MARINE GEOLOGY OF KOREAN SEAS

Second Edition

S.K. Chough H.J. Lee S.H. Yoon

Elsevier

Marine Geology of Korean Seas

2nd Edition

This Page Intentionally Left Blank

Marine Geology of Korean Seas

2nd Edition

S.K. CHOUGH

Department of Oceanography, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea

H.J. LEE

Marine Geology Laboratory, Korea Ocean Research and Development Institute, Ansan, P.O. Box 29, Seoul 425-600, Korea

S.H. YOON Department of Oceanography, Cheju National University, Cheju 690-756, Korea

2000 ELSEVIER Amsterdam - Lausanne - New York - Oxford - Shannon - Singapore - Tokyo

ELSEVIER SCIENCE B.V. Sara Burgerhartstraat 25 P.O. Box 211, 1000 AE Amsterdam, The Netherlands

@ 2000 Elsevier Science B.V. All rights reserved.

This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier Science Rights & Permissions Department, PO Box 800, Oxford OX5 1DX, UK; phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also contact Rights & Permissions directly through Elsevier's home page (http://www.elsevier.nl), selecting first 'Customer Support', then 'General Information', then 'Permissions Query Form'.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (978) 7508400, fax: (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (+44) 171 631 5555; fax: (+44) 171 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or distribution of such material.

Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher. Address permissions requests to: Elsevier Science Rights & Permissions Department, at the mail, fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2000

Library of Congress Cataloging in Publication Data A catalog record from the Library of Congress has been applied for.

ISBN: 0-444-50438-9

 \otimes The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). Printed in The Netherlands.

Contents

na ina kasarisan tanan kasaranga	<mark>en ann a saith an ann an ann an ann an ann an ann ann</mark>	9952969 - N-1677-2629 68	
	dgements		
CHAPTEI	R 1 Introduction	1	
CHAPTE	R 2 Korean Peninsula	7	
2.1	Introduction	7	
2.2	Kyonggi and Yongnam Massifs		
2.3	Okchon Fold Belt		
	2.3.1 Okchon Group	12	
	2.3.1.1 Hwanggangri Formation		
	2.3.2 Deformation and Orogenic Setting		
2.4	Taebaeksan Basin		
	2.4.1 Choson Supergroup	17	
	2.4.1.1 Taebaek Group	17	
	2.4.1.2 Yongwol Group	21	
	2.4.2 Pyongan Supergroup	24	
2.5	Imjingang Belt		
2.6	Orogenic Events		
2.7	Cretaceous Non-Marine Basins	28	
	2.7.1 Kyongsang Basin	30	
	2.7.2 Other Basins	32	
2.8	Pohang Basin	34	
2.9			
2.10	2.10 Quaternary Volcanism in Cheju Island		
2.11	Sedimentation and Tectonic History	43	
CHAPTEI	R 3 Yellow Sea	47	
3.1	Physiography	47	
3.2	Geologic Setting		
3.3	Northern Yellow Sea Basin		
3.4	Southern Yellow Sea Basin	52	
3.5	Basin Evolution	55	
3.6	Shallow Structure		
3.7	Surface Sediments		
	3.7.1 Distribution	62	
	3.7.2 Mineral and Geochemical Composition	65	

