

Tasting and Smelling

Edited by Gary K. Beauchamp Linda Bartoshuk

Handbook of Perception and Cognition Second Edition

Tasting and Smelling

Handbook of Perception and Cognition 2nd Edition

Series Editors Edward C. Carterette and Morton P. Friedman

Tasting and Smelling

Edited by Gary K. Beauchamp

Monell Chemical Senses Center Philadelphia, Pennsylvania

Linda Bartoshuk

Yale University School of Medicine Department of Surgery New Haven, Connecticut

Academic Press

San Diego London Boston New York Sydney Tokyo Toronto This book is printed on acid-free paper \bigotimes

Copyright © 1997 by ACADEMIC PRESS

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Academic Press a division of Harcourt Brace & Company 525 B Street, Suite 1900, San Diego, California 92101-4495, USA http://www.apnet.com

Academic Press Limited 24-28 Oval Road, London NW1 7DX, UK http://www.hbuk.co.uk/ap/

Library of Congress Cataloging-in-Publication Data

Tasting and smelling / edited by Gary K. Beauchamp, Linda Bartoshuk
p. cm. -- (Handbook of perception and cognition, 2nd edition)
Includes bibliographical references and index.
ISBN 0-12-161958-3 (alk. paper)
1. Taste. 2. Smell. I. Beauchamp, Gary K. II. Bartoshuk,
Linda. III. Series: Handbook of perception and cognition (2nd ed.)
QP456.T372 1997
612.8'7--dc21
97-22352
CIP

 PRINTED IN THE UNITED STATES OF AMERICA

 97
 98
 99
 00
 01
 02
 EB
 9
 8
 7
 6
 5
 4
 3
 2
 1

Contents

Co	ntributors	ix
Pre	face	xi
1	Biophysics of Taste	
	Joseph G. Brand	
	I. Introduction	1
	II. Salty Taste Transduction	3
	III. Sour Taste Transduction	5
	IV. Sweet Taste Transduction	9
	V. Bitter Taste Transduction	11
	VI. Umami Taste Transduction	14
	VII. The Question of Receptors	15
	VIII. G Proteins	16
	IX. Biophysics and Behavior: Is There a Link?	17
	References	19
2	The Neural Code and Integrative Processes of Taste	
	David V. Smith and Mark B. Vogt	
	I. Introduction	25
	II. Taste System Anatomy	26
	A. Taste Bud Populations	26
	B. Innervation of Taste Buds	26
	C. Central Taste Pathways	27

III. Physiology of Gustatory Afferent Neurons	29
A. What Is Being Coded?	29
B. Electrophysiology of Peripheral Taste Fibers	32
C. Differential Gustatory Inputs to the Brain Stem	42
IV. Coding of Taste Quality	44
A. Taste Coding Theories	44
B. Gustatory Neuron Types: Is Taste Coded	
by Labeled Lines?	48
V. Integrative Mechanisms of Taste	52
A. Special Visceral Afferent System	53
B. Taste Reactivity	55
C. Interaction between Appetitive and Aversive	
Taste Stimuli	58
D. Inhibitory Mechanisms in the Brain Stem	62
References	67

3 *Psychophysics of Taste*

Bruce P. Halpern

I. Prologue	77
A. The Nature of This Chapter	77
B. Three Very Short Stories	78
II. Introduction	80
A. Taste and Human Behavior	80
B. Natural Complexity and Laboratory Reductions	81
III. Some Fundamental Questions of Taste Psychophysics	83
A. What Are Taste Stimuli?	83
B. Theory: Is Taste Perception Four Discrete, Independent	
Processes or a Pattern of Overlapping Events?	87
C. Is Taste an Ongoing Process That Should Be Studied	
over Time?	102
D. What Are the Proper or Permissible Responses to the	
Question: "What Does It Taste Like?"	108
E. Categories of Psychophysical Relationships	110
IV. Overview	114
References	116
Olfactory Psychophysics	

