCOPY

This Page Intentionally Left Blank

ANNUAL REPORTS ON

Edited by

G. A. WEBB

Royal Society of Chemistry, Burlington House, London, England

VOLUME 51

Amsterdam – Boston – Heidelberg – London – New York Oxford – Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo

ELSEVIER Ltd The Boulevard, Langford Lane Kidlington, Oxford OX5 1GB, UK

© 2003 Elsevier Ltd. All rights reserved.

This work is protected under copyright by Elsevier and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier's Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,

e-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://www.elsevier.com), by selecting 'Customer Support' and then 'Obtaining Permissions'.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400,

fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK;

phone: (+44) 207 631 5555; fax: (+44) 207 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier is required for external resale or distribution of such material.

Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.

Address permissions requests to: Elsevier's Rights Department, at the phone, fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2003

ISBN: 0-12-505451-3 ISSN: 0066-4103

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). Printed and bound in Great Britain.

List of Contributors

- H. M. Al-Hashimi, Department of Chemistry & Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109-1055, USA
- I. Ando, Department of Chemistry and Materials Science, International Research Center of Macromolecular Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- V. Barone, Physics Department, School of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, P. 1, (1428) Buenos Aires, Argentina
- R. H. Contreras, *Physics Department, School of Sciences, University of Buenos* Aires and CONICET, Ciudad Universitaria, P. 1, (1428) Buenos Aires, Argentina
- J. C. Facelli, Center for High Performance Computing, University of Utah, 155 South 1452 East RM 405 Salt Lake City, UT 84112-0190, USA
- D. Gudat, Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany
- E. Katoh, Department of Biochemistry, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
- S. Kuroki, Department of Chemistry and Materials Science, International Research Center of Macromolecular Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- K. Murata, Department of Chemistry and Materials Science, International Research Center of Macromolecular Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- J. E. Peralta, Department of Chemistry, Rice University, Houston, TX 77005-1892, USA
- W. P. Power, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- J. R. Tolman, Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA

This Page Intentionally Left Blank

Preface

Applications of NMR are well established in all areas of science and new ones are being regularly reported. Annual Reports on NMR reflect developments in all areas of science. Contained within Volume 51 of this series are reviews from five different areas of interest.

'A Study of Conformational Stability of Polypeptide Blends by Solid State NMR Spectroscopy' is contributed by K. Murata, S. Kuroki, E. Katoh and I. Ando, D. Gudat reports on 'Applications of Heteronuclear X/Y-Correlation Spectroscopy in Organometallic and Organoelement Chemistry: Recent Developments', 'NMR Studies of Biomolecular Dynamics and Structural Plasticity using Residual Dipolar Couplings' is reviewed by J. R. Tolman and H. M. Al-Hashimi, R. H. Contreras, V. Barone, J. C. Facelli and J. E. Peralta cover 'Advances in Theoretical and Physical Aspects of Spin–Spin Coupling Constants' and 'High Resolution Magic Angle Spinning-Applications to Solid Phase Synthetic Systems and other Semi-Solids' is reviewed by W. P. Power.

Expressions of gratitude go to all of these reporters and to the production staff at Elsevier for their generous cooperation in the realisation of this volume.

Royal Society of Chemistry Burlington House Piccadilly London, W1J OBA G. A. WEBB July 2003 This Page Intentionally Left Blank

Contents

List of Contributors	v
Preface	vii

A Study of Conformational Stability of Polypeptide Blends by Solid State NMR Spectroscopy

K. MURATA, S. KUROKI, E. KATOH and I. ANDO

8
10
27
39
54
54

Applications of Heteronuclear X/Y-Correlation Spectroscopy in Organometallic and Organoelement Chemistry: Recent Developments DIETRICH GUDAT

1. Introduction	60
2. Methods	62
3. Recent applications of X/Y correlations	87
4. Conclusions	99
References	100

NMR Studies of Biomolecular Dynamics and Structural Plasticity Using Residual Dipolar Couplings JOEL R. TOLMAN and HASHIM M. AL-HASHIMI

1.	Introduction	106
2.	Theoretical background	109
3.	Molecular alignment.	123

x CONTENTS

4.	Applications to protein domains	134
5.	Protein dynamics at the local level	141
6.	Applications to RNA	152
7.	Applications to oligosaccharides	157
8.	Conclusions and future perspectives	159
Ac	knowledgements	160
Re	ferences	161

Advances in Theoretical and Physical Aspects of Spin–Spin Coupling Constants

RUBÁN H. CONTRERAS, VERÓNICA BARONE, JULIO C. FACELLI, and JUAN E. PERALTA

1. Introduction	168
2. Calculation and analysis of spin-spin coupling constants	171
3. Coupling mechanisms and factors affecting them	184
Acknowledgements	248
References	248

High Resolution Magic Angle Spinning – Applications to Solid Phase Synthetic Systems and Other Semi-Solids WILLIAM P. POWER

