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Preface 

The subject of oscillators has been somewhat of a dilemma; on the one hand, 
we have never lacked for mathematically oriented treatises~the topic 
appears to be a fertile field for the 'long-haired' approach. These may serve 
the needs of the narrow specialist, but tend to be foreboding to the working 
engineer and also to the intelligent electronics practitioner. On the other 
hand, one also observes the tendency to trivialize oscillator circuits as 
nothing more than a quick association of logic devices and resonant circuits. 
Neither of these approaches readily provides the required insights to devise 
oscillators with optimized performance features, to service systems highly 
dependent upon oscillator behaviour, or to understand the many trade-offs 
involved in tailoring practical oscillators to specific demands. Whereas it 
would be unrealistic to infer that these two approaches do not have their 
place, it appears obvious that a third approach could be useful in bringing 
theory and hardware together with minimal head-scratching. 

This third approach to the topic of oscillators leans heavily on the concept 
of the universal amplifier. It stems from the fact that most oscillators can be 
successfully implemented with more than a single type of active device. 
Although it may not be feasible to directly substitute one active device for 
another, a little experimentation with the d.c. supply, bias networks, and 
feedback circuits does indeed enable a wide variety of oscillators to operate 
in essentially the same manner with npn or pnp transistors, N-channel of 
P-channel JFETs, MOSFETs, op amps or ICs, or with electron tubes. 
Accordingly, this book chooses to deal with basic operating principles 
predicated upon the use of the universal active-device or amplifier. This 
makes more sense than concentrating on a specific device, for most oscillator 
circuits owe no dependency to any single type of amplifying device. 

Once grasped, the theory of the general oscillator is easily put to practical 
use in actual oscillators where concern must be given to the specific active 
device, to hardware and performance specifications, and to component 
values. To this end, the final section of the book presents numerous 
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solid-state oscillators from which the capable hobbyist and practical engin- 
eer can obtain useful guidance for many kinds of projects. 

It is felt that the reader will encounter little difficulty acclimatizing to the 
concept of the universal amplifier, for it is none other than the triangular 
symbol commonly seen in system block diagrams. Although it hasn't been 
widely used in conjunction with other circuit symbols, the combination 
works very well with oscillators. It is respectfully submitted that this book 
will thereby serve as a unique format for useful information about oscillators. 

The symbol used for a.c. generator is usually assumed to be a constant 
voltage generator, i.e., with zero internal resistance. However, in many 
instances in this book, it must be assumed to be a constant current generator, 
or at least to have a high internal resistance. For example, this is the case in 
Fig. 1.41, where if the generator shown is an ideal voltage generator, it will 
short out L~. This will a}ter circuit operation and make the quoted formula 
for3~ wrong. It is recommended therefore that the reader bear this in mind 
when presented with an a.c. generator in this book. 

Irving M. Gottlieb PE 



Frequency-determining 
elements of oscillators 

A good way to understand oscillators is to view them as made up three 
essential sections. These are: 

* the frequency-determining section 
o the active device 
* a source of d.c. power 

The validity of this viewpoint does not require that the three sections be 
physically separate entities. This chapter will treat the characteristics of the 
elements involved in the frequency-determining section. 

Parallel-tuned LC circuit 
Academically and practically, the parallel LC arrangement known as a 'tank' 
circuit is the most important element for us to become familiar with. In its 
simplest and most frequently encountered form, it is made up of a single 
inductor and a single capacitor. Whether or not we desire it, the inevitable 
'uninvited guests', a number of dissipative losses, are always present. (See 
Fig. 1.1.) In the circuit, these losses behave as resistances. Their presence 
can, indeed, be closely simulated by simple insertions of resistance into the 
tank circuit. In Fig. 1.2 we see a possible way in which this can be done. This 
is the most convenient method and will be used frequently in the equations 
for computing the various tank circuit quantities. 

Losses in a tank circuit 
Different losses predominate under different situations. In general, the 
higher the frequency, the greater the radiation loss. Magnetic hysteresis is 



