

HANDBOOK OF ALGEBRA

VOLUME 2

Managing Editor

M. HAZEWlNKEL, Amsterdam

Editorial Board

M. ARTIN, Cambridge
M. NAGATA, Okayama
C. PROCESI, Rome
O. TAUSKY-TODD t, Pasadena
R.G. SWAN, Chicago
P.M. COHN, London
A. DRESS, Bielefeld
J. TITS, Paris
N.J.A. SLOANE, Murray Hill
C. FAITH, New Brunswick
S.I. AD'YAN, Moscow
Y. IHARA, Tokyo
L. SMALL, San Diego
E. MANES, Amherst
I.G. MACDONALD, Oxford
M. MARCUS, Santa Barbara
L.A. BOKUT, Novosibirsk

ELSEVIER
AMSTERDAM �9 LAUSANNE ~ NEW YORK �9 OXFORD ~ SHANNON �9 SINGAPORE ~ TOKYO

HANDBOOK OF ALGEBRA
Volume 2

edited by
M. HAZEWINKEL
CWI, Amsterdam

2 0 0 0

E L S E V I E R

A M S T E R D A M �9 L A U S A N N E ~ N E W Y O R K ~ O X F O R D ~ S H A N N O N �9 S I N G A P O R E ~ T O K Y O

ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25
RO. Box 211, 1000 AE Amsterdam, The Netherlands

�9 2000 Elsevier Science B.V. All rights reserved

This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use:

Photocopying
Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission
of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying,
copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for
educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier Science Rights & Permissions Department, PO Box 800, Oxford OX5
1DX, UK; phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also contact
Rights & Permissions directly through Elsevier's home page (http://www.elsevier.nl), selecting first 'Customer Support',
then 'General Information', then 'Permissions Query Form'.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, USA; phone: (978) 7508400, fax: (978) 7504744, and in the UK through the Copyright
Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W 1P 0LP, UK; phone: (+44)
171 631 5555; fax: (+44) 171 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works
Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external
resale or distribution of such material.

Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage
Permission of the Publisher is required to store or use electronically any material contained in this work, including any
chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the
Publisher.

Address permissions requests to: Elsevier Science Rights & Permissions Department, at the mail, fax and e-mail addresses
noted above.

Notice
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in
the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses
and drug dosages should be made.

First edition 2000

Library of Congress Cataloging-in-Publication Data

A catalog record from the Library of Congress has been applied for.

ISBN: 0 444 50396 X

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).

Printed in The Netherlands.

Preface

B a s i c p h i l o s o p h y

Algebra, as we know it today, consists of many different ideas, concepts and results. A rea-
sonable estimate of the number of these different "items" would be somewhere between
50 000 and 200000. Many of these have been named and many more could (and perhaps
should) have a "name" or a convenient designation. Even the nonspecialist is likely to en-
counter most of these, either somewhere in the literature, disguised as a definition or a
theorem, or to hear about them and feel the need for more information. If this happens, one
should be able to find at least something in this Handbook; and hopefully enough to judge
if it is worthwile to pursue the quest. In addition to the primary information, references to
relevant articles, books or lecture notes should help the reader to complete his understand-
ing. To make this possible, we have provided an index which is more extensive than usual
and not limited to definitions, theorems and the like.

For the purpose of this Handbook, algebra has been defined, more or less arbitrarily as
the union of the following areas of the Mathematics Subject Classification Scheme:

- 20 (Group theory)
- 19 (K-theory; will be treated at an intermediate level; a separate Handbook of K-theory

which goes into far more detail than the section planned for this Handbook of Algebra
is under consideration)

- 18 (Category theory and homological algebra; including some of the uses of categories
in computer science, often classified somewhere in section 68)

- 17 (Nonassociative tings and algebras; especially Lie algebras)
- 16 (Associative tings and algebras)
- 15 (Linear and multilinear algebra, Matrix theory)
- 13 (Commutative tings and algebras; here there is a fine line to tread between commu-

tative algebras and algebraic geometry; algebraic geometry is not a topic that will be
dealt with in this Handbook; a separate Handbook on that topic is under considera-
tion)

- 12 (Field theory and polynomials)
- 11 (As far as it used to be classified under old 12 (Algebraic number theory))
- 0 8 (General algebraic systems)
- 06 (Certain parts; but not topics specific to Boolean algebras as there is a separate three-

volume Handbook of Boolean Algebras)

vi Preface

Planning

Originally, we hoped to cover the whole field in a systematic way. Volume 1 would be
devoted to what we now call Section 1 (see below), Volume 2 to Section 2 and so on. A de-
tailed and comprehensive plan was made in terms of topics which needed to be covered and
authors to be invited. That turned out to be an inefficient approach. Different authors have
different priorities and to wait for the last contribution to a volume, as planned originally,
would have resulted in long delays. Therefore, we have opted for a dynamically evolving
plan. This means that articles are published as they arrive and that the reader will find in
this second volume articles from five different sections. The advantages of this scheme are
two-fold: accepted articles will be published quickly and the outline of the series can be
allowed to evolve as the various volumes are published. Suggestions from readers both as
to topics to be covered and authors to be invited are most welcome and will be taken into
serious consideration.

The list of the sections now looks as follows:

Section 1: Linear algebra. Fields. Algebraic number theory
Section 2: Category theory. Homological and homotopical algebra. Methods from logic
Section 3: Commutative and associative tings and algebras
Section 4: Other algebraic structures. Nonassociative tings and algebras. Commutative

and associative tings and algebras with extra structure
Section 5: Groups and semigroups
Section 6: Representations and invariant theory
Section 7: Machine computation. Algorithms. Tables
Section 8: Applied algebra
Section 9: History of algebra

For a more detailed plan, the reader is referred to the Outline of the Series following the
Preface.

The individual chapters

It is not the intention that the handbook as a whole can also be a substitute undergraduate
or even graduate, textbook. The treatment of the various topics will be much too dense and
professional for that. Basically, the level is graduate and up, and such material as can be
found in P.M. Cohn's three-volume textbook "Algebra" (Wiley) will, as a rule, be assumed.
An important function of the articles in this Handbook is to provide professional mathe-
maticians working in a different area with sufficient information on the topic in question if
and when it is needed.

Each chapter combines some of the features of both a graduate-level textbook and a
research-level survey. Not all of the ingredients mentioned below will be appropriate in
each case, but authors have been asked to include the following:

- Introduction (including motivation and historical remarks)
- Outline of the chapter

Preface vii

- Basic concepts, definitions, and results (proofs or ideas/sketches of the proofs are given
when space permits)

- Comments on the relevance of the results, relations to other results, and applications
- Review of the relevant literature; possibly supplemented with the opinion of the author

on recent developments and future directions
- Extensive bibliography (several hundred items will not be exceptional)

T h e p r e s e n t

Volume 1 appeared in December 1995 (copyright 1996). Volume 3 is scheduled for 2000.
Thereafter, we aim at one volume per year.

T h e f u t u r e

Of course, ideally, a comprehensive series of books like this should be interactive and
have a hypertext structure to make finding material and navigation through it immediate
and intuitive. It should also incorporate the various algorithms in implemented form as
well as permit a certain amount of dialogue with the reader. Plans for such an interactive,
hypertext, CD-Rom-based version certainly exist but the realization is still a nontrivial
number of years in the future.

Bussum, June 1999 Michiel Hazewinkel

Kaum nennt man die Dinge beim richtigen Namen,
so verlieren sie ihren gef~ihrlichen Zauber

(You have but to know an object by its proper name
for it to lose its dangerous magic)

E. Canetti

This Page Intentionally Left Blank

Outline of the Series
(as of June 1999)

Philosophy and principles of the Handbook of Algebra

Compared to the outline in Volume 1 this version differs in several aspects.
First, there is a major shift in emphasis away from completeness as far as more elemen-

tary material is concerned and towards more emphasis on recent developments and active
areas.

Second, the plan is now more dynamic in that there is no longer a fixed list of topics to
be covered, determined long in advance. Instead there is a more flexible nonrigid list that
can change in response to new developments and availability of authors.

The new policy is therefore to work with a dynamic list of topics that should be covered,
to arrange these in sections and larger groups according to the major divisions into which
algebra falls, and to publish collections of contributions as they become available from the
invited authors.

The coding by style below is as follows.

- Author(s) in bold, followed by the article title: chapters (articles) that have been re-
ceived and are published or ready for publication;

- italic: chapters (articles) that are being written.
- plain text: topics that should be covered but for which no author has yet been definitely

contracted.
- chapters that are included in volume 1 or volume 2 have a (1; xx pp.) or (2; xx pp.) after

them, where xx is the number of pages.

