

THERMO-MECHANICAL PROCESSING OF METALLIC MATERIALS

Bert Verlinden, Julian Driver, Indradev Samajdar, Roger D. Doherty

Thermo-Mechanical Processing of Metallic Materials

PERGAMON MATERIALS SERIES

Series Editor: Robert W. Cahn FRS

Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK

- Vol. 1 CALPHAD by N. Saunders and A. P. Miodownik
- Vol. 2 Non-Equilibrium Processing of Materials edited by C. Suryanarayana
- Vol. 3 Wettability at High Temperatures by N. Eustathopoulos, M. G. Nicholas and B. Drevet
- Vol. 4 Structural Biological Materials edited by M. Elices
- Vol. 5 The Coming of Materials Science by R. W. Cahn
- Vol. 6 Multinuclear Solid-State NMR of Inorganic Materials by K. J. D. MacKenzie and M. E. Smith
- Vol. 7 Underneath the Bragg Peaks: Structural Analysis of Complex Materials by T. Egami and S. J. L. Billinge
- Vol. 8 Thermally Activated Mechanisms in Crystal Plasticity by D. Caillard and J. L. Martin
- Vol. 9 The Local Chemical Analysis of Materials by J. W. Martin
- Vol. 10 Metastable Solids from Undercooled Melts by D. M. Herlach, P. Galenko and D. Holland-Moritz

Thermo-Mechanical Processing of Metallic Materials

Bert Verlinden

Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Heverlee, Belgium

Julian Driver *Materials Centre, Ecole des Mines de Saint-Etienne, Saint Etienne Cedex, France*

Indradev Samajdar

Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai, India

Roger D. Doherty

Drexel University, Philadelphia, PA, USA

Edited by Robert W. Cahn

Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Pergamon is an imprint of Elsevier

Pergamon is an imprint of Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

First edition 2007

Copyright © 2007 Elsevier Ltd. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is availabe from the Library of Congress

ISBN: 978-0-08-044497-0

For information on all Pergamon publications visit our website at books.elsevier.com

Printed and bound in Great Britain

07 08 09 10 11 10 9 8 7 6 5 4 3 2 1

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

Dedication

This book is dedicated to the late Robert W. Cahn (1924–2007), who encouraged the writing of this volume and edited it with his usual clear insights into both Materials Science and good writing. One of the co-authors (RDD) was mentored by Robert over many years, offering him invaluable help, insights and lively discussion on many topics.

Robert W. Cahn made many important contributions to Materials Science, including the successful hypothesis, made while he was still a graduate student, that recrystallization nuclei grew from, what were then called, polygonized cells, and so had orientations produced by the prior deformation. That idea has been at the heart of recrystallization research for the last 60 years. This page intentionally left blank

Preface			xvii
List	xix		
Abbı	eviation	ns	xxi
PAR	T I: SC	CIENCE	
CHA	PTER	1	
Gen	eral Int	troduction	3
CHA	PTER	2	
Mici	ostruc	ture and Properties	9
2.1.	Introd	luction	9
2.2.	Micro	ostructure	9
	2.2.1	Solidification	11
	2.2.2	Interfaces	17
2.3.	Properties		24
	2.3.1	Physical Properties	26
	2.3.2	Chemical Properties	26
	2.3.3	Mechanical Properties	26
	2.3.4	Electrical Properties	28
	2.3.5	Magnetic Properties	29
	2.3.6	Thermal Properties	30
Liter	ature		30
СНА	DTED	3	

CIIA	FILK	5	
Plast	ticity		33
3.1.	Introduction		33
3.2.	Funda	amentals	33
	3.2.1	Flow Stresses and Strains	33
	3.2.2	Generalized Stresses and Strains	35
	3.2.3	Yield Criteria	37
3.3.	Stress	S–Strain Relations	39
3.4.	Plasti	c Anisotropy	42