2 Practical Oscillator Handbook 

Skin effect and 
Hysteresis in ohmic losses 
core material inwinding 

Eddy currents j / 
in coil wire . ..|.. / 

AC " "  ~ hysteresis ! ~ ' 1 "  
generator ~ ~ i ~ '  / : - ' r ~  qL .-.~'.:~ J, Leakage I \  

resistance I \ 
/ ~ ~ ,  ::[ ~:~ J in dielectric J \ 

Insulation / ~ "  1 P l a t e~  
losses .:; i, '.:'. J and lead 

:..i :i | resistance 
....~< 

""~ "Eddy currents 
in adjacent 

metal 

Fig. 1.1 Some possible losses in an L C tank circuit 

only of consequence when a ferromagnetic core is used, such as powdered 
iron. The losses due to eddy currents are, in reality, brought about by 
transformer action in which the offending material constitutes a short- 
circuited 'secondary'. This being true, we must expect eddy-current losses 
in the cross-section of the coil winding itself. Skin effect is an a.c. phenom- 
enon that causes the current to concentrate near the surface of the conduc- 
tor. This is because the more central regions of the conductor are encircled 
by more magnetic lines than are the regions closer to the surface (see Fig. 
1.3). The more lines of magnetic force encircling a conductor, the greater 
the inductance of the conductor. Hence, the central regions of a conductor 
carrying alternating current offer higher inductive reactance to the flow of 
current. 

The higher the frequency, the more pronounced is this effect; that is, the 
greater the tendency of current to concentrate at or near the surface, thereby 
reducing the effective cross-section of the conductor. Because ofskin effect, 
the resistance offered to the passage of high-frequency current is much 
higher than the d.c. resistance. (Inductance does not affect the flow or 
distribution of d.c.) We are not surprised that skin-effect losses are reduced 
by using hollow conductors of copper content equal to small gauge wire, 
but which possess a much greater surface area. Also, stranded wire offers 
more surface for high-frequency conduction than does its 'd.c. equivalent' 
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Fig. 1.2 Representation of losses in an L C tank circuit by series 
resistances RL and Rc 

Fig. 1.3 Flux-density from A.C. in a conductor and the high frequency 
skin-effect. At low frequencies most of the current flows throughout the 
cross-section of the conductor. At high frequencies, almost all current is in 
the outer 'skin' of the conductor 

in solid wire. Stranded wire with each individual wire insulated (Litz wire) is 
particularly well suited for the flow of high-frequency current. 

Dielectric hysteresis in insulating materials is the electrostatic counterpart 
of magnetic hysteresis in magnetic materials. A frictional effect is displayed 
by the polarized molecules when they are urged to reverse their charge 
orientation under the influence of an alternating electric field. There are 
other losses. Those described and those shown in Fig. 1.1 are, however, the 
most important. Significantly, in many applications, only the losses in the 
inductor are of practical consequence, for capacitors often have negligible 
losses from the standpoint of many practical oscillator circuits. 

Characteristics of 'ideal' LC resonant circuit 
We find ourselves in a much better position to understand the proprieties of 
an actual 'lossy' tank circuit by first investigating the interesting characteris- 
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Fig. 1.4 Voltage and current in an ideal inductor and capacitor 

tics displayed by an 'ideal' tank circuit in which it is postulated that no losses 
of any kind exist. It is obvious that such an ideal tank circuit must be made 
up of an inductor and a capacitor that, likewise, have no losses. In Fig. 1.4, 
we see the important feature of such ideal elements, i.e., when an a.c. 
voltage is impressed across an ideal inductor or an ideal capacitor, current is 
consumed, but no power is dissipated. Although there is current through 
these elements, and voltage exists across them, the wattmeters show a zero 
reading. This may seem strange at first; such a situation is the consequence of 
the 90 ~ difference in phase between voltage and current. This phase condi- 
tion is shown in Fig. 1.5 for the ideal conductor, and in Fig. 1.6 for the ideal 
capacitor. 

In both instances, power is drawn from the source for a quarter cycle, but 
is returned to the source during the ensuing quarter cycle. This makes the 
power frequency twice that of the voltage or current waves. This need not 
be cause for surprise, since the same situation prevails for a resistance 
energized from an a.c. source. It turns out that the double-frequency power 
curve is of little practical consequence as such. Of  great importance is the 
fact that the negative portions of the power curves in Figs 1.5 and 1.6 
represent power returned to the source; conversely, in the resistance circuit 
of Fig. 1.7 we note there are no negative portions of the power curve. (All 
the power drawn by the resistance is dissipated as heat and/or light; n o  

power is returned to the source at any time.) 

N e g a t i v e  p o w e r  

We observe in Figs 1.5 and 1.6 that sometimes the voltage is positive when 
the current is negative and vice versa. By the algebraic law of signs (the 
product of quantities having unlike signs yields a negative number) it is just 
such occurrences that produce the negative excursions of the power wave- 
form. Also, every time either voltage or currently crosses the zero axis, the 
power wave must also cross the zero axis. (Zero times any number is zero.) 
Inasmuch as the power curve results from multiplying instantaneous voltage 