Compared to the earlier outline the section on "Representation and invariant theory" has
been thoroughly revised.

Section 1. Linear algebra. Fields. Algebraic number theory

A. Linear Algebra

G.P. Egorychev, Van der Waerden conjecture and applications (1; 22 pp.)
u Girko, Random matrices (1; 52 pp.)
A. N. Malyshev, Matrix equations. Factorization of matrices (1; 38 pp.)
L. Rodman, Matrix functions (1; 38 pp.)
Linear inequalities (also involving matrices)

ix

x Outline of the series

Orderings (partial and total) on vectors and matrices
Positive matrices
Special kinds of matrices such as Toeplitz and Hankel
Integral matrices. Matrices over other rings and fields

B. Linear (In)dependence

J.ES. Kung, Matroids (1; 28 pp.)

C. Algebras Arising from Vector Spaces

Clifford algebras, related algebras, and applications

D. Fields, Galois Theory, and Algebraic Number Theory

(There is also an article on ordered fields in Section 4)
J.K. Deveney and J.N. Mordeson, Higher derivation Galois theory of inseparable

field extensions (1; 34 pp.)
I. Fesenko, Complete discrete valuation fields. Abelian local class field theories (1;

48 pp.)
M. Jarden, Infinite Galois theory (1; 52 pp.)
R. Lidl and H. Niederreiter, Finite fields and their applications (1; 44 pp.)
W. Narkiewicz, Global class field theory (1; 30 pp.)
H. van Tilborg, Finite fields and error correcting codes (1; 28 pp.)
Skew fields and division rings. Brauer group
Topological and valued fields. Valuation theory
Zeta and L-functions of fields and related topics
Structure of Galois modules
Constructive Galois theory (realizations of groups as Galois groups)

E. Nonabelian Class Field Theory and the Langlands Program

(To be arranged in several chapters by Y. Ihara)

F. Generalizations of Fields and Related Objects

U. Hebisch and H.J. Weinert, Semi-tings and semi-fields (1; 38 pp.)
G. Pilz, Near rings and near fields (1; 36 pp.)

Section 2. Category theory. Homological and homotopical algebra. Methods
from logic

A. Category Theory

S. MacLane and I. Moerdijk, Topos theory (1; 28 pp.)
R. Street, Categorical structures (1; 50 pp.)
Algebraic theories
B. Plotkin, Algebra, categories and databases (2; 68 pp.)
P.J. Scott, Some aspects of categories in computer science (2; 73 pp.)

Outline of the series xi

B. Homological Algebra. Cohomology. Cohomological Methods in Algebra.
Homotopical Algebra

J.E Carlson, The cohomology of groups (1; 30 pp.)
A. Generalov, Relative homological algebra. Cohomology of categories, posets,

and coalgebras (1; 28 pp.)
J.E Jardine, Homotopy and homotopical algebra (1; 32 pp.)
B. Keller, Derived categories and their uses (1; 32 pp.)
A.Ya. I-Ielemsldi, Homology for the algebras of analysis (2; 122 pp.)
Galois cohomology
Cohomology of commutative and associative algebras
Cohomology of Lie algebras
Cohomology of group schemes

C. Algebraic K-theory

Algebraic K-theory: the classical functors K0, K1, K2
Algebraic K-theory: the higher K-functors
Grothendieck groups
K2 and symbols
K K-theory and EXT
Hilbert C*-modules
Index theory for elliptic operators over C* algebras
Algebraic K-theory (including the higher Kn)
Simplicial algebraic K-theory
Chern character in algebraic K-theory
Noncommutative differential geometry
K-theory of noncommutative tings
Algebraic L-theory
Cyclic cohomology

D. Model Theoretic Algebra

Methods of logic in algebra (general)
Logical properties of fields and applications
Recursive algebras
Logical properties of Boolean algebras
E Wagner, Stable groups (2; 40 pp.)

E. Rings up to Homotopy

Rings up to homotopy

Section 3. Commutative and associative rings and algebras

A. Commutative Rings and Algebras

J.E Lafon, Ideals and modules (1; 24 pp.)

xii Outline of the series

General theory. Radicals, prime ideals etc. Local rings (general). Finiteness and
chain conditions

Extensions. Galois theory of rings
Modules with quadratic form
Homological algebra and commutative tings. Ext, Tor, etc. Special properties

(p.i.d., factorial, Gorenstein, Cohen-Macauley, Bezout, Fatou, Japanese, excel-
lent, Ore, Prtifer, Dedekind and their interrelations)

D. Popeseu, Artin approximation (2; 34 pp.)
Finite commutative tings and algebras. (See also Section 3B)
Localization. Local-global theory
Rings associated to combinatorial and partial order structures (straightening laws,

Hodge algebras, shellability)
Witt rings, real spectra

B. Associative Rings and Algebras

P.M. Cohn, Polynomial and power series rings. Free algebras, firs and semifirs (1;
30 pp.)

Classification of Artinian algebras and rings
u Kharchenko, Simple, prime, and semi-prime tings (1; 52 pp.)
A. van den Essen, Algebraic microlocalization and modules with regular singular-

ities over filtered tings (1; 28 pp.)
F. Van Oystaeyen, Separable algebras (2; 43 pp.)
K. Yamagata, Frobenius tings (1; 48 pp.)
V.K. Kharchenko, Fixed tings and noncommutative invariant theory (2; 38 pp.)
General theory of associative rings and algebras
Rings of quotients. Noncommutative localization. Torsion theories
von Neumann regular rings
Semi-regular and pi-regular rings
Lattices of submodules
A.A. Tuganbaev, Modules with distributive submodule lattice (2; 16 pp.)
A.A. Tuganbaev, Serial and distributive modules and tings (2; 19 pp.)
PI rings
Generalized identities
Endomorphism rings, tings of linear transformations, matrix tings
Homological classification of (noncommutative) rings
Group rings and algebras
Dimension theory
Duality. Morita-duality
Commutants of differential operators
Rings of differential operators
Graded and filtered rings and modules (also commutative)
Goldie's theorem, Noetherian tings and related rings
Sheaves in ring theory
A.A. Tuganbaev, Modules with the exchange property and exchange tings (2;

19 pp.)

Outline of the series

Finite associative rings (see also Section 3A)

C. Co-algebras

D. Deformation Theory of Rings and Algebras (Including Lie Algebras)

Deformation theory of rings and algebras (general)
Yu. Khakimdjanov, Varieties of Lie algebras (2; 31 pp.)

xiii

Section 4. Other algebraic structures. Nonassociative rings and algebras.
Commutative and associative algebras with extra structure

A. Lattices and Partially Ordered Sets

Lattices and partially ordered sets
Frames, locales, quantales

B. Boolean Algebras

C. Universal Algebra

D. Varieties of Algebras, Groups, .. . (See also Section 3D)

V.A. Artamonov, Varieties of algebras (2; 29 pp.)
Varieties of groups
Quasi-varieties
Varieties of semigroups

E. Lie Algebras

Yu.A. Bahturin, A.A. Mikhalev and M. Zaicev, Infinite-dimensional Lie superal-
gebras (2; 34 pp.)

General structure theory
Free Lie algebras
Classification theory of semisimple Lie algebras over R and C
The exceptional Lie algebras
M. Goze and Yu. Khakimdjanov, Nilpotent and solvable Lie algebras (2; 47 pp.)
Universal envelopping algebras
Modular (ss) Lie algebras (including classification)
Infinite-dimensional Lie algebras (general)
Kac-Moody Lie algebras

F. Jordan Algebras (Finite and infinite dimensional and including their cohomology
theory)

G. Other Nonassociative Algebras (Malcev, alternative, Lie admissable)

Mal'tsev algebras
Alternative algebras

xiv Outline of the series

H. Rings and Algebras with Additional Structure

Graded and super algebras (commutative, associative; for Lie superalgebras, see
Section 4E)

Topological tings
Hopf algebras
Quantum groups
Formal groups
)~-rings, V-tings
Ordered and lattice-ordered groups, tings and algebras
Rings and algebras with involution. C*-algebras
Difference and differential algebra. Abstract (and p-adic) differential equations.

Differential extensions
Ordered fields

L Witt Vectors

Witt vectors and symmetric functions. Leibniz Hopf algebra and quasi-symmetic
functions

Section 5. Groups and semigroups

A. Groups

A.u Mikhalev and A.P. Mishina, Infinite Abelian groups: Methods and results (2;
36 pp.)