3.8	Disper	sal of Fine Sediment in the Western Part	68
	3.8.1	Gulf of Bohai	68
	3.8.2	Central Part	69
	3.8.3	Old Huanghe Delta	69
	3.8.4	Changjiang Estuary	
3.9	Disper	sal of Fine Sediment in the Southeastern Part	
	3.9.1	Clay Mineral Distribution	72
	3.9.2	Distribution of Trace Elements	
	3.9.3	Dispersal of Fine Sediment	
3.10	Mass I	Physical Properties	
	3.10.1	•	
	3.10.2	Water Content	82
	3.10.3	Shear Strength	82
		CaCO ₃ and Organic Matter	
		Atterberg Limits	
3.11		Flats	
	3.11.1		
	3.11.2	Benthic Biota	92
	3.11.3	Sedimentary Structures of Holocene Sediments	92
	3.11.4	Pre-Holocene Oxidized Mud	94
	3.11.5	Holocene Lithostratigraphy	100
		3.11.5.1 Unit I	
		3.11.5.2 Unit II	100
		3.11.5.3 Unit III	103
	3.11.6	Holocene Sea-Level Curve	103
3.12	Reclar	nation Effect on Sedimentation: Daeho Area	107
	3.12.1	Geologic Setting	107
	3.12.2	Tidal Flat Morphology and Sediments	110
	3.12.3	Nearshore Suspended Matter	111
		Seasonal Sedimentary Processes	
	3.12.5	Suspended Sediment Budget	116
3.13	Transg	gressive Holocene Sequence Stratigraphy	117
	3.13.1	Northern Part	
		3.13.1.1 High-Resolution Seismic Stratigraphy.	120
		3.13.1.2 Lithofacies	125
		3.13.1.3 Interpretations	
	3.13.2	Southern Part	
		3.13.2.1 High-Resolution Seismic Stratigraphy.	134
		3.13.2.2 Lithofacies	
		3.13.2.3 Interpretations	141

CHAPTE	R 4 South Sea and East China Sea	145		
4.1	Geologic Setting	145		
4.2	Sedimentary Basins			
4.3	Coastal Embayments			
	4.3.1 Gamagyang Bay			
	4.3.1.1 Physiography	150		
	4.3.1.2 Acoustic Stratigraphy	152		
	4.3.1.3 Deposition of Fine Sediment	155		
	4.3.1.4 Late Quaternary History	156		
4.4	Surface Sediments	158		
	4.4.1 Distribution			
	4.4.2 Mass Physical Properties			
	4.4.2.1 Water Content			
	4.4.2.2 $CaCO_3$ and Organic Matter	163		
	4.4.2.3 Shear Strength and Atterberg Limits			
	4.4.3 Recent Depositional Processes			
4.5	Late Quaternary Transgressive Deposits	167		
CHAPTE	R 5 East Sea	173		
5.1	Physiography	173		
5.2	Crustal Structure			
5.3	Magnetic and Gravity Anomalies	176		
5.4	Heat Flow	177		
5.5	Age and Type of Crust	178		
5.6	Stratigraphy	181		
	5.6.1 Seismic Stratigraphy	181		
	5.6.2 Lithostratigraphy	184		
5.7	Tectonic Evolution	186		
	5.7.1 Tectonic Origin			
	5.7.2 Opening Mode			
	5.7.3 Tectonic History			
5.8	Surface Sediments			
	5.8.1 General Statement			
	5.8.2 Distribution			
	5.8.3 Geochemical Composition			
5.9	Late Quaternary Sediments			
	5.9.1 Lithology			
	5.9.2 Holocene–Pleistocene Boundary			
5.10 Late Quaternary Paleoceanography196				
CHAPTE	R 6 Eastern Continental Margin	199		