1.	Introduction	261
2.	Nature of the samples.	263
3.	Specialized NMR techniques	268
4.	Applications to polymer-supported species	272
5.	Applications to polymers, whole cells and tissues	279
6.	Summary and prospects	286
Re	eferences	287
In	dex	297

A Study of Conformational Stability of Polypeptide Blends by Solid-State NMR Spectroscopy

K. MURATA¹, S. KUROKI¹, E. KATOH² and I. ANDO¹

¹Department of Chemistry and Materials Science, International Research Center of Macromolecular Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan ²Department of Biochemistry, National Institute of Agrobiological Sciences,

Kannondai, Tsukuba, Ibaraki, Japan

1.	Introduction	2
	Polypeptide Blend Preparations	8
3.	¹³ C CP/MAS NMR Spectral Analysis and Conformational	
	Characterization of Homopolypeptides and Their Blends	10
	3.1 PLA/PLV blends	11
	3.2 PLA/PLIL blends	17
	3.3 PG/PLV blends	21
	3.4 PDA/PLV blends	24
4.	${}^{1}\text{H}T_{1\rho}$ s of Homopolypeptides and Their Blend Compatibility	27
	4.1 ${}^{1}\text{H}T_{1\rho}$ experiments on polypeptide blends	29
	4.2 PLA/PLV (50/50) blend	32
	4.3 PLA/PLIL (50/50) blend	34
	4.4 PG/PLV (50/50) blend	36
	4.5 PDA/PLV (50/50) blend	37
	4.6 The domain size of blends	38
5.	Two-dimensional ¹³ C- ¹ H HETCOR Spectral Analysis and Structural	
	Characterization of Polypeptides Blends	39
	5.1 Frequency-switched Lee–Goldburg (FSLG) ¹³ C– ¹ H heteronuclear	
	correlation (HETCOR) experiments	41
	5.2 Structural modelling of PG and PLV with the anti-parallel β-sheet form	43
	5.3 ¹³ C ⁻¹ H HETCOR spectral analysis and structural characterization	44
6.	Conclusions	54
Re	eferences	54

In polypeptide blends, the balance of intra- and intermolecular hydrogen bond interactions in two kinds of polypeptide chains play an important role for the conformational stability and the blend miscibility. The observation of the ^{13}C NMR chemical shifts and relaxation times, and the two-dimensional

2 K. MURATA ET AL.

NMR spectrum leads to a deep understanding of the conformational stability and the miscibility. In this chapter, the most recent research works are introduced.

1. INTRODUCTION

Synthetic homopolypeptides consist of a repeated sequence of an amino acid. Although the structures of the homopolypeptides are not as complicated as those of proteins, homopolypeptides take some specified conformations such as the α -helix, β -sheet, etc., which appear in proteins. These conformational properties of homopolypeptides are shown in Table 1. The individual conformations are transformed into other conformations under certain conditions such as temperature and quenching.¹⁻⁷ For example, the main chain of poly (β -benzyl L-aspartate) takes on a right-handed $\alpha(\alpha_R)$ helix form within the temperature range from room temperature to 117°C and is transformed to the left-handed $\alpha(\alpha_{\rm I})$ -helix form, the ω -helix form and the β -sheet form at temperatures above 117°C. On the other hand, copolymers of L-alanine (Ala) and glycine (Gly) [(Ala, Gly)_n] take the right-handed α -helix, β -sheet and the 3₁-helix forms in the solid state as obtained by changing the mixture ratio or by solvent treatment.⁸⁻¹¹ A scheme of conformational generation of polypeptides, copolypeptides and proteins is shown in Fig. 1.

These transformations arise from the energetical stability caused by intramolecular or intermolecular hydrogen bond (HB) interactions. Thus, by the balance of intramolecular and intermolecular HB interactions in polypeptide blends, it is expected that the strength of intermolecular interaction in the blends is different from those in homopolypeptides then new conformations can be formed by intermolecular HB interactions that do not exist originally in homopolypeptides. There are many studies on intermolecular HB interactions in homopolypeptides and copolypeptides in the solid state, but to the best of our knowledge there is little study on intermolecular HB interactions in polypeptide blends except for our previous studies.

In order to understand the conformations or conformational changes of homopolypeptides and copolypeptides, solid-state NMR is a very useful method. After the first NMR experiment for obtaining high-resolution spectra of solids was carried out with the high-speed magic angle spinning (MAS) method,¹² the cross polarization (CP) procedure ¹³ was developed by Hartmann and Hahn.¹⁴ On the basis of these methods a CP/MAS technique that combines MAS and CP has been conventionally used to obtain high-resolution solid-state NMR spectra.^{15,16} In the solid-state, the NMR chemical shift is often characteristic of a specified conformation because of the highly restricted molecular motion. For example, it has been elucidated