Harry T. Lawless

4

I. Introduction	125
A. Requirements for a Comprehensive Theory of	
Odor Perception	126

Contents	vii
----------	-----

II. Detection and Thresholds	129
A. Measurement of Thresholds	129
B. Individual Differences and Anosmia	132
III. Intensity Relationships	136
A. Discrimination Issues	136
B. Psychophysical Functions	138
C. Adaptation	140
IV. Mixtures	141
A. Interest in Mixtures; What Is a Mixture?	141
B. Intensity Issues: Inhibitory Interactions	142
C. Enhancement	145
D. Blending versus Component Identification	147
V. Informational Content of Odors	150
A. Discrimination and Channel Capacity	150
B. Identification and the Olfactory–Verbal Gap	151
C. Odor Recognition Memory and Imagery	153
VI. Odor Categories	156
A. Impediments to Classification	156
B. Hierarchies	158
C. Commonalities among Systems	159
D. Local Spaces	160
E. Effects of Context and Contrast	163
VII. Issues, Needs, and Directions	164
A. What Is the Metric for Odor Quality and the Model	
for Similarity?	164
B. Functional Significance of Specific Anosmia	166
C. Odor Cognition and Odor Decisions	167
References	168

5 Clinical Disorders of Smell and Taste

Beverly J. Cowart, I. M. Young, Roy S. Feldman, and Louis D. Lowry

I. Introduction	175
II. Smell versus Taste: Confusion and Relative Vulnerabilities	176
III. Smell Disorders	177
A. Terminology	177
B. Assessment	178
C. Etiologies	180
D. Prognosis	185
IV. Taste Disorders	
A. Terminology	187
B. Assessment	187

C. Etiologies	189
D. Prognosis	192
V. Conclusion	192
References	193

6	<u>771.</u>	0		F1	Demonstern
U	1 ne	Ontogeny	of Human	Flavor	Perception

Julie A. Mennella and Gary K. Beauchamp	
I. Introduction	199
II. Sensory Systems That Detect Flavor	200
A. Taste	200
B. Olfaction	201
III. Responsiveness of the Fetus and Premature Infant to Flavors	201
A. Taste	201
B. Olfaction	202
IV. Taste and Olfactory Perception during Human Infancy	203
A. Taste	203
B. Olfaction	206
V. Early Responsiveness by the Human Infant to Flavor:	
Example of Mother's Milk	207
A. Folklore on the Choice of Wet Nurse and	
Infant Feeding	207
B. Transfer of Volatiles to Milk: Dairy Cattle	208
C. Effects of Early Flavor Experiences on the	
Behavior of Nurslings	209
D. Flavor of Human Milk and Effects on the Infant	210
VI. Conclusions and Future Directions	214
References	216

Index

223

Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

Gary K. Beauchamp (199) Monell Chemical Senses Center Philadelphia, Pennsylvania 19104

Joseph G. Brand (1) Monell Chemical Senses Center Philadelphia, Pennsylvania 19104

Veterans Affairs Medical Center Philadelphia, Pennsylvania 19104

Beverly J. Cowart (175) Monell Chemical Senses Center Philadelphia, Pennsylvania 19104

Department of Otolaryngology Head and Neck Surgery Thomas Jefferson University Philadelphia, Pennsylvania 19107

Roy S. Feldman (175) Veterans Affairs Medical Center Philadelphia, Pennsylvania 19104

Bruce P. Halpern (77) Department of Psychology and Section of Neurobiology and Behavior Cornell University Ithaca, New York 14853

Harry T. Lawless (125) Department of Food Science New York College of Agriculture and Life Sciences Cornell University Ithaca, New York 14853

Louis D. Lowry (175) Department of Otolaryngology Head and Neck Surgery Thomas Jefferson University Philadelphia, Pennsylvania 19107

Julie A. Mennella (199) Monell Chemical Senses Center Philadelphia, Pennsylvania 19104

David V. Smith (25) Department of Anatomy and Neurobiology University of Maryland School of Medicine Baltimore, Maryland 21201

Mark B. Vogt (25) Department of Anatomy and Neurobiology University of Maryland School of Medicine Baltimore, Maryland 21201

I. M. Young (175) Department of Otolaryngology Head and Neck Surgery Thomas Jefferson University Philadelphia, Pennsylvania 19107 This Page Intentionally Left Blank

Preface

This book consists of six chapters covering a variety of topics on taste and smell research. It is not intended to be a complete overview of research in the chemical senses. The authors of these essays were encouraged to emphasize their own perspectives on important issues in the field. They were particularly asked to address unanswered questions and neglected research topics. Consequently, each of the chapters provides a point of view on an important and often controversial research area in the chemical senses. The editors also chose not to include chapters in several areas that have been thoroughly and frequently reviewed. For example, olfactory transduction and CNS processing have received considerable attention elsewhere and thus are not treated here.