viii		Contents	
3.5.	Fractu	ire	46
	3.5.1	Failure Mechanisms	48
Liter	ature		54
CHA	PTER	4	
Wor	k Hard	lening	57
4.1.	Introd	luction	57
4.2.	'Low'	Temperature	57
	4.2.1	Basic Microscopic Mechanisms	57
	4.2.2	Influence of Alloying Elements	67
4.0	4.2.3	Microscopic Hardening Laws	72
4.3.	Hot L	Deformation	75
	4.3.1	Flow Stresses	75
. .	4.3.2	Hot Deformation Microstructures	79
	DTED	-	01
CHA	APTER	5 Asshanisma	05
50IU	Internal	lection	83
5.1.	Daga		83
3.2.	5 2 1	Personana Machanisma	80
	5.2.1	Recovery Vinctian	00
	5.2.2	Structural Changes During Pacovery	90
	5.2.5	Extended Decovery/Continuous Decrystallization	91
53	D.2.4	establization	92
5.5.	5 3 1	Sources of Recrystallized Grains	05
	532	Recrystallization Mechanisms	95
	533	Recrystallization Kinetics	100
	534	Role of Second Phase	100
	535	Dynamic Recrystallization	101
54	Grain	Coarsening	102
э.т.	5 4 1	Theories of Grain Coarsening	105
	542	Factors Affecting Grain Growth	106
Liter	ature	ractors referring Grain Growth	108
1001			100

CHAPTER 6

Alternative Deformation Mechanisms		
6.1.	Introduction	111
6.2.	Deformation Mechanism Maps	111

viii

6.3.	Creep		113
	6.3.1	The Creep Curve	113
	6.3.2	Creep Mechanisms	115
	6.3.3	Influence of the Microstructure	116
6.4.	Grain	Boundary Sliding	116
	6.4.1	GBS and Superplasticity	116
	6.4.2	Conditions for Superplasticity	118
6.5.	Twinn	ling	121
	6.5.1	Introduction	121
	6.5.2	Twinning Mechanism	122
	6.5.3	Influence of Some Parameters on Twinning	123
	6.5.4	Twinning and Deformation	124
Liter	ature		126

ix

CHA	PTER	7		
Phas	e Trans	sformations	129	
7.1.	Introd	uction	129	
7.2.	The T	hermodynamic Basics	130	
7.3.	Nucleation and Growth-Type Transformation		132	
	7.3.1	Nucleation	133	
	7.3.2	Growth	135	
	7.3.3	Kinetics	137	
	7.3.4	Formation of Metastable Phases	138	
	7.3.5	Invariant Plane Strain Transformation	140	
	7.3.6	Selected Examples on Different Mechanisms and/or		
		Structures	142	
7.4.	Spinodal Decomposition 149			

CHAPTER 8

Textural Developments During Thermo-Mechanical Processing			153	
8.1.	Introd	Introduction		
8.2.	.2. Graphical Representation of Texture Data			
	8.2.1	Grain Orientation	154	
	8.2.2	Pole Figures	155	
	8.2.3	Inverse Pole Figures	157	
	8.2.4	Orientation Distribution Functions	159	
8.3.	Some	Important Cold Deformation Textures	165	
	8.3.1	Introduction	165	
	8.3.2	Axisymmetric Deformation	166	

	8.3.3	Plane Strain Deformation of fcc Materials	168
	8.3.4	Plane Strain Deformation of bcc Materials	172
	8.3.5	Plane Strain Deformation of Hexagonal Materials	172
8.4.	Recry	stallization Textures	174
	8.4.1	Introduction	174
	8.4.2	Oriented Nucleation or Oriented Growth: Half a Century	
		of Discussions	175
	8.4.3	Some Important Recrystallization Textures in Rolled	
		fcc Metals	176
	8.4.4	Some Important Recrystallization Textures in Rolled	
		bcc Metals	179
8.5.	Textur	es in Hot Deformed Materials	180
	8.5.1	Introduction	180
	8.5.2	Hot Deformation Textures in Al Alloys	181
	8.5.3	Transformation Textures in Steel	181
Liter	ature		183

CHAPTER 9

Resi	dual Stress	187
9.1.	Introduction	187
9.2.	Types of Residual Stress	188
9.3.	Continuum Approach to Residual Stress	189
9.4.	Origin of Residual Stress	190
9.5.	Residual Stress Measurements	192
9.6.	Micro-Stress Analysis – A Tool for Estimating Dislocation	
	Densities	197
9.7.	Residual Stress and Crystallographic Texture	199
Liter	ature	201

CHAPTER 10

Modelling			205
10.1.	Introdu	Introduction	
10.2.	Deform	nation Textures	206
	10.2.1	Principles of Deformation Texture Formation	207
	10.2.2	Simulated Deformation Textures	214
10.3.	Recove	ry and Recrystallization	215
	10.3.1	General Transformation Kinetics	218
	10.3.2	Recovery Kinetics	221