Amino acid		Conformation ^a		
residue	-	1	2	-
Glycine	$ \begin{array}{c} H \\ H \\ - \begin{bmatrix} N - C - C \\ H \\ H \\ H \\ \end{bmatrix}_{n} $	β-Sheet (PG-I)	3 ₁ -Helix (PG-II)	Hydrophobic side chain Hydrophobic interaction
Alanine	$ \begin{bmatrix} \mathbf{C}\mathbf{H}_{3} \\ \mathbf{-} \begin{bmatrix} \mathbf{N} - \mathbf{C} - \mathbf{C} \\ \mathbf{-} \end{bmatrix}_{n} \\ \begin{bmatrix} \mathbf{H} & \mathbf{H} & \mathbf{O} \end{bmatrix}_{n} $	α-Helix	β-sheet	Oligomers are β-sheet Hydrophobic side chain Hydrophobic interaction
Valine	$\begin{array}{c} CH_{3} \\ CH \\ CH \\ \hline H \\ - C \\ H \\ H \\ H \\ H \\ - C \\ n \end{array}$	β-Sheet		Hydrophobic side chain Hydrophobic interaction
Leucine	$\begin{array}{c} \operatorname{CH}_{3} \\ CH \\ CH \\ CH \\ CH \\ CH \\ CH \\ H \\ H \\$	α-Helix		Hydrophobic side chain Hydrophobic interaction
Isoleucine	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ CH_3 & & & \\ & & & \\ CH_2 & & \\ & & & \\ CH_2 & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ H_1 & & \\ H_2 & & \\ & & \\ \end{array}$	β-Sheet		Hydrophobic side chain Hydrophobic interaction
Serine	$ \begin{array}{c} CH_2OH \\ - \begin{matrix} H \\ - \end{matrix} \\ - \end{matrix} \\ - \begin{matrix} H \\ - \end{matrix} \\ - \end{matrix} \\ - \begin{matrix} H \\ - \end{matrix} \\ - \end{matrix} \\ - \begin{matrix} H \\ - \end{matrix} \\ - \end{split} \\ - \end{split} \\ - \end{split} \\ - \bigg \\$	β-Sheet		Hydroxylic side chains of hydrogen bonding
Threonine	$ \begin{array}{c} CH_3 \\ CHOH \\ \hline $	β-Sheet		Hydroxylic side chains of hydrogen bonding

 Table 1. Preferred conformations of homopolypeptides in the solid-state

(Continued)

4 K. MURATA ET AL.

Amino acid		Conformation ^a		
residue		1	2	
Aspartic acid ^b	$ \begin{array}{c} \text{COOH} \\ \text{CH}_2 \\ \hline \text{N} - \text{C} - \text{C} \\ \text{H} & \text{H} & \text{O} \\ \text{H} & \text{H} & \text{O} \\ \end{array} \right]_n $	α-Helix		Hydrophilic side chain
Glutamic acid ^b	$\begin{array}{c} \text{COOH} \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{H}_1 \\ \text{H}_1 \\ \text{H}_1 \\ \text{H}_2 \\ \text{CH}_2 \\ C$	α-Helix	(β-Sheet)	Hydrophilic side chain Salts Ca, Sr, Ba are β-sheet
Lysine ^c	$ \begin{array}{c} NH_{2} \\ I \\ CH_{2} \end{bmatrix} 4 \\ \hline \begin{bmatrix} N - C - C \\ I \\ H \\ H \\ H \\ O \\ n \end{array} $	α-Helix	β-Sheet	Hydrophilic side chain Salts, HPO ₄ are β-sheet, Also Product from high pH high temperature is β-sheet
Histidine	$ \begin{array}{c} H \\ H $	α-Helix		This residue is capable of hydrogen bonding and of other interaction.
Phenylalanine	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	α-Helix		Hydrophobic side chain Hydrophobic interaction
Tyrosine	$\begin{array}{c} 0H \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	β-Sheet		Hydroxylic side chains of hydrogen bonding

Table 1. Continued

(Continued)

Amino acid		Conformation ^{<i>a</i>}		
residue		1	2	
Tryptophan	$ \begin{array}{c} $	α-Helix		Hydrophobic side chain
Cysteine	$ \begin{array}{c} $	β-Sheet		
Methionine	$ \begin{array}{c} \text{SCH}_3\\ \text{CH}_2\\ \text{H}_2\\ \text{CH}_2\\ \text{CH}_2\\ \text{H}_1\\ \text$	α-Helix		
Proline	$\begin{array}{c} H_2C & CH_2 \\ \hline H_2C & CH_2 \\ \hline N - C - C \\ \downarrow & \downarrow \\ H & H & O \\ \end{pmatrix}_n$	pP-II	pP-I	Hydrophobic side chain
Arginine	$ \begin{array}{c} NH_2 \\ C = NH \\ NH \\ (CH_2)4 \\ \hline N - C - C \\ H H 0 \\ H H 0 \\ n \end{array} $	α-Helix		Hydrophilic side chain

Table 1. Continued

^{*a*}All β -sheet form are antiparallel.

^b Polyaspartic acid and polyglutamic acid in the solid state are in the neutral carboxyl form. The conformational influence in solution at neutral pH where the side chain is ionized is one of α -helix disruption.

 c Polylysine in the solid state is normally in the form of the HBr salt. The charged residue in solution at neutral pH would have an α -helix disruptive influence.