Each of the first three chapters is concerned with the sense of taste. As befits this research area, the question of whether there are "primary" or "basic" tastes (e.g., whether taste experience can be classified into a small number of categories, namely, sweet, sour, salty, bitter, and perhaps a few others) is implicitly or explicitly a central issue in all three chapters. In his overview of the biophysics of taste, Brand argues in Chapter 1 that the sense of taste can be conveniently divided into discrete categories, most likely four or five, and he discusses the transduction mechanisms underlying these categories. Within each of these categories, he shows that multiple receptor and transduction mechanisms exist. The remarkable progress in unraveling these molecular and cellular processes forms the bulk of this chapter.

Smith and Vogt, in Chapter 2, on neural codes and integrative processing of taste, argue that the goal of the neurophysiologist is to trace the pathways and elucidate the mechanisms of information processing throughout the central nervous system. They point out, however, that because individual taste fibers are often responsive to stimuli that elicit more than one of these categorical experiences (e.g.,

sucrose and NaCl; sweet and salty), these categories cannot arise through a strict straight-line mechanism where each fiber carries information on only a single taste quality. Moreover, taste nerve fibers also are influenced by tactile and other nontaste stimuli, further confusing the issue. Nevertheless, Smith and Vogt marshal an impressive array of evidence indicating that while no individual taste fiber is exclusively responsive to a single taste quality, the fibers do have a rough specificity. From this complexity, Smith and Vogt delineate the reasons that there is still sentiment for the idea that taste coding is similar to coding in color vision. They argue that, in taste, activity of one fiber type is insufficient to discriminate between stimuli of different taste qualities; that is, salt-best fibers do not, by themselves, signal saltiness.

Halpern, in his treatment of the psychophysics of taste, in Chapter 3, focuses on a perceptual phenomenon, the nature of taste mixtures. He provides a sophisticated account of the complexity inherent in the old debate over whether taste mixtures are analytic (i.e., the components are individually perceived) or synthetic (i.e., the components lose their identities and a new quality emerges). This old debate remains important because of the argument that it is linked to the coding debate (e.g., there is a presumption that labeled-lines would result in analytic mixing while quality coding dependent on multiple fibers would result in synthetic mixing). Halpern goes on to argue that the general acceptance by researchers of a small number of taste qualities is premature and dangerously influences the kinds of experiments investigators undertake. Instead, he draws the reader's attention to the taste complexities of real foods and to studies by investigators who argue against what he calls the basic taste theory.

In considering the utility of basic taste theory, Brand and Smith and Vogt note an interesting taste phenomenon: certain chemical compounds appear to be able to specifically eliminate one or more of the basic tastes without substantially altering other taste sensations. For humans, one dramatic instance of this is the effect of lactisole (the sodium salt of 2-[4-methoxyphenoxy]-propanoic acid) on sweet taste. It appears that this compound blocks sweetness of all substances (with perhaps a very few exceptions). This observation may have profound implications for understanding the molecular mechanisms for taste transduction and for theoretical considerations concerning the existence of a small set of taste experiences (not compounds) out of which all others are constructed. If we were able to identify similar specific blockers of bitter, salty, sour, and perhaps umami taste qualities, would every sapid substance be thereby rendered tasteless? If for no other reason than testing this hypothesis, a search for such blockers is of great theoretical as well as obviously practical interest.

Beyond the issue of basic tastes or taste primaries, Brand's chapter provides a fine overview of the fascinating details of taste transduction and provides hints as to how knowledge here—sometimes ignored by those interested in behavior—should have a profound impact on our understanding of taste perception. Smith and Vogt emphasize the role of taste as a hedonic system and one that impacts ingestive behavior and physiology. That taste is a sensory system with but a single major func-