Simple groups, sporadic groups
Abstract (finite) groups. Structure theory. Special subgroups. Extensions and de-

compositions
Solvable groups, nilpotent groups, p-groups
Infinite soluble groups
Word problems
Burnside problem
Combinatorial group theory
Free groups (including actions on trees)
Formations
Infinite groups. Local properties
Algebraic groups. The classical groups. Chevalley groups
Chevalley groups over rings
The infinite dimensional classical groups
Other groups of matrices. Discrete subgroups
Reflection groups. Coxeter groups
Groups with BN-pair, Tits buildings
Groups and (finite combinatorial) geometry
"Additive" group theory
Probabilistic techniques and results in group theory
Braid groups

Outline of the series xv

B. Semigroups

Semigroup theory. Ideals, radicals, structure theory
Semigroups and automata theory and linguistics

C. Algebraic Formal Language Theory. Combinatorics of Words

D. Loops, Quasigroups, Heaps

E. Combinatorial Group Theory and Topology

Section 6. Representation and invariant theory

A. Representation Theory. General

Representation theory of tings, groups, algebras (general)
Modular representation theory (general)
Representations of Lie groups and Lie algebras. General

B. Representation Theory of Finite and Discrete Groups and Algebras

Representation theory of finite groups in characteristic zero
Modular representation theory of finite groups. Blocks
Representation theory of the symmetric groups (both in characteristic zero and mod-

ular)
Representation theory of the finite Chevalley groups (both in characteristic zero and

modular
Modular representation theory of Lie algebras

C. Representation Theory of 'Continuous Groups' (Linear Algebraic Groups, Lie
Groups, Loop Groups) and the Corresponding Algebras

Representation theory of compact topolgical groups
Representation theory of locally compact topological groups
Representation theory of SL2 (R)
Representation theory of the classical groups. Classical invariant theory
Classical and transcendental invariant theory
Reductive groups and their representation theory
Unitary representation theory of Lie groups
Finite-dimensional representation theory of the ss Lie algebras (in characteristic

zero); structure theory of semi-simple Lie algebras
Infinite dimensional representation theory of ss Lie algebras. Verma modules
Representation of Lie algebras. Analytic methods
Representations of solvable and nilpotent Lie algebras. The Kirillov orbit method
Orbit method, Dixmier map for ss Lie algebras
Representation theory of the exceptional Lie groups and Lie algebras
Representation theory of 'classical' quantum groups
A.U. Klimyk, Infinite-dimensional representations of quantum algebras (2; 27 pp.)
Duality in representation theory

xvi Outline of the series

Representation theory of loop groups and higher dimensional analogues, gauge
groups, and current algebras

Representation theory of Kac-Moody algebras
Invariants of nonlinear representations of Lie groups
Representation theory of infinite-dimensional groups like GLc~
Metaplectic representation theory

D. Representation Theory of Algebras

Representations of tings and algebras by sections of sheafs
Representation theory of algebras (Quivers, Auslander-Reiten sequences, almost

split sequences)

E. Abstract and Functorial Representation Theory

Abstract representation theory
S. Bouc, Burnside tings (2; 64 pp.)
P. Webb, A guide to Mackey functors (2; 30 pp.)

E Representation Theory and Combinatorics

G. Representations of Semigroups

Representation of discrete semigroups
Representations of Lie semigroups

Section 7. Machine computation. Algorithms. Tables

Some notes on this volume: Besides some general article(s) on machine computation in
algebra, this volume should contain specific articles on the computational aspects of the
various larger topics occurring in the main volume, as well as the basic corresponding
tables. There should also be a general survey on the various available symbolic algebra
computation packages.

The CoCoA computer algebra system

Section 8. Applied algebra

Section 9. History of algebra

C o n t e n t s

P refa c e

Outline of the Series

List of Contributors

ix

xix

Section 2A. Category Theory

P.J. Scott, Some aspects of categories in computer science
B. Plotkin, Algebra, categories and databases

Section 2B. Homological Algebra. Cohomology. Cohomological
Methods in Algebra. Homotopical Algebra

A. Ya. Helemskii, Homology for the algebras of analysis

Section 2D. Model Theoretic Algebra

F. Wagner, Stable groups

Section 3A. Commutative Rings and Algebras

D. Popescu, Artin approximation

Section 3B. Associative Rings and Algebras

V.K. Kharchenko, Fixed tings and noncommutative invariant theory
A.A. Tuganbaev, Modules with distributive submodule lattice
A.A. Tuganbaev, Serial and semidistributive modules and tings
A.A. Tuganbaev, Modules with the exchange property and exchange tings
E Van Oystaeyen, Separable algebras

Section 3D. Deformation Theory of Rings and Algebras

Yu. Khakimdjanov, Varieties of Lie algebra laws

xvii

1
3

79

149
151

275
277

319
321

357
359
399
417
439
461

507
509

xviii Contents

Section 4D. Varieties of Algebras, Groups

V.A. Artamonov, Varieties of algebras

543
545

Section 4E. Lie Algebras
Yu. Bahturin, A.A. Mikhalev and M. Zaicev, Infinite-dimensional Lie
superalgebras
M. Goze and Yu. Khakimdjanov, Nilpotent and solvable Lie algebras

577

579
615

Section 5A. Groups and Semigroups
A.V. Mikhalev and A.P. Mishina, Infinite Abelian groups: Methods and
results

665

667

Section 6C. Representation Theory of 'Continuous Groups' (Linear
Algebraic Groups, Lie Groups, Loop Groups) and the
Corresponding Algebras

A.U. Klimyk, Infinite-dimensional representations of quantum algebras

705
707

Section 6E. Abstract and Functorial Representation Theory

S. Bouc, Burnside tings
P. Webb, A guide to Mackey functors

737
739
805

Subject Index 837

List of Contributors

Artamonov, V.A., Moscow State University, Moscow
Bahturin, Yu., Memorial University of Newfoundland, St. John's, NF, and Moscow State

University, Moscow
Bouc, S., University Paris 7-Denis Diderot, Paris
Goze, M., Universit~ de Haute Alsace, Mulhouse
Helemskii, A.Ya., Moscow State University, Moscow
Khakimdjanov, Yu., Universit~ de Haute Alsace, Mulhouse
Kharchenko, V.K., Universidad Nacional Aut6noma de M~xico, M(xico, and Sobolev

Institute of Mathematics, Novosibirsk
Klimyk, A.U., Institute for Theoretical Physics, Kiev
Mikhalev, A.A., The University of Hong Kong, Pokfulam Road
Mikhalev, A.V., Moscow State University, Moscow
Mishina, A.E, Moscow State University, Moscow
Plotkin, B., Hebrew University, Jerusalem
Popescu, D., University of Bucharest, Bucharest
Scott, EJ., University of Ottawa, Ottawa, ON
Tuganbaev, A.A., Moscow State University, Moscow
Van Oystaeyen, E, University of Antwerp, Wilrijk
Wagner, E, University of Oxford, Oxford
Webb, E, University of Minnesota, Minneapolis, MN
Zaicev, M., Moscow State University, Moscow

xix

This Page Intentionally Left Blank

Section 2A
Category Theory

This Page Intentionally Left Blank

Some Aspects of Categories in Computer Science

EJ. Scott
Department of Mathematics, University of Ottawa, Ottawa, Ontario, Canada

Contents
1. Introduct ion . 5

2. Categories, l ambda calculi, and formulas-as- types . 5

2.1. Car tes ian c losed categories . 5

2.2. S imply typed l ambda calculi . 10

2.3. Formulas-as- types : The fundamenta l equivalence . 13

2.4. Po lymorph i sm . 19

2.5. The un typed wor ld . 24

2.6. Logica l relat ions and logical permuta t ions . 27

2.7. Example 1: Reduct ion-f ree normal iza t ion . 29

2.8. Example 2: P C F . 33

3. Parametr ic i ty . 36

3.1. Dinatural i ty . 37

3.2. Reynolds parametr ic i ty . 42

4. Linear logic . 44

4.1. Monoida l categories . 44

4.2. Gen tzen ' s p roof theory . 47

4.3. Wha t is a categorical model of L L ? . 52

5. Full comple teness . 54

5.1. Representa t ion theorems . ' . 54

5.2. Full comple teness theorems . 55

6. Feedback and trace . 58

6.1. Traced monoida l categories . 58

6.2. Partially additive categories . 61

6.3. GoI categories 65

7. Li terature notes . 66

References . 68

H A N D B O O K O F A L G E B R A , VOL. 2

Edi ted by M. Hazewinke l

�9 2000 Elsevier Science B.V. All r ights reserved

This Page Intentionally Left Blank

Some aspects of categories in computer science 5

1. Introduction

Over the past 25 years, category theory has become an increasingly significant conceptual
and practical tool in many areas of computer science. There are major conferences and
journals devoted wholly or partially to applying categorical methods to computing. At the
same time, the close connections of computer science to logic have seen categorical logic
(developed in the 1970's) fruitfully applied in significant ways in both theory and practice.

