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Vl l 

Preface 

NMR has become the most diverse spectroscopic tool available to 
date in biomedical research. It is now routinely used to study biomolecu-
lar structure and dynamics particularly as a result of the recent devel-
opments of a cascade of highly sophisticated multidimensional pulse 
sequences, and of advances in genetic engineering to produce bio-
molecules, uniformly or selectively enriched with ^^C, ^̂ N and ^H. This 
book, written by acknowledged experts, provides an up-to-date treat-
ment of the current status of multi-dimensional NMR, including the 
basic aspects, and its application to problems of biomedical interest. 

William Westler, in Chapter 1, provides a practical introduction to 
two-dimensional NMR through coherent flow network. This description 
makes it easy to conceptualize the pulse sequence details and provides 
a basis for understanding further complicated sequences. In Chapter 2, 
Luciano Mueller and N. Vasant Kumar describe the current status of 
multi-dimensional NMR and its utility in structure determination of 
proteins and nucleic acids. In addition to a brief description of different 
classes of multidimensional experiments they also summarize the spec-
trometer requirements for implementing these sequences. 

Because of the recent developments in molecular biology techniques 
for preparing labeled samples, it is now possible to perform NMR 
studies on large macromolecules. An overview of different procedures 
for isotopic enrichment of proteins by labeled amino acids is given by 
Brian Stockman in Chapter 3. A critical discussion of the advantages 
and disadvantages of different procedures is also provided. Chapter 4, 
by Paul Weber, is a critical survey of a number of methods used for 
structure calculation of proteins from NMR data and provides the user 
with an insight into the process. This chapter also provides a list of 
different options available for structure calculation. 

In order to understand protein function, it is essential to consider the 
internal mobility of proteins, which can be studied by recently intro-
duced methods to measure heteronuclear relaxation. Linda Nicholson, 
Lewis Kay and Dennis Torchia give an introduction to relaxation theory 
including the recently developed pulse sequences to measure relaxation 
parameters in Chapter 5. A discussion of the data processing steps and 
a critical analysis of the motional parameters are also included. The 



entire process is demonstrated with examples of detailed d3mamic 
studies on staphylococcal nuclease. 

Chapters 6 and 7 review the basic NMR methods and their modifica-
tions, particularly useful for resonance assignments in nucleic acids 
and carbohydrates. David Wemmer, in Chapter 6, discusses the steps 
necessary for building solution structure of nucleic acids from the 
available NMR data and the NMR methods for analyzing dynamics of 
nucleic acids. Specific examples are given to illustrate these approaches 
and a critical analysis is given about the specific issues for structural 
studies of DNA, RNA and their complexes with drugs and proteins. In 
Chapter 7, Laiu-a Lemer describes the NMR methods and their appli-
cation to structural analysis of oligosaccharides and their interactions 
with receptors. 

Solid state NMR provides a powerful tool for structural and dynamic 
studies of many biologicgJ molecules not amenable to (a) solution NMR 
studies because of their size or (b) X-ray difiraction because of the 
unavailability of single crystal samples. Alexandra Simmons, Susanta 
Sarkar and Lynn Jelinski, in Chapter 8, outline the differences between 
nuclear interactions in solution and solid state and review the tech-
niques commonly used in solid state NMR to obtain high resolution 
spectra from solid samples. Selected examples fi*om the literature are 
used to demonstrate the application of solid state NMR studies to 
questions of biomedical interest. 

In summary, it is hoped that this book would be usefiil to NMR 
spectroscopists, chemists, biochemists, and to molecular biologists in-
terested in the use of NMR techniques for solving biological problems. 
The intended audience is NMR spectroscopists who are interested in 
biological problems and biologists who would like to use NMR. 

I would like to thank all the authors for their contributions, which 
reflect the opportunities and the challenges of NMR spectroscopy and 
its application to biomedical research. I would also like to thank Mrs. 
Marjorie J. Krog for her help in preparing this book. 

Susanta K. Sarkar 
King of Prussia, PA 

October 1996 
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Foreword 

What would be molecular biology without NMR, and what would be 
NMR without its applications to molecular biology? — The world of 
science would miss a fruitful and exciting field. Next to clinical medi-
cine, molecular biology has become the field most dependent on the 
recent progress in NMR technology. A powerful arsenal of versatile 
tools is available today for studying biomolecular structure and intra-
molecular dynamics. In particular, multi-dimensional spectroscopy has 
expanded in an unprecedented manner the possibilities of gaining 
insight into biological macromolecules. 