6.1	Physiography					
6.2	Geologic Structures					
	6.2.1					
	6.2.2 Hupo Fault					
	6.2.3		Fault			
	6.2.4	-	e Thrust Belt			
	6.2.5	-	cale Faults and Folds			
6.3	Seism		aphy			
	6.3.1					
		6.3.1.1	Acoustic Basement			
		6.3.1.2	Sedimentary Unit I			
		6.3.1.3	Sedimentary Unit II			
		6.3.1.4	Sedimentary Unit III			
	6.3.2	Southeas	stern Margin			
		6.3.2.1	-			
		6.3.2.2	Succession II			
		6.3.2.3	Succession III			
6.4	Sedim	entary Ba	sins			
	6.4.1	•	Yongduk Basin			
	6.4.2	-	Basin			
	6.4.3		ısin			
6.5	Evolu	-	ry			
	6.5.1	Eastern 1	Margin			
	6.5.2		stern Margin			
6.6	Surfac		nts			
6.7	Late (Juaternary	Sediments			
	6.7.1	-	ysical Properties			
		6.7.1.1	Water Content			
		6.7.1.2	Shear Strength			
		6.7.1.3	CaCO ₃ and Organic Matter			
		6.7.1.4	Atterberg Limits			
	6.7.2	Sedimen	tary Facies			
	6.7.3		solution Echo Characters			
			Shelf Region			
		6.7.3.2	Slope Region			
	6.7.4	Slope Fa	ilure Features			
	6.7.5	-	ability			
	6.7.6	-	onal Processes			
		-				
CHAPTER 7 Ulleung Basin						
7.1	Physic	ography		239		

7.2	Crustal Structure	241
7.3	Gravity and Magnetic Anomalies	243
7.4	Seismic Stratigraphy	
	7.4.1 Acoustic Basement	243
	7.4.2 Sedimentary Sequence	245
7.5	Tectonic Evolution	
7.6	Late Quaternary Sediments	254
	7.6.1 Distribution and Echo Characters	254
	7.6.2 Chronostratigraphy	256
	7.6.3 Turbidite Facies	258
	7.6.3.1 General Statement	258
	7.6.3.2 Sedimentary Facies	258
	7.6.3.3 Provenance	
	7.6.4 Hemipelagic Facies	
7.7	Late Quaternary Sedimentation	
Reference	25	269
Subject Ir	ndex	307

This Page Intentionally Left Blank

Marine Geology of Korean Seas was first published in 1983. Since that time tremendous progress has been made in the geological understanding of the Korean Seas with the advances in sophisticated exploration technique and reinforcement of research personnel, specifically in the areas of marine geophysics, sedimentology, geochemistry, and paleoceanography. Over the past two decades, the number of research scientists in marine geology has been doubled (or tripled) in most academic institutions (15 universities), the Korea Ocean Research and Development Institute (KORDI), and the Korea Institute of Geology, Mining and Materials (KIGAM).

In the Yellow Sea, continuous efforts have been made to explore hydrocarbon in the concession blocks. Although regional basin analysis in the eastern part of the Yellow Sea (Concession Blocks I–III) was instigated in 1970 by Gulf Oil Limited, additional data were acquired and reinterpreted in 1987 by Marathon Oil Company in cooperation with the Korea National Oil Corporation (KNOC). Twenty holes have since been drilled throughout the Yellow Sea basins. On the other hand, both shallow subsurface mapping using high-frequency profiling and deep cores (up to 60 m deep) into the Holocene/Pleistocene boundary have been made by the KIGAM to reveal late Quaternary depositional processes and sequence stratigraphy in this unique epicontinental sea. Studies have also been active by the KORDI and the academic institutions for environmental changes in the eastern part of the sea, estuaries, and tidal flats, delving into aspects of sediment transport and deposition, physical oceanography (tides, waves, and coastal currents), geochemistry, and air–sea interactions.

The sea south of the Korean Peninsula, South Sea, is characterized by numerous islands that have been submerged during the last transgression. Shallow subsurface mapping using high-resolution seismic profiling has revealed that the sea is characterized by complex incised valley systems and transgressive deposits during the rise in sea level. This is an area for further detailed studies of high-resolution sequence stratigraphy. A number of offshore exploratory wells have also been drilled, revealing hydrocarbon potential.