Given the rapid and enormous development of the subject and the availability of suitable
graduate texts and specialized survey articles, we shall only examine a few of the areas
that appear to the author to have conceptual and mathematical interest to the readers of this
Handbook. Along with the many references in the text, the reader is urged to examine the
final section (Literature Notes) where we reference omitted important areas, as well as the
Bibliography.

We shall begin by discussing the close connections of certain closed categories with
typed lambda calculi on the one hand, and with the proof theory of various logics on
the other. It cannot be overemphasized that modem computer science heavily uses formal
syntax but we shall try to tread lightly. The so-called Curry-Howard isomorphism (which
identifies formal proofs with lambda terms, hence with arrows in certain free categories) is
the cornerstone of modem programming language semantics and simply cannot be over-
looked.

NOTATION. We often elide composition symbols, writing g f : A ~ C for g o f : A ~ C,
whenever f :A --+ B and g : B ~ C. To save some space, we have omitted large numbers
of routine diagrams, which the reader can find in the sources referenced.

2. Categories, lambda calculi, and formulas-as-types

2.1. Cartesian closed categories

Cartesian closed categories (ccc's) were developed in the 1960's by F.W. Lawvere [Law66,
Law69]. Both Lawvere and Lambek [L74] stressed their connections to Church's lambda
calculus, as well as to intuitionistic proof theory. In the 1970's, work of Dana Scott and
Gordon Plotkin established their fundamental role in the semantics of programming lan-
guages. A precise equivalence between these three notions (ccc's, typed lambda calculi,
and intuitionistic proof theory) was published in Lambek and Scott [LS86]. We recall the
appropriate definitions:

DEFINITION 2.1.
(i) A Cartesian category C is a category with distinguished finite products (equiva-

lently, binary products and a terminal object 1). This says there are isomorphisms
(natural in A, B, C)

Homc(A , 1) ~ {.},

Home(C, A x B) ~ Home(C, A) x Homc(C, B).

(1)
(2)

6 P.J. Scott

(ii) A Cartesian closed category C is a Cartesian category C such that, for each object
A c C, the functor (-) • A :C --+ C has a specified fight adjoint, denoted (_)A. That
is, there is an isomorphism (natural in B and C)

H o m c (C x A, B) ~ H o m e (C , BA) . (3)

For many purposes in computer science, it is often useful to have categories with explic-
itly given strict structure along with strict functors that preserve everything on the nose.
We may present such ccc's equationally, in the spirit of multisorted universal algebra. The
arrows and equations are summarized in Figure 1. These equations determine the isomor-
phisms (1), (2), and (3). In this presentation we say the structure is strict, meaning there is
only one object representing each of the above constructs 1, A • B, BA. The exponential
object B A is often called the funct ion space of A and B. In the computer science litera-

f* ture, the function space is often denoted A =, B, while the arrow C ~ B A is often called
currying of f .

REMARK 2.2. Following most categorical logic and computer science literature, we do
not assume ccc's have finite limits [Law69,LS86,AC98,Mit96]), in order to keep the cor-
respondence with simply typed lambda calculi, cf. Theorem 2.20 below. Earlier books (cf.
[Mac71]) do not always follow this convention.

Let us list some useful examples of Cartesian closed categories: for details see [LS86,
Mit96,Mac71]

Objects Distinguished Arrow(s)
!A

Terminal 1 A ~ 1

Products A x B

Exponentials B A

A,B
~1 " A •
z r A ' B . A x B---~ B

c J_La c ~_~8
c(f'~ A • B

eVA,B : IJ • A --+ B

CxA f--~B
f* C----~ B A

Equations

!A = f ,
f : A - - + l

~TI 0 (f , g) = f

:rr2 o (f, g) = g

(yrl oh, n'2 o h) = h ,
h : C - - + A x B

ev o (f* o n'l, n'2) = f

(ev o (g o Zrl, 71"2))* = g,
g : C --+ B a

Fig. 1. CCC's equationally.

Some aspects of categories in computer science 7

EXAMPLE 2.3. The category Set of sets and functions. Here A x B is a chosen Cartesian

product and BA is the set of functions from A to B. The map BA x A ev> B is the usual
f*

evaluation map, while currying C ~ B A is the map c ~-~ (a ~-~ f (c, a)).
An important subfamily of examples are Henkin models which are ccc's in which the

terminal object 1 is a generator ([Mit96], Theorem 7.2.41). More concretely, for a lambda
calculus signature with freely generated types (cf. Section 2.13 below), a Henkin model r
is a type-indexed family of sets ,4 = {A~ I cr a type} where A1 = {.}, A~ • r = A,r x A r,

A ~ r ___ AA~ which forms a ccc with respect to restriction of the usual ccc structure of Set.
In the case of atomic base sorts b, r is some fixed but arbitrary set. A full type hierarchy

is a Henkin model with full function spaces, i.e. Acr=,r -- A A~ �9

EXAMPLE 2.4. More generally, the functor category Set c~ of presheaves on C is Carte-
sian closed. Its objects are (contravariant) functors from C to Set, and its arrows are nat-
ural transformations between them. We sketch the ccc structure: given F, G E Set r176
define F x G pointwise on objects and arrows. Motivated by Yoneda's Lemma, define
G F (A) = Nat(h A x F, G), where h A = H o m (A , -) . This easily extends to a functor. Fi-

0*
nally if H x F 0 G, define H > G F by: 0~(a)c(h, c) = Oc(H(h)(a) , c).

Functor categories have been used in studying problematic semantical issues in Algol-
like languages [Rey81,O185,OHT92,Ten94], as well as recently in concurrency theory and
models of Jr-calculus [CSW,CaWi]. Special cases of presheaves have been studied exten-
sively [Mit96,LS86]:
�9 Let C be a poset (qua trivial category). Then Set C~ the category of Kripke models

over C, may be identified with sets indexed (or graded) by the poset C. Such models
are fundamental in intuitionistic logic [LS86,TrvD88] and also arise in Kripke Logical
Relations, an important tool in semantics of programming languages [Mit96,OHT93,
OHRi].

�9 Let C = O(X) , the poset of opens of the topological space X. The subcategory Sh(X)
of sheaves on X is Cartesian closed.

�9 Let C be a monoid M (qua category with one object). Then Set c~ is the category of
M-sets, i.e. sets X equipped with a left action; equivalently, a monoid homomorphism
M ~ End(X) , where End(X) is the monoid of endomaps of X. Morphisms of M-sets
X and Y are equivariant maps (i.e. functions commuting with the action.) A special case
of this is when M is actually a group G (qua category with one object, where all maps
are isos). In that case Set c~ is the category of G-sets, the category of permutational
representations of G. Its objects are sets X equipped with left actions G --+ Sym(X)
and whose morphisms are equivariant maps. We shall return to these examples when we
speak of Latichli semantics and Full Completeness, Section 5.2

EXAMPLE 2.5. co-CPO. Objects are posets P such that countable ascending chains
a0 ~< a l ~< a2 ~< -.. have suprema. Morphisms are maps which preserve suprema of count-
able ascending chains (in particular, are order preserving). This category is a ccc, with
products P x Q ordered pointwise and QP = Hom(P, Q), ordered pointwise. In this case,
the categories are ~o-CPO-enriched- i.e. the hom-sets themselves form an co-CPO, com-

8 P.J. Scott

patible with composition. An important subccc is co-CPO_L, in which all objects have a
distinguished minimal element _L (but morphisms need not preserve it).

The category o9-CPO is the most basic example in a vast research area, domain theory,
which has arisen since 1970. This area concerns the denotational semantics of program-
ming languages and models of untyped lambda calculi (cf. Section 2.5 below). See also the
survey article [AbJu94].