		Contents	xi
Litera	10.3.3 ture	Recrystallization	223 231
PART	T II: TEC	HNOLOGY	
CHAI	PTER 11		
Form	ing Techı	niques	237
11.1.	General	Introduction	237
	11.1.1	Friction and Lubrication	237
	11.1.2	TMP Furnaces	244
Litera	ture		246
11.2.	Rolling		246
	11.2.1	Introduction	246
	11.2.2	Rolling Equipment	248
	11.2.3	Mechanics	251
	11.2.4	Typical Rolling Schedules	258
Litera	ture		262
11.3.	Extrusic	Dn	262
	11.3.1	Introduction	262
	11.3.2	Deformation Conditions	264
	11.3.3	Steels and High Melting Temperature Alloys	266
	11.3.4	Aluminium Alloys	267
Litera	ture		269
11.4.	Wire dra	awing	269
	11.4.1	Introduction	269
	11.4.2	Wire Drawing Machines	270
	11.4.3	Wire Drawing Dies	271
	11.4.4	The Drawing Force	273
	11.4.5	Some Important Metallurgical Factors	275
	11.4.6	Drawing of Metal Fibres	278
Litera	ture		279
11.5.	Forging		279
	11.5.1	Introduction	279
	11.5.2	Forging Equipment	280
	11.5.3	Forging Dies	282
	11.5.4	Friction and Lubrication in Forging	284
	11.5.5	Forging Optimization	284
	11.5.6	Forgability	287
Litera	ture		289

11.6.	Pilgerin	ıg	289
	11.6.1	Introduction	289
	11.6.2	Pilgering Equipment and Process	291
	11.6.3	Optimization in Pilgering	295
	11.6.4	Materials Aspects	296
Literature		297	
11.7.	Sheet M	Aetal Forming	297
	11.7.1	Introduction	297
	11.7.2	Plastic Anisotropy	298
	11.7.3	Forming Limit Diagrams	301
	11.7.4	Stretch Forming	304
	11.7.5	Deep Drawing	306
	11.7.6	Bending and Folding	311
	11.7.7	Other Techniques	314
Literature			317
11.8.	Hydrofo	orming	317
	11.8.1	Introduction	317
	11.8.2	Sheet Hydroforming	318
	11.8.3	Tube Hydroforming	318
	11.8.4	Important Parameters	320
Literature		322	
11.9.	Hipping	5	322
	11.9.1	Introduction	322
	11.9.2	Densification Mechanisms	322
	11.9.3	Hipping Equipment	325
	11.9.4	Typical Applications	326
Litera	ture		327
11.10	. Superpl	lastic Forming	327
	11.10.1	Technology	327
	11.10.2	Thinning	329
	11.10.3	Cavitation	330
Literature			332

CHAPTER 12

Defect	ts in The	rmo-Mechanical Processing	335
12.1.	Introdu	ction	335
12.2.	Form Defects		336
12.3.	Surface	Defects	336
	12.3.1	Deformation or Forming Process-Induced Surface Defects	338
	12.3.2	Environment-Induced Surface Defects	341

xii

		Contents	xiii
	12.3.3	Surface Defects Related to Coating	343
12.4.	Fracture	e-Related Defects	344
	12.4.1	Edge Cracking	344
	12.4.2	Alligatoring	344
	12.4.3	Central Burst	346
	12.4.4	Wire-Drawing Split	346
12.5.	Strain L	Localizations	347
12.6.	Structur	ral Defects	348
Literature		348	

CHAPTER 13

Physic	cal Simulation of Properties	351
13.1.	Introduction	351
13.2.	Tensile Testing	352
13.3.	Hot Torsion Tests	352
13.4.	Compression Tests	355
	13.4.1 Uniaxial Compression	355
	13.4.2 Plane Strain Compression	357
13.5.	Mixed Strain Path Tests	361
	13.5.1 Lab-Scale Tests	361
	13.5.2 Downgrading of Industrial Processes	361
13.6.	Typical Sheet Formability Tests	362
	13.6.1 Bending	363