In the East Sea (Sea of Japan), studies have focused on the Ulleung Basin and its surrounding margins, using single- and multi-channel seismic profiling, magnetic and gravity data, closely spaced (5.5-km interval) highfrequency profiling (Chirp), and multibeam mapping. More than ten exploratory wells have been drilled in the southern margin of the basin (Block VI) where commercial development of gas is being sought. The coverage of Chirp and Seabeam profiling by the National Oceanographic Research Institute (NORI) provides an unprecedented data base. Deep piston coring in the basin and analyses of sedimentary facies, microorganisms, and oxygen and carbon isotope data help reveal paleoceanographic and environmental changes in the sea. Aspects of water circulation and the formation of deep water masses in the deep basins have also been described by physical and chemical oceanographers.

The subsurface geology of the Korean Seas is intimately related to that on the adjacent land; especially, the tectonic evolution of the Mesozoic and Cenozoic sedimentary basins is contiguous to that on land. For this reason, an expansion has been made in this edition to relate details of basin evolution on land to those under the sea.

At this stage, it is timely to summarize the hitherto-revealed knowledge on the geology of the Korean Seas for a second time. In this edition, we have incorporated the new results and interpretations that help formulate geological hypotheses and corollary on the evolution of the Korean Seas in relation to the adjacent continents. We have followed the basic framework of the first edition, but amply expanded the volume to include recent developments in every realm of marine geology in the past 16 years. Because of the lack of our knowledge on the northern part of the peninsula (north of 38th parallel; DMZ), this book focuses on the sea floor off the Republic of Korea. Geographic names follow the current-use Romanization proposed by the Government of Korea.

We would like to thank the following publications and copyright holders for their cooperation: Korea Institute of Geology, Mining and Materials, Korea Ocean Research and Development Institute, Korea National Oil Corporation, National Oceanographic Research Institute, Geosciences Journal, Geological Society of America, Inc. (Geological Society of America Bulletin and Geology), International Association of Sedimentologists (Sedimentology), SEPM (Journal of Sedimentary Petrology, Journal of Sedimentary Research), Blackwell Science (The Island Arc), Springer-Verlag (Geo-Marine Letters), Taylor & Francis (Marine Geotechnology), American Geophysical Union (Tectonics), Elsevier Science Ltd. (Continental Shelf Research), and Elsevier B.V. (Marine Geology, Sedimentary Geology, Tectonophysics, and Earth Science Reviews).

We are indebted to many colleagues in Korea and abroad for invaluable dialogue and support, especially the members of the Marine Geology and Geophysics Divisions, the Korea Ocean Research and Development Institute (Drs. B.K. Park, S.J. Han, S.K. Chang, B.C. Suk, G.H. Hong, K.S. Jeong, M.Y. Choe, C.H. Park, and S.M. Lee), the colleagues of the Korea Institute of Geology, Mining and Materials (Drs. Y.H. Kwak, K.S. Park, J.H. Chang, K.P. Park, G.H. Min, C.W. Lee, I.G. Hwang, J.H. Jin, and W.H. Ryang), and the colleagues of the Korea National Oil Corporation (Drs. J.H. Han, S.J. Park, B.G. Choi, and M.S. Kim) who generously permitted us the use of unpublished data and helped in acquiring data and preparing illustrations. Discussions with colleagues, Drs. Y.A. Park, S.J. Kim, J.H. Kim, C.-E. Baag, D.K. Choi, M. Cho, and M.S. Lee (Seoul National University), K.M. Yu and S.-T. Kwon (Yonsei University), J.-H. Ree (Korea University), D.J. Lee (Andong National University), S.S. Chun (Chonnam National University), K.S. Woo (Kangwon National University), S.C. Park (Chungnam National University), K.C. Na, C.W. Rhee, and J.S. Kim (Chungbuk National University), Y.K. Sohn (Gyeongsang National University), B.G. Jo (Chunbuk National University), M.C. Suh (Kongju National University), H.W. Shon (Paichai University), G.H. Lee (Kunsan National University), J. Ko (Seoul), and W.R. Fitches (Llandudno, U.K.), were useful in clarifying points in their field of interest. Drs. M.R. Gipp and M.W. Milner (Toronto, Ontario) and D. Barber (Boulder, Colorado) made helpful suggestions on the manuscript.