EXAMPLE 2.6. Coherent spaces and stable maps. A Coherent Space .A is a family of sets
satisfying: (i) a 6 .A and b c a implies b 6 .A, and (ii) if B _ .A and if u c' ~ B(c t_J c t c
A) then U B 6 .A. In particular, 0 6 A. Morphisms are stable maps, i.e. monotone maps
preserving pullbacks and filtered colimits. That is, f " .A ~ / 3 is a stable map if

(i) b c a ~ .A implies f (b) c_ f (a) ,
(ii) f (Ui ~I ai) = LJi el f (a i) , for I directed, and

(iii) a U b ~ .,4 implies f (a fq b) = f (a) N f (b).
This gives a category Stab. Every coherent space .A yields a reflexive-symmetric (undi-
rected) graph (I.AI, ~) where I.AI = {al {a} 6 .A} and a ~ b iff {a,b} ~ .A. Moreover,
there is a bijective correspondence between such graphs and coherent spaces. Given two
coherent spaces .A,/3 their product .,4 • is defined via the associated graphs as fol-
lows: (IA x /31, ~A• with IA x/31 = IAI te 1131 = ({1} x IAI) U ({2} x 1131) where

(1, a) ~.A• (1' a t) iff a ~ . a at, (2, b) v A• 3 (2, b') iff b ~t3 b', and (1, a) ~A• (2, b)

for all a 6 I.AI, b ~ It31. The function space /3"A= Stab(A, 13) of stable maps can be
given the structure of a coherent space, ordered by Berry's order: f -< g iff for all
a, a t ~ .A, a t c a implies f (a t) - f (a) N g(at). For details, see [GLT,Tr92]. This class
of domains led to the discovery of linear logic (Section 4.2).

EXAMPLE 2.7. Per models. A partial equivalence relation (per) is a symmetric, transi-
tive relation ~'A ~ A2. Thus ~A is an equivalence relation on the subset DomA -- {x E
A lx '~A X}. A P-set is a pair (A, ~ a) where A is a set and "~a is a per on A. Given
two P-sets (A, ~A) and (B, "~R) a morphism of Ta-sets is a function f :A ~ B such that
a ~ A a t implies f (a) ~B f (a') for all a, a t 6 A. That is, f induces a map of quotients
DomA / ~ A ~ Dom8 / ~8 which preserves the associated partitions.

79Set, the category of P-sets and morphisms is a ccc, with structure induced from
Set: we define (A x B, --~A x B), where (a, b) ~A x B (at , b t) iff a "~A at and b ~8 b t and
(B A, ~B A), where f "~n A g iff for all a, a' ~ A, a ~ A at implies f (a) "~8 g(a'). We shall
discuss variants of the ccc structure of 7gSet in Section 2.7 below, with respect to reduction-
free normalization.

Other classes of Per models are obtained by considering pers on a fixed (function-
ally complete) partial combinatory algebra, for example built over a model of untyped
lambda calculus (cf. Section 2.5 below). The prototypical example is the following cat-
egory Per(N) of pers on the natural numbers. The objects are pers on N. Morphisms

f
R ~ S are (equivalence classes of) partial recursive functions (= Turing-machine com-
putable partial functions) N ----~ N which induce a total map on the induced partitions, i.e.
for all m,n 6N, mRn implies f (m) , f (n) are defined and f (m) S f (n) . Here we define
equivalence of maps f, g: R --+ S by: f ,-~ g iff Vm, n, mRn implies f (m) , g(n) are de-

Some aspects of categories in computer science 9

fined and f (m)Sg(n) . The fact that Per(N) is a ccc uses some elementary recursion theory
[BFSS90,Mit96,AL91]. (See also Section 2.4.1.)

EXAMPLE 2.8. Free CCC's. Given a set of basic objects 2(, we can form 9t',v, the free
ccc generated by 2(. Its objects are freely generated from 2(and 1 using x and (-) (-) , its
arrows are freely generated using identities and composition plus the structure in Figure 1,
and we impose the minimal equations required to have a ccc. More generally, we may build
U t , the free ccc generated by a directed multigraph (or even a small category) G, by freely
generating from the vertices (resp. objects) and edges (resp. arrows) of ~ and t h e n - in the
case of categories G - imposing the appropriate equations. The sense that this is free is
related to Definition 2.9 and discussed in Example 2.23.

Cartesian closed categories can themselves be made into a category in many ways. This
depends, to some extent, on how much 2 - , bi-, enriched-, etc. structure one wishes to
impose. The following elementary notions have proved useful. We shall mention a com-
parison between strict and nonstrict ccc's with coproducts in Remark 2.28. More general
notions of monoidal functors, etc. will be mentioned in Section 4.1.

DEFINITION 2.9. C A R T s t is the category of strictly structured Cartesian closed cate-
gories with functors that preserve the structure on the nose. 2-CARTst is the 2-category
whose 0-cells are Cartesian closed categories, whose 1-cells are strict Cartesian closed
functors, and whose 2-cells are natural isomorphisms [Cu93].

As pointed out by Lambek [L74,LS86], given a ccc A, we may adjoin an indeterminate

arrow 1 x ; A to A to form a polynomial Cartesian closed category A[x] over A, with the
expected universal property in CART st. The objects of ~4[x] are the same as those of .A,
while the arrows are "polynomials", i.e. formal expressions built from the symbol x using
the arrow-forming operations of A. The key fact about such polynomial expressions is a
normal form theorem, stated here for ccc's, although it applies more generally (see [LS86],
p. 61):

PROPOSITION 2.10 (Functional completeness). For every polynomial r in an in-

determinate 1 - - ~ A over a ccc fit, there is a unique arrow 1 h c A > ~ A such that
ev o (h, x) = ~0(x), where - is equality in A[x].

x x

Looking ahead to lambda calculus notation in the next section, we write h _= Xx :A.qg(X),
so the equation above becomes ev o (Xx :a.cp(x), x) = r The universal property of poly-

x

nomial algebras guarantees a notion of substitution o f constants 1 a> A 6 A for indeter-
minates x in qg(x). We obtain the following:

COROLLARY 2.1 1 (The 13 rule). In the situation above, f o r any arrow I a > A ~ A

ev o (Xx :A " ~ (X) , a) = r (4)

holds in A.

10 PJ. Scott

The/3-rule is the foundation of the lambda calculus, fundamental in programming lan-
guage theory. It says the following: we think of)~x :A.~(X) as the function x w-~ qg(x).
Equation 4 says: evaluating the function ~.x :A.~0(x) at argument a is just substitution of the
constant a for each occurrence of x in qg(x). However this process is far more sophisti-
cated than simple polynomial substitution in algebra. In our situation, the argument a may
itself be a lambda term, which in turn may contain other lambda terms applied to various
arguments, etc. After substitution, the right hand side qg(a) of Eq. (4) may be far more
complex than the left hand side, with many new possibilities for evaluations created by the
substitution. Thus, if we think of computation as oriented rewriting from the LHS to the
RHS, it is not at all obvious the process ever halts. The fact that it does is a basic theorem
in the so-called Operational Semantics of typed lambda calculus. Indeed, the Strong Nor-
malization Theorem (cf. [LS86], p. 81) says every sequence of ordered rewrites (from left
to right) eventually halts at an irreducible term (cf. Remark 2.49 and Section 2.7 below).

REMARK 2.12. We may also form polynomial ccc's A[Xl Xn] by adjoining a finite

set of indeterminates 1 xi > Ai. Using product types, one may show A[xl Xn] ~4[Z],

for an indeterminate 1 z > A l x . . . x An.
Polynomial Cartesian or Cartesian closed categories A[x] may be constructed directly,

showing they are the Kleisli category of an appropriate comonad on r (see [LS86],
p. 56). Extensions of this technique to allow adjoining indeterminates to fibrations, using
2-categorical machinery are considered in [HJ95].

2.2. Simply typed lambda calculi

Lambda Calculus is an abstract theory of functions developed by Alonzo Church in the
1930's. Originally arising in the foundations of logic and computability theory, more re-
cently it has become an essential tool in the mathematical foundations of programming
languages [Mit96]. The calculus itself, to be described below, encompasses the process of
building functions from variables and constants, using application and functional abstrac-
tion.

Actually, there are many "lambda calcul i"- typed and untyped- with various elaborate
structures of types, terms, and equations. Let us give the basic typed one. We shall follow
an algebraic syntax as in [LS86].

DEFINITION 2.13 (Typed)~-calculus). Let Sorts be a set of sorts (or atomic types). The
typed ~.-calculus generated by Sorts is a formal system consisting of three classes: Types,
Terms and Equations between terms. We write a" A for "a is a term of type A".

Types" This is the set obtained from the set of Sorts using the following rules" Sorts are
types, 1 is a type, and if A and B are types then so are A x B and B A . We allow
the possibility of other types or type-forming operations and possible identifications
between types. (Set theorists may even use "classes" instead of "sets".)

Terms: To every type A we assign a denumerable set of typed variables x A ' A , i =

0, l, 2 We write x" A or x A for a typical variable x of type A. Terms are freely

Some aspects o f categories in computer science 1 1

generated from variables, constants, and term-forming operations. We require at least
the following distinguished generators:

(1) , :1 ,
(2) I f a ' A , b" B, c" A • B, then (a, b) " A • B, re A'B (c) " A, zr #'B(c)" B,

(3) If a" A, f " B A, 99" B then e v A , B (f , a) " B,)~x .A.99" B A.

There may be additional constants and term-forming operations besides those spec-
ified.

