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Preface 

This book is intended for a wide readership including engineers, ap-
plied mathematicians, computer scientists, and graduate students who 
seek a comprehensive view of the main results on the Lyapunov matrix 
equation. The book presents different techniques for solving and ana-
lyzing the algebraic, differential, and difference Lyapunov matrix equa-
tions of continuous-time and discrete-time systems. The Lyapunov and 
Lyapunov-like equations arise in many different prospectives such as 
control theory, system theory, system identification, linear algebra, opti-
mization, differential equations, boundary value problems and partial dif-
ferential equations, mechanical engineering, power systems, signal pro-
cessing, large space flexible structures, communications, and the like. 
Therefore, its solution is of great interest. The book provides easy and 
quick references for the solution of many engineering and mathematical 
problems related to the Lyapunov matrix equations. Because both the 
mathematical development and the applications are considered, this book 
is useful for solving problems as well as for research purposes. 

In this book we are concerned with the "pure" Lyapunov equation, 
and only in rare cases the Lyapunov-like equations are discussed. The 
continuous and discrete Lyapunov matrix equations are considered in 
three categories: (1) explicit solutions, (2) bounds of the solutions main 
attributes (such as eigenvalues, determinant, trace), and (3) numerical 
solutions. The advancements made so far in all these categories are the 
topics of this book. Different approaches are compared, where possible, 
in order to demonstrate the efficiency of any particular method. In 
addition, the recent results on the stability robustness, sensitivity of 
the Lyapunov equation, parallel algorithms and iterative methods for 

XI 



xii PREFACE 

numerical solution of high dimensional algebraic Lyapunov equations. 
Also, the Lyapunov matrix equations corresponding to jump parameter 
linear systems, singularly perturbed and weakly coupled systems are 
included in this book. Several examples of real-world systems are given 
throughout of the book in order to demonstrate the effectiveness of the 
presented methods and algorithms. The book covers research work of 
more than 250 available journal papers on the Lyapunov matrix equation 
published in or before December of 1994, and the recent research work 
by the authors and their coworkers. 

The authors are thankful for support and contributions from Profes-
sors T-Y. Li, P. Milojevic, B. Petrovic, and N. Puri, our colleagues Drs. 
X. Shen and M. Lim, graduate students I. Bomo and V. Radisavljevic. 
For technical support, we are indebted to J. Li, I. Seskar, and Dr. A. 
Kolarov. 

Z. Gajic and M. Qureshi 
Piscataway, NJ, USA 
February 1995 



Chapter One 

Introduction 

The Lyapunov and Lyapunov-like matrix equations appear in many dif-
ferent engineering and mathematical perspectives such as control theory, 
system theory, optimization, power systems, signal processing, linear al-
gebra, differential equations, boundary value problems, large space flex-
ible structures, and communications, (Dou, 1966; Barnett and Storey, 
1970; Kwakemaak and Sivan, 1972; Kreisselmeier, 1972; Balas, 1982; 
Wonham, 1985; Hodel and Poolla, 1992). It is named after the Rus-
sian mathematician Alexander Mikhailovitch Lyapunov (Shcherbakov, 
1992; Axelby and Parks, 1992), who in 1892, in his doctoral disserta-
tion, introduced the famous stability theory of linear and nonlinear sys-
tems (Lyapunov, 1892). A complete English translation of Lyapunov's 
1892 doctoral dissertation is published in International Journal of Con-
trol in March of 1992. According to his definition of stability, so-called 
stability in the sense of Lyapunov, one can check the stability of a sys-
tem by finding some functions, called the Lyapunov functions. There is 
no general procedure for finding a Lyapunov function for nonlinear sys-
tems, but for linear time invariant systems, the procedure comes down 
to the problem of solving the matrix Lyapunov equation. Since linear 
systems are mathematically very convenient and give fairly good ap-
proximations for nonlinear systems, mathematicians and engineers very 
often base their analysis on the linearized models. Therefore, the solu-

1 