This volume provides an up-to-date treatment of NMR methodology 
in view of biomedical research. Basic aspects as well as most refined 
modem pulse techniques are covered by a group of leading NMR 
spectroscopists. The book will undoubtedly prove useful in the hands of 
practising spectroscopists and biochemists who intend to apply modern 
NMR techniques. 

Richard R. Ernst 
Zurich 

October 1996 
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Chapter 1 

Two-Dimensional NMR Spectroscopy: A 
Graphical, "Top-Down'^ Description 

WILLIAM M. WESTLER 

ABSTRACT 

An introduction to the principles and uses of homonuclear and het-
eronuclear two-dimensional NMR spectroscopy is presented. The pulse 
sequences and phase cycling procedures for a few of the most common 
experiments are emalyzed in detail. The experiments are described by 
using a visual description of spin system evolution and coherence 
transfer processes. This method of description allows for the discussion 
of any multidimensional, multinuclear pulse sequence by a "top-down" 
approach. 

1. INTRODUCTION 

Two-dimensional NMR spectroscopy has become a mainstay experi-
ment in many disciplines [1]. The use of two- and higher- dimensional 
NMR has greatly advanced the applications of NMR to biochemical 
systems. Before the introduction of two-dimensional spectroscopy, re-
searchers were generally limited to assigning the few resonances that 
are resolved in one-dimensional spectra or to use specific ^̂ C or ^̂ N 
labels. Over the past decade, techniques have been developed for the 
assignment of most, if not all, of the NMR resonances in a macromole-
cule, while advances in the field of molecular biology have led to the 
production of the necessary isotopically labeled macromolecules. The 
assignment of individual resonances to particular nuclei in the molecules 



provides a multitude of probes with which to interrogate the molecular 
system. With the complete assignment of the proton network, the 
nuclear Overhauser effect 3delds distances between protons in macro-
molecules and, by a variety of methods, three-dimensional structures of 
macromolecules in solution can be obtained. 

The concept of using more than one dimension in NMR spectroscopy 
was first introduced by Jeener [2] and developed by Ernst and cowork-
ers in the late 1970s [3]. Two-dimensional NMR takes advantage of the 
non-linear properties of the nuclear spin system by passing fi-equency, 
amplitude, and phase information fi-om one nucleus to another. The 
transferred information is observed indirectly as a modulation of the 
detected nuclei. The mechanisms of transfer can be classified as inco-
herent or coherent. The incoherent mechanism of information transfer 
uses either the dipolar interaction or physical chemical exchange, 
whereas the coherent mechanism relies on the information being 
passed through the scalar coupling interaction. Most multidimensional 
experiments are of the coherence transfer t3T)e. The information that is 
gained from these experiments is used to connect nuclei that are part 
of a scalar-coupled network of spins. Since the scalar coupling interac-
tion occurs between nuclei that are one to a few chemical bonds apart, 
these experiments are used to obtain information about the primary 
structure of the molecule. The coupling constant information can be 
used to determine various dihedral angles within the scalar-coupled 
network and lends information about molecular secondary structure. 
While the number of experiments that use incoherent trsmsfer of mag-
netization is small, these experiments hold a very important role in the 
determination of molecular structure. From the dipolar interaction, 
through-space distance information is obtained. The measurable dis-
tances are generally less than about 5 A; since the information does not 
rely on the presence of a chemical bond between the interacting nuclei, 
primary, secondary and tertiary structural information is available. 

A number of books [1,4] and review articles [5-7] have been publish-
ed on the principles and uses of 2D NMR spectroscopy and I will not 
repeat the many references contained within those articles. My goal 
here is to present a practical introduction to the principles and uses of 
a few common 2D experiments. As an introduction to two-dimensional 
NMR methods, a simple, although naive, experiment is described that 
shows the fundamentals of multidimensional NMR by describing the 
behavior of nuclei undergoing exchange fi*om one site to another in an 
idealized molecule. An introduction to heteronuclear coherence transfer 