PART III: CASE STUDIES

CHAP	TER 14		
Thern	10-Mech	anical Processing of Aluminium Alloys	367
14.1.	Alumin	ium Beverage Cans	367
	14.1.1	Introduction	367
	14.1.2	The Production of a Beverage Can	369
	14.1.3	The Production of Can Body Sheet	375
	14.1.4	Recycling	382
	14.1.5	An Alternative Material: Steel	385
14.2. Aluminium Sheets for Capacitor Foils		ium Sheets for Capacitor Foils	385
	14.2.1	Introduction	385
	14.2.2	Capacitor Requirements	386
	14.2.3	The Process	388
	14.2.4	Cube Texture Control Mechanisms	389

14.3.	Aluminium Matrix Composites		390
	14.3.1	Introduction	390
	14.3.2	Processing	391
	14.3.3	Hot Extrusion	391
14.4.	Thick Plates for Aerospace Applications		398
	14.4.1	Introduction	398
	14.4.2	Integral Structures	400
	14.4.3	Metallurgical Improvements through TMP	400
Acknowledgements		404	
Litera	ture		404

CHAPTER 15

Thern	10-Mech	anical Processing of Steel	407
15.1.	. Steel for Car Body Applications		
	15.1.1	Introduction	407
	15.1.2	Batch Annealed Al-Killed Low-Carbon Steel	408
	15.1.3	Continuous Annealed Low-Carbon Steel	411
	15.1.4	Interstitial-Free Steels	413
	15.1.5	Trend towards Higher Strength Steels	414
15.2.	Dual Pl	nase and TRIP Steels	417
	15.2.1	Introduction	417
	15.2.2	Dual Phase Steel	417
	15.2.3	TRIP Steel	419
15.3.	Control	led Rolling of HSLA Steels: Pipeline Applications	425
	15.3.1	Introduction	425
	15.3.2	Controlled Rolling	425
	15.3.3	HSLA Steel for Pipelines	428
15.4.	Electric	cal Steels	429
	15.4.1	Introduction	429
	15.4.2	A Few Relevant Basics on Magnetism	430
	15.4.3	Role of Chemistry	432
	15.4.4	Role of Crystallographic Texture, Stress and Grain Size	434
	15.4.5	Non-Oriented Electrical Steels (CRNO)	437
	15.4.6	Grain-Oriented Electrical Steels	438
15.5.	Patente	d Steel Wires – from Bridges to Radial Tyres	442
	15.5.1	Introduction	442
	15.5.2	The Patenting Process	442
	15.5.3	The Mechanical Properties	445
Ackno	wledgen	nents	448