We shall abbreviate eVA,B(f, a) by f ' a , read " f of a", omitting types when clear.
Intuitively, eva,B denotes evaluation, (,) denotes pairing, and Xx :A.99 denotes the
function x ~ 99, where 99 is some term expression possibly containing x. The oper-
ator Xx-a acts like a quantifier, so the variable x in)~x-a �9 99 is a bound (or dummy)
variable, just like the x in Yx :a 99 or in f f (x) dx. We inductively define the sets of
free and bound variables in a term t, denoted FV(t) , BV(t) , resp. (cf. [Bar84], p. 24).
We shall always identify terms up to renaming of bound variables. The expression
99[a/x] denotes the result of substituting the term a : A for each occurrence o f x : A in
99, if necessary renaming bound variables in 99 so that no clashes occur (cf. [Bar84]).
Terms without free variables are called closed; otherwise, open.

Equations between terms: A context F is a finite set of (typed) variables. An equation in
context F is an expression a - -a ' , where a, a ' are terms of the same type A whose

F
free variables are contained in F.

The equality relation between terms (in context) of the same type is generated using
(at least) the following axioms and closure under the following rules:

(i) = is an equivalence relation.
F
a = b

(ii) F whenever F c A.
a - - b '

A
(iii) = must be a congruence relation with respect to all term-forming operations.

r
It suffices to consider closure under the following two rules (cf. [LS86])

a - b 9 = 9 I
f fU{ xA }

f ' a - f ' b 7 l~x :A �9 99 7 ~.x :A " q 91

(iv) The following specific axioms (we omit subscripts on terms, when the types are
obvious):
Products
(a) a - - . forall a : l ,

F
(b) zrl ((a, b)) = a for all a :A, b: B,

F
(c) zr2((a, b)) = b for all a :A, b : B ,

F
(d) (re1 (c), zr2(c)) = c for all c: C,

F

12 P.J. S c o t t

Lambda Calculus
~'Rule ()~x :A " ~) ' a - - 7 q)[a /x],

o-Rule Xx a " (f ' x) r f ' where f " BA and x is not a free variable of f .

REMARK 2.14. There may be additional types, terms, or equations. Following standard
conventions, we equate terms which only differ by change of bound variables- this is
called or-conversion in the literature [Bar84]. Equations are in context- i.e. occur within a
declared set of free variables. This allows the possibility of empty types, i.e. types without
closed terms (of that type). This view is fundamental in recent approaches to functional
languages [Mit96] and necessary for interpreting such theories in presheaf categories, for
example. However, if there happen to be closed terms a : A of each type, we may omit the
subscript F on equations, because of the following derivable rule (cf. [LS86], Prop. 10.1,
p. 75): for x ~ F and if all free variables of a are contained in F,

tP[a/X]r ~[a/x]

EXAMPLE 2.15. Freely generated simply typed lambda calculi. These are freely gener-
ated from specified sorts, terms, and/or equations. In the minimal case (no additional as-
sumptions) we obtain the simply typed lambda calculus with finite products freely gen-
erated by Sorts. Typically, however, we assume that among the Sorts are distinguished
datatypes and associated terms, possibly with specified equations. For example, basic uni-
versal algebra would be modelled by sorts A with distinguished n-ary operations given by
terms t : A n :=~ A and constants c: 1 ~ A. Any specified term equations are added to the
theory as (nonlogical) axioms.

EXAMPLE 2.16. The internal language of a ccc .A. Here the types are the objects of
.A, where x, (-) (-) , 1 have the obvious meanings. Terms with free variables Xl :A1

Xn "An are polynomials in .A[xl xn], where 1 xi ~ A i is an indeterminate, lambda ab-
straction is given by functional completeness, as in Proposition 2.10, and we define a - - b

x
to hold iff a = b as polynomials in A[X], where X = {xl Xn }.

x

REMARK 2.17.
(i) Historically, typed lambda calculi were often presented with only exponential types

B a (no products) and the associated machinery [Bar84,Bar92]. This permits certain
simplifications in inductive arguments, athough it is categorically less "natural" (cf.
also Remark 2.24).

(ii) It is a fundamental property that lambda calculus is a higher-order functional lan-
guage: terms of type BA can use an arbitrary term of type A as an argument, and
A and B themselves may be very complex. Thus, typed lambda calculus is often
referred to as a theory offunctionals of higher type.

Some aspects of categories in computer science 13

2.3. Formulas-as-types: The fundamental equivalence

Let us describe the third component of the trio: Cartesian closed categories, typed lambda
calculi, and formulas-as-types. The Formulas-as-Types view, sometimes called the Curry-
Howard isomorphism, is playing an increasingly influential role in the logical foundations
of computing, especially in the foundations of functional programming languages. Its his-
torical roots lie in the so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation of
intuitionistic logic from the 1920's [GLT,TrvD88]. The idea is based on modelling proofs
(which are programs) by functions, i.e. lambda terms. Since proofs can be modelled by
lambda terms and the latter are themselves arrows in certain free categories, it follows that
functional programs can be modelled categorically.

In modern guise, the Curry-Howard analysis says the following. Proofs in a constructive
logic s may be identified as terms of an appropriate typed lambda calculus ~z:, where:
�9 types = formulas of/~,
�9 lambda terms = proofs (i.e. annotations of Natural Deduction proof trees),
�9 provable equality of lambda terms corresponds to the equivalence relation on proofs

generated by Gentzen's normalization algorithm.
Often researchers impose additional equations between lambda terms, motivated from cat-
egorical considerations (e.g., to force traditional datatypes to have a strong universal map-
ping property).

REMARK 2.18 (formulas = specifications). More generally, the Curry-Howard view
identifies types of a programming language with formulas of some logic, and programs
of type A as proofs within the logic of formula A. Constructing proofs of formula A may
then be interpreted as building programs that meet the specification A.

For example, consider the intuitionistic {7-,/x, =~}-fragment of propositional calculus,
as in Figure 2. This logic closely follows the presentation of ccc's in Definition 2.1 and
Figure 1. We now identify (= Formulas-as-Types) the propositional symbols 7-, A, =~ with
the type constructors 1, • =~, respectively. We assign lambda terms inductively. To a proof

Fot'mulas
Provability

A ::-- -1-IAtoms[A1/x A2IA1 =:~ A2
is a reflexive, transitive relation such that, for arbi-

trary formulas A, B, C
Ab-]-, A A B F - A , A A B F - B
C ~ A / x B iff CF-Aand C ~ B
C /xA F- B iff C ~ A =~ B

Fig. 2. Intuitionistic T, A, =~ logic.

14 P.J. Scott

of A F- B we assign s x : A ~ t (x) :B, where t (x) is a term of type B with at most
the free variable x :A (i.e. in context {x :A}) as follows:

x : A I - x : A ,
x : A b- s (x) : B y : B i-- t (y) : C

x :A F- t [s (x) / y] : C

x : A ~ , : T , x : A A B t- zrl (x) : A, x : A A B I- rr2(x) : B,

x : C I - a : A x : C F - b : B

x : C ~ - (a ,b) :A A B

z : C A A F - t (z) : B

y : C F- ~ , x : A " t [(y , x) / z] : A :=~ B '

y :Ct - - t (y) : A =, B

z : C A A ~ t[Trl (z)/y] 'rr2(z) : B

We can now refer to entire proof trees by the associated lambda terms. We wish to put an
equivalence relation on proofs, according to the equations of typed lambda calculus. Given
two proofs of an entailment A F- B, say x :A ~ s (x) : B and x :A ~ t (x) : B, we say they
are equivalent if we can derive s -- t in the appropriate typed lambda calculus.

{xl

DEFINITION 2.19. Let)~-Calc denote the category whose objects are typed lambda calculi
and whose morphisms are translations, i.e. maps q~ which send types to types, terms to
terms (including mapping the ith variable of type A to the ith variable of type q~(A)),
preserve all the specified operations on types and terms on the nose, and preserve equations.

THEOREM 2.20. There are a pair o f functors C:s ~ Cartst and L:Car ts t
)~-Calc which set up an equivalence o f categories Cartst ~ ~,-Calc.

The functor L associates to ccc A its internal language, while the functor C associates
to any lambda calculus s a syntactically generated ccc C(s whose objects are types of
/~ and whose arrows A ~ B are denoted by (equivalence classes of) lambda terms t (x)
representing proofs x : A F- t (x) : B as above (see [LS86]).

This leads to a kind of Soundness Theorem for diagrammatic reasoning which is impor-
tant in categorical logic.

COROLLARY 2.21. Verifying that a diagram commutes in a ccc C is equivalent to proving
an equation in the internal language o f C.