We are indebted to the Korea Science and Engineering Foundation, the Research Institute of Basic Sciences (Seoul National University), and the Korea Research Foundation for their continuous support through grants. We thank Drs. Femke Wallien for successful publication of this work. We are grateful to graduate students of the Sedimentology Laboratory (SedLab), Seoul National University (H.R. Jo, S.B. Kim, S.H. Lee, J.J. Bahk, J.W. Kim, Y.H. Kim, Y.K. Kwon, and H.K. Ha) for continuous discussions and editorial help for the preparation of this book. We thank Ms. J. Cho for editorial assistance and the Instructional Media Center (IMC), Seoul National University for the preparation of figures.


CHAPTER 1

Introduction

The Korean Seas (Fig. 1.1) are geologically unique. The Yellow Sea (or West Sea) is a shallow (less than about 100 m), postglacially submerged epicontinental sea bounded on the east by a long stretch of ria-type coast. The western part of the East Sea (Sea of Japan) is characterized by a narrow shelf with a straight coastline. The Yellow Sea floor is rather flat and progressively deepens toward the southeast to form the Okinawa Trough in the northern East China Sea. The East Sea deepens abruptly seaward, forming a number of deep basins between ridges and surrounding margins that are related to the opening of a back-arc basin associated with subduction of the Pacific Plate. The South Sea, bounding the southern coast of the Korean Peninsula, is also shallow and flat, similar to the Yellow Sea, but characterized mostly by rocky embayments.

Regional studies on the geological structure of the Yellow Sea were made in a joint survey (Emery et al., 1969; C.S. Kim et al., 1969) supported by the Committee for Co-Ordination of Joint Prospecting for Mineral Resources in Asian Offshore Areas (CCOP) (Fig. 1.2). An airborne magnetic survey was also conducted in the Yellow and South seas and the southern part of the East Sea (Bosum et al., 1971) (Fig. 1.2). Regional basin-scale studies on the concession blocks (Blocks I–V; Fig. 1.3) were made by the Marathon Oil Company (1987) and the Korea National Oil Corporation (KNOC) (PEDCO, 1997) based on gravity, magnetic, seismic, and drilling data. These studies in the Yellow Sea showed the existence of two large-scale Mesozoic–Cenozoic non-marine basins (North and South Yellow Sea basins) bounded by basement highs (massifs) (Fig. 1.3). In the Cretaceous, these basins were contiguous to those on land in a retroarc basinal setting.

Attempts have been made by the Korea Institute of Geology, Mining and Materials (KIGAM) mapping projects since the early seventies to obtain data on the geological structure of the shallow portions of the Yellow Sea (Chough, 1983a). These were followed by deep drilling of Quaternary deposits in the southeastern Yellow Sea revealing depositional history and sequence stratigraphy of the regressive/transgressive systems (KIGAM, 1996; Jin and Chough, 1998). The surface sediment distribution in the entire Yellow Sea has been compiled and interpreted in terms of physical processes (H.J. Lee and Chough, 1989). Recently, closely spaced, high-resolution seismic data have been obtained in the entire Yellow Sea by the National

Fig. 1.1. Bathymetry of the Korean Seas: the Yellow Sea, northern part of the East China Sea, and the East Sea (Sea of Japan). Contours in meters. Modified after Mammerickx et al. (1976) by permission of the Geological Society of America, Inc.

Oceanographic Research Institute (NORI) using the Chirp system. In the meantime, drilling activities have also been greatly increased in the South Sea and the northern East China Sea, aiming at the deformed Tertiary strata whose economic hydrocarbon potential was strongly predicted by earlier studies.

On the continental margin of the East Sea, the KIGAM conducted a cooperative seismic survey with the Federal Institute of Geoscience and Mineral Resources of Germany (Schlüter and Chun, 1974) to reveal possible