xiv

~~~ ~			
CHAP	TER 16		
Thern	no-Mech	nanical Processing of Hexagonal Alloys	451
16.1.	Zirconi	um Alloys for Nuclear Industry	451
	16.1.1	Introduction	451
	16.1.2	Zirconium and its Alloys	453
	16.1.3	Structure–Property Correlation in Zr Alloys	456
	16.1.4	TMP of Zirconium Components	459
Literature			464
16.2.	Titaniu	m Forgings in the Aerospace Industry	464
	16.2.1	Introduction	464
	16.2.2	Some Physical Metallurgy of Ti Alloys	465
	16.2.3	Hot Working Conditions	467
	16.2.4	General $\alpha/\beta$ Alloys	468
	16.2.5	Near-α Alloys	471
	16.2.6	$\beta$ and Near- $\beta$ Alloys	472
Ackno	wledgen	nents	473
Literat	ture		473

#### CHAPTER 17

New T	echnolog	gies	477
17.1.	Submic	ron Materials by Severe Plastic Deformation	477
	17.1.1	Introduction	477
	17.1.2	Geometrical Dynamic Recrystallization	477
	17.1.3	Severe Plastic Deformation	479
	17.1.4	Properties of Submicron Materials Obtained by SPD	485
Literature			488
17.2.	Grain Boundary Engineering for Local Corrosion Resistance in		
	Austeni	tic Stainless Steel	488
	17.2.1	Introduction	488
	17.2.2	Sensitization Control	488
	17.2.3	Ability to Alter Grain Boundary Nature	490
	17.2.4	Sensitization and Grain Boundary Nature	491
Refere	ences		495

#### Index

519

xv

This page intentionally left blank

# Preface

The present volume is the eleventh in the Pergamon Materials Series, but only the first with avowedly technological subject matter. The thermo-mechanical processing of metals and alloys is right at the heart of materials engineering, and at the same time it is firmly linked with the underlying science of plastic deformation, recrystallization and texture formation.

Accordingly, the book includes a broad spectrum of subject matter from basic science to production engineering . . . in fact, Materials Science and Engineering (MSE).

It is barely more than a century since Walter Rosenhain uncovered the basic mechanism of plastic deformation of crystalline metals; another 20 years had to elapse before X-ray diffraction had become available to study the formation of textures, and another 30 years after that before electron microscopy was mature enough to reveal fine detail of the microstructural processes involved in recrystallization. All these came together, together with modern developments in mechanical engineering, to create the methods used in the shaping of containers and other components made of aluminium alloys, steels, titanium and zirconium, the description of which represents the culmination of this intriguing book.

I have pleasure in commending to our readership this exemplification of MSE at its best.

Robert W. Cahn (Series Editor) Cambridge This page intentionally left blank

# List of Symbols

This list contains the most important symbols used in the text. Occasionally some letters or symbols are used for other purposes; this is specifically stated in the text.

b	Burgers vector
В	Magnetic induction
С	Concentration
d	Subgrain diameter
D	Diameter (grain, roll,)
$D_{\rm ob}, D_{\rm b}$	Grain boundary and bulk diffusion coefficients
$E^{\circ}$	Young's modulus
E'	Plane strain Young's modulus
f	Frequency
F	Load
G	Shear modulus
Н	Magnetic field
J	Energy
k	Boltzmann constant
$K, K_1, K_2, \ldots, K_n$	Constants defined in the text
l	Length
т	Strain rate sensitivity coefficient
M	Mass (also mobility)
n	Strain hardening coefficient
Р	Driving pressure
р	Pressure, hydrostatic pressure
Q	Activation energy
R	Gas constant
R _{ext}	Extrusion ratio
$R(\alpha)$	Resistance against thinning in direction $\alpha$
$\overline{R}$	Normal anisotropy
RA	Reduction in area
r	Radius of precipitate
S	Thickness
t	Time
ν	Velocity
V	Volume
W	Width

XX	List of Symbols
W	Work
Ζ	Zener–Hollomon parameter
α	Drawing angle in wire drawing, angle to tensile direction
δ	Boundary thickness
$\Delta R$	Planar anisotropy
γ _{ob}	Grain boundary energy
V _{SFF}	Stacking fault energy
8	Strain in general
3	Von Mises equivalent strain
E _c	Critical strain
$\mathcal{E}_{\mathrm{fr}}$	Fracture strain
$\mathcal{E}_{\mathrm{u}}$	Uniform deformation
E _t	Thickness strain
E _{total}	Total deformation
ε ^o or έ	Strain rate
$\mu$	Friction coefficient
v	Poisson's ratio
$\theta$	Misorientation across a boundary
$\overline{ heta}$	Work hardening
ρ	Dislocation density
$\overline{\sigma}$	Von Mises equivalent stress
σ	Stress in general
$\sigma_{ m f}$	Flow stress during forming
$\sigma_{\rm v}$	Initial flow stress (also YS)
$\sigma_{\rm F}$	Drawing stress in wire drawing
$\sigma_{ m fr}$	Fracture stress
$\sigma_{\rm s}$	Saturation stress
τ	Shear stress
$ au_{ m c}$	Critical shear stress
Ω	Atomic volume

# Abbreviations

bcc	Body-centred cube
CDRX	Continuous dynamic recrystallization
CSL	Coincidence site lattice
DRV	Dynamic recovery
DSC	Differential scanning calorimetry
DRX	Dynamic recrystallization
EBSD	Electron backscatter diffraction
fcc	Face-centred cube
FLD	Forming limit diagram
HAGB	High-angle grain boundary
hcp	Hexagonal closed packed
HIP	Hot isostatic pressing
JMAK	Johnson–Mehl–Avrami–Kolmogorov kinetic model
LDR	Limiting drawing ratio
ND, RD, TD	Normal, rolling, transverse direction
ODF	Orientation distribution function
PSN	Particle-stimulated nucleation
SEM	Scanning electron microscope
SFE	Stacking fault energy
SRX	Static recrystallization
TEM	Transmission electron microscope
UTS	Ultimate tensile strength
YS	Yield strength

This page intentionally left blank

# **PART I: SCIENCE**

Chapter 1 General Introduction This page intentionally left blank

# Chapter 1 General Introduction

Most metal-forming operations have two direct consequences. On a 'macroscopic scale' the desired shape change is obtained and on a 'micro scale' the microstructure of the material is changed. This microstructure is related to the mechanical and physical properties of the metal and is heavily dependent on external parameters such as temperature, strain, strain rate, deformation mode, lubricants, etc.