The above result includes allowing algebraic theories modelled in the Cartesian fragment
[Mac82,Cr93], as well as extensions with categorical data types (like weak natural numbers
objects, see Section 2.3.1). Theorem 2.20 also leads to concrete syntactic presentations of
free ccc's [LS86,Tay98]. Let G r a p h be the category of directed multi-graphs [ST96].

COROLLARY 2.22. The forgezful functor L/:Cartst -+ Graph has a left adjoint
F: Graph -+ Cartst. Let F G denote the image o f graph G under F. We call F G the free
ccc generated by G.

Some aspects of categories in computer science 15

EXAMPLE 2.23. Given a discrete graph Go considered as a a set, 9vG0 = the free ccc
generated by the set of sorts Go. It has the following universal property: for any ccc C and
for any graph morphism F :Go ~ C, there is a unique extension to a (strict) ccc-functor

~--]]F : ~-~0 ~ C.

~--]]F
~G0 / / / ~ C

~o

This says: given any interpretation F of basic atomic types (= nodes of Go) as objects
of C, there is a unique extension to an interpretation [[-llF in C of the entire simply typed
lambda calculus generated by Go (identifying the free ccc FG0 with this lambda calculus).

REMARK 2.24. A Pitts [Pi9?] has shown how to construct free ccc's syntactically, using
lambda calculi without product types. The idea is to take objects to be sequences of types
and arrows to be sequences of terms. The terminal object is the empty sequence, while
products are given by concatenation of sequences. For a full discussion, see [CDS97]. This
is useful in reduction-free normalization (see Section 2.7 below).

REMARK 2.25. There are more advanced 2- and bi-categorical versions of the above re-
sults. We shall mention more structure in the case of Cartesian closed categories with
coproducts, in the next section.

2.3.1. Some datatypes. Computing requires datatypes, for example natural numbers,
lists,
arrays, etc. The categorical development of such datatypes is an old and established area.
The reader is referred to any of the standard texts for discussion of the basics, e.g., [MA86,
BW95,Mit96,Ten94]. General categorical treatments of abstract datatypes abound in the
literature. The standard treatment is to use initial T-algebras (cf. Section 2.4.2 below) or
final T-coalgebras for "definable" or "polynomial" endofunctors T. There are interest-
ing common generalizations to lambda calculi with functorial type constructors [Ha87,
Wr89], categories with datatypes determined by strong monads [Mo91,CSp91], and using
enriched categorical structures [K82]. There is recent discussion of datatypes in distributive
categories [Co93,W92], and the use of the categorical theory of sketches [BW95,Bor94].

We shall merely illustrate a few elementary algebraic structures commonly added to a
Cartesian or Cartesian closed category (or the associated term calculi).

DEFINITION 2.26. A category C has finite coproducts (equivalently, binary coproducts
and an initial object 0) if for every A, B 6 C there is a distinguished object A + B, together
with isomorphisms (natural in A, B, C E C)

Homc(O,A) ~- {,},

Homg(A + B, C) -~ Home(A, C) • Home(B, C).

(5)

(6)

16 PJ. Scott

Objects Distinguished Arrow(s) Equations

Initial 0 0 0 a A OA -- f ,

f :O---'> A

in l 'B " a --+ a + B [f , g] o inl -- f

Coproducts A + B ina'B " B ---> A + B [f , g] o in2 = g

a f--~C B g--~C [h o inl, h o in2] = h,
A + B ~ C h ' A + B --+ C

Fig. 3. Coproducts.

We say C is bi-Cartesian closed (-- biccc) if it is a ccc with finite coproducts, l

Just as in the case of products (cf. Figure 1), we may present coproducts equationally, as
in Figure 3, and speak of strict structure, etc. In programming language semantics, coprod-
ucts correspond to variant types, set-theoretically they correspond to disjoint union, while
from the logical viewpoint coproducts correspond to disjunction. Thus a biccc corresponds
to intuitionistic {_L, T, A, v, =:~}-logic. We add to the logic of Figure 2 formulas _1_ and
A1 v A2, together with the rules

Z ~ A

A v B F- C iff A ~ C and B t-- C

corresponding to Eqs. (5), (6). The associated typed lambda calculus with coproducts is
rather subtle to formulate [Mit96,GLT]. The problem is with the copairing operator

A + B [f '~ C

which in Sets corresponds to a definition-by-cases operator:

_If(x) if x e A ,
[f, g](x) / g(x) i f x e B .

The correct lambda calculus formalism for coproduct types corresponds to the logicians'
natural deduction rules for strong sums. The issue is not trivial, since the word problem for
free biccc's (and the associated type isomorphism problem [DiCo95]) is among the most
difficult of this type of question, and - at least for the current state of the art - depends
heavily on technical subtleties of syntax for its solution (see [Gh96]).

Just as for ccc's, we may introduce various 2-categories of biccc's (cf. [Cu93]). For
example

1 Not to be confused with bicategories, cf. [Bor94].

Some aspects of categories in computer science 1'/

DEFINITION 2.27. The 2-category 2-BiCARTst has 0-cells strict bi-Cartesian closed cat-
egories, 1-cells functors preserving the structure on the nose, and 2-cells natural isomor-
phisms.

One may similarly define a non-strict version 2-BiCART.

REMARK 2.28. Every bi-Cartesian closed category is equivalent to a strict one. Indeed,
this is part of a general 2-categorical adjointness between the above 2-categories, from a
theorem of Blackwell, Kelly, and Power. (See t~ubri6 [Cu93] for applications to lambda
calculi.)

DEFINITION 2.29. In a biccc, define B o o l e = 1 + 1, the type of Booleans.

Boole's most salient feature is that it has two distinguished global elements (Boolean
values) T, F : I ~ Boole, corresponding to the two injections in1, in2, together with the
universal property of coproducts. In Set we interpret B o o l e as a set of cardinality 2; sim-
ilarly, in typed lambda calculus, it corresponds to a type with two distinguished constants
T, F : Boole and an appropriate notion of definition by cases. In any biccc, we can define
all of the classical n-ary propositional logic connectives as arrows Boole n --+ B o o l e (see
[LS86], 1.8). A weaker notion of Booleans in the category w-CPO_L is illustrated in Fig-
ure 4.

0
DEFINITION 2.30. A natural numbers object in a ccc C is an object N with arrows 1 >

s
N > N which is initial among diagrams of that shape. That is, for any object A and arrows

a h
1 > A > A, there is a unique iterator Z-ah :N --+ A making the following diagram
commute:

1 0 ~ N N

h
A > A

A weak natural numbers object is defined as above, but just assuming existence and not
necessarily uniqueness of Zah.

f t

. 1 - \ / N l -
1

1 2 n

1

Fig. 4. Flat datatypes in co-CPO_t_.

18 P.J. Scott

In the category Set, the natural numbers (N, 0, S) is a natural numbers object, where
S n = n + l .

In functor categories Set c, a natural numbers object is given by the constant func-
tor KN, where K N (A) = N, and K N (f) = idN, with obvious natural transformations

0 s
1 ~ KN) KN. In co-CPO there are numerous weak natural numbers objects: for ex-
ample the flat pointed natural numbers N_L = N ~ {_1_}, ordered as follows: a ~< b iff a = b
or a =_1_, where S(n) = n + 1 and S(_L) =_L, pictured in Figure 4.

Natural numbers ob jec t s - when they e x i s t - are unique up to isomorphism; however
weak ones are far from unique. Typical programming languages and typed lambda calculi
in logic assume only weak natural numbers objects.

If a ccc C has a natural numbers object N, we can construct parametrized ver-
sions of iteration, using products and exponentiation in C [LS86,FrSc]. For example, in
Set: given functions g : A --+ B and f : N x A • B --+ B, there exists a unique primi-
tive recursor ~,gf :N x A --+ B satisfying: (i) ~gf(O, a) = g(a) and (ii) 7"r a) --
f (n , a, 7-~gf(n, a)). These equations are easily represented in any ccc with N, or in the
associated typed lambda calculus (e.g., the number n 6 N being identified with sno). In
the case C has only a weak natural numbers object, we may prove the existence but not
necessarily the uniqueness of ~ g f .

An important datatype in Computer Science is the type of finite lists of elements of some
type A. This is defined analogously to (weak) natural numbers objects:

DEFINITION 2.31. Given an object A in a ccc C, we define the object gist(A) offinite
lists on A with the following distinguished structure: arrows nil:l --+ g.ist(A), cons: A •
gist(A) --~ gist(A) satisfying the following (weak) universal property: for any object B and
arrows b : 1 -~ B and h : A x B --~ B, there exists an "iterator" Zbh : gist(A) -+ B satisfying
(in the internal language):

~bh nil = b, Zhh cons(a, w) = h (a, Iah w).