The blacksmith in ancient times was mainly concerned with the macroscopic shape change, but modern metal industry requires thermo-mechanical processes that lead to a product with optimal properties, not only for dimensional precision and appearance, but also with respect to the mechanical and physical properties (Figure 1.1).

Thermo-mechanical processing (TMP) describes the set of heating and shaping operations by which relatively simple, basic materials are converted into highquality components. The term is principally applied to the processing of metallic alloys but extensions to ceramics, polymers and many of their combinations are increasingly being developed. It is as old as mankind and as new as the latest microelectronic device. One of the earliest examples is of course the forging of bronze (copper–tin alloys) for both tools and personal decoration in the Bronze Age (~3000 BC); as-cast alloys were subjected to a sequence of heating and plastic deformation operations to shape the component and simultaneously improve the material properties, usually strength and tenacity. The basic idea has changed



Figure 1.1. Metal forming: a combination of a desired shape change with a controlled microstructure.

little over the centuries but the industrial machines and levels of scientific understanding have undergone a dramatic transformation, essentially in the last 50 years. In particular, the role of microstructure evolution during shaping is now widely accepted as critical for understanding and relating the process/material/ property combinations.

The subject is usually treated in two separate parts: mechanical processing (as a branch of mechanics) and physical metallurgy (as part of materials science). One of the aims of the present book is to bring the two disciplines closer together to develop a more unified approach that could facilitate new advances in the field. Although TMP is a dynamic subject of modern research, books on the subject are rare, if non-existent. The aim of the present text is to give an overview of the main manufacturing processes, but also to provide some understanding of the complicated relations between a forming process and the microstructure of a metal on one hand, and between this microstructure and the mechanical properties on the other.

In Part I, *Science*, the microstructural science of the subject is treated. It is assumed that most readers have already acquired some typical undergraduate-level knowledge of material science. Those readers can probably skip Chapters 2 and 3, which provide an elementary survey and suggestions, for further reading about microstructures and properties of materials and about plasticity. The other chapters of Part I treat, at a more advanced level, important issues such as work hard-ening, softening mechanisms (recrystallization), texture and residual stresses. Deformation mechanisms like creep and superplasticity are introduced and the influence of phase transformations on TMP is highlighted. Since more and more predictive models concerning TMP operations are being developed, the last chapter will focus on this rapidly expanding field.

In Part II, *Technology*, the most important metal-forming operations are described. The paragraphs on primary forming processes such as rolling, extrusion, forging and wire drawing are mainly focussed on the 'macro scale' (shaping a metallic part) although here also some connections with microstructural control will be made. In the chapter about 'sheet metal forming', some forming operations like deep drawing, bending, stretching and incremental forming will be explained. A key point in this chapter is the relation between plastic anisotropy and formability. Some advanced forming operations like hydroforming, hipping and superplastic forming will end this extensive chapter on forming operations. An overview of the major macroscopic problems that may arise during metal forming, is provided in Chapter 12 and as far as possible, the microstructural origins of those macroscopic problems are discussed. Finally, Chapter 13 will illustrate the possibilities of measuring material properties and studying material behaviour during TMP-type deformation on a labscale.

The third part of this book, *Case studies*, is mainly devoted to the 'micro scale'. In a number of examples the TMP of some products is analysed and discussed. These case studies show how properties can be successfully optimized by a careful control of the microstructure during processing. Examples from the aluminium industry include the processing of beverage cans, capacitor foil, extrusion of metal matrix composites and rolling of thick plates for aerospace applications. The TMP of steel products is illustrated with a case study on steel for car bodies, a short description of the development of dual phase and TRIP steels, the concept of controlled rolling of HSLA steel, a discussion on the production of electrical steel and the patenting of steel wires. Two examples of successful processing of hexagonal metals are provided with a discussion about Zr for the nuclear industry and Ti for aero-space applications. Finally, some new developments are discussed: the production of sub-micron materials by severe plastic deformation and an example of 'grain boundary engineering' to improve the local corrosion resistance of stainless steel.

This textbook is written at the level of an advanced Master course. It is our hope that it can serve as a course textbook for students taking a course on TMP. On the other hand, this book is also intended for engineers in industry. It will offer them a coherent overview of the field and provide them references to the most important literature.