Here nil corresponds to the empty list, and cons takes an element of A and a list and
concatenates the element onto the head of the list.

Analogously to (weak) natural numbers objects N, we can use product types and expo-
nentiation to extend iteration on gist(A) to primitive recursion with parameters (cf. [GLT],
p. 92).

What n-ary numerical Set functions are represented by arrows N n ~ N in a ccc? The
answer, of course, depends on the ccc. In general, the best we could expect is the following
(cf. [LS86], Part III, Section 2):

PROPOSITION 2.32. Let UN be the free ccc with weak natural numbers object. The class
of numerical total functions representable therein is properly contained between the prim-
itive recursive and the Turing-machine computable functions.

In general, such fast-growing functions as the Ackermann function are representable
in any ccc with weak natural numbers object (see [LS86]). Analogous results hold for
symmetric monoidal and monoidal closed categories, [PR89].

Some aspects of categories in computer science 19

The question of strong versus weak datatypes is of some interest. For example, although
we can define addition + :N x N ~ N by primitive recursion on a weak natural numbers
type, commutativity of addition follows from having a strong natural numbers object; a
weak parametrized primitive recursor would only allow us to derive x + n = n + x for
each closed numeral n but we cannot then extend this to variables (cf. G6del's incom-
pleteness theorem, cf. [LS86], p. 263). Notice that, on the face of it, the definition of a
natural numbers object appears not to be equational: informally, uniqueness of the arrow
Zah requires an implication: for all f :N ~ A (if f O = a and f S -- h f) then f = Zah.

Here we remark on a curious observation of Lambek [L88]. Let us recall from universal
algebra that a Mal'cev operator on an algebra A is a function m A" A 3 --+ A satisfying
m A x x z = Z and mAXZZ = x. For example, if A were a group, mA = x y - l z is such an
operator. Similarly, the definition of a Mal'cev operator on an object A makes sense in any

ccc (e.g., as an arrow A 3 mA A satisfying some diagrams) or, equivalently, in any typed
lambda calculus (e.g., as a closed term m A" A3 =:~ A satisfying some equations).

THEOREM 2.3 3 (Lambek). Let C be a ccc with weak natural numbers (N, 0, S) in which
each object A has a Mal ' cev operator m A. Then the fac t that (N, O, S) is a natural numbers
object is equationally definable using the family {ma] A c C}. In particular, i f C = ,TN,
the free ccc with weak natural numbers object, there are a finite number o f additional
equations (as schema) that, when added to the original data, guarantee that every type has
a Mal 'cev operator and N is a natural numbers object.

2.4. Polymorphism

"The perplexing subject of polymorphism."
C. Darwin, Life & Lett, 1887

Although Darwin was speaking of biology, he might very well have been discussing
computer science 100 years later. Christopher Strachey in the 1960's introduced various
notions of polymorphism into programming language design (see [Rey83,Mit96]). Perhaps
the most influential was his notion of parametric polymorphism. Intuitively, a parametric
polymorphic function is one which has a uniformly given algorithm at all types. Imagine
a "generic" algorithm capable of being instantiated at any arbitrary type, but which is the
"same algorithm" at each type instance. It is this idea of the "plurality of form" which
inspired the biological metaphor.

EXAMPLE 2.34 (Reverse). Consider a simple algorithm that takes a finite list and reverses
it. Here "lists" could mean: lists of natural numbers, lists of reals, lists of arrays, indeed
lists of lists of The point is, the types do not matter: we have a uniform algorithm for
all types. Let list(a) denote the type of finite lists of entities of type a. We thus might type
this algorithm

rev~ " list(a) =:~ list(a) where reva(al an) -- (an al) .

20 P.J. Scott

A second example, discussed by Strachey, is

EXAMPLE 2.35 (Map-list). This algorithm begins with a function of type u =~ fl and a
finite u-list, applies the function to each element of the list, and then makes a r-list of the
subsequent values. We might represent it as:

mapa,~ : (u =r fl) =:~ (list(u) =~ list(fl))

where map~,~(f)(al an) = (f (a l) f (an)).

Many recent programming languages (e.g., ML, Ada) support sophisticated uses of
generic types and polymorphism. The mathematical foundations of such languages were
a major challenge in the past decade and category theory played a fundamental role. We
shall briefly recall the issues.

2.4.1. Polymorphic lambda calculi. The logician J.-Y. Girard [Gi71,Gi72] in a series of
important works examined higher-order logic from the Curry-Howard viewpoint. He de-
veloped formal calculi of variable types, the so-called polymorphic lambda calculi, which
correspond to proofs in higher-order logics. At the same time he developed the proof theory
of such systems. J. Reynolds [Rey74] independently discovered the second-order fragment
of Girard's system, and proposed it as a syntax representing Strachey's parametric poly-
morphism.

Let us briefly examine Girard's System ~ , second order polymorphic lambda calculus.
The underlying logical system is intuitionistic second order propositional calculus. The
latter theory is similar to ordinary propositional calculus, except we can universally quan-
tify over propositional variables.

The syntax of second order propositional calculus is presented in Figure 5. The usual
notions of free and bound variables in formulas are assumed. For example, in Vu(~ :=~ fl),
u is a bound variable, while fl is free. A[B/u] denotes A with formula B substituted for
free u, changing bound variables if necessary to avoid clashes. Notice in the quantifier
rules that when we instantiate a universally quantified formula to obtain, say, F F- A[B/u],

Formulas
Provability

A : : = vb l lA l =~ A2 IVu.A
F is a relation between finite sets of formulas
and formulas

FF-A if A ~ F

F U { A I F B F F A A F A = ~ B

F F A = ~ B ' F U A f - B
F F- A(u) F F- VaA(u)

F ~ VuA(u) ' F F n[B/u]

where u r FV(F) for any formula B.

Fig. 5. Second order intuitionistic propositional calculus.

Some aspects of categories in computer science 21

the formula B may be of arbitrary logical complexity. Thus inductive proof techniques
based on the complexity of subformulas are not available in higher-order logic. This is the
essence of the problem of impredicativity in polymorphism.

We now introduce Girard's second order lambda calculus. We use the notation FV(t)
and BV(t) for the set of free and bound variables of term t, respectively. We write FTV(A)
and BTV(A) for the set of free type variables and bound type variables of formula A,
respectively.

DEFINITION 2.36 (Girard's System .~).

Types: Freely generated from type variables c~, fl by the rules: if A, B are types, so are
A =:~ B and 'r

Terms" Freely generated from variables x/A of every type A by
(1) First-order lambda calculus rules: if f :A =~ B, a : A , r B then f ' a : B and

~,x :A .q9 : A :=~ B.
(2) Specifically second-order rules:

(a) If t : A(ot), then Au.t:VaA(ot) where c~ r FTV(FV(t)),
(b) If t :'r (c~) then t[B] : A[B/~] for any type B.

Equations: Equality is the smallest congruence relation closed under fl and 77 for both
lambdas, that is:
(3) (&x :A.qg)'a =ill tp[a/x] and)~x :A (f ' x) =,7' f ' where x ~ F V (f) .
(4) (Ac~.~)[B] ----#2 ~[B/ot] and Aot.t[ot] =~2 t, where otr FTV(t).
Eqs. (3) are the first order fir/equations, while Eqs. (4) are second order fir/.

From the Curry-Howard viewpoint, the types of .T" are precisely the formulas of second
order propositional calculus (Fig. 5), while terms denote proofs. For example, to annotate
second order rules we have:

~ ' F F - t ' A (a)

~" F ~ Aot . t ' u '

2" F F- t �9 VolA(u)

~" r F- t[B]" A[B/u]

The fl r/equations of course express equality of proof trees.
What about polymorphism? Suppose we think of a term t : u as an algorithm of

type A(ot) varying uniformly over all types c~. Then t [B]:A[B/a] is the instanfiafion of t
at the specific type B. Moreover, B may be arbitrarily complex. Thus the type variable acts
as a parameter.

In System ,T we can internally represent common inductive data types within the syntax
as weak T-algebras, for covariant definable functors T. Weakness refers to the categorical
fact that these structures satisfy existence but not uniqueness of the mediating arrow in
the universal mapping property. Thus, for any types A, B we are able to define the types
1, Nat, List(A), A x B, A + B, 3t~ . A, etc. (see [GLT] for a full treatment).

Let us give two examples and at the same time illustrate polymorphic instantiation.

22 PJ. Scott

EXAMPLE 2.37. The type of Booleans is given by

Boole -- Vc~.(ot :=~ (or =~ c~)).

It has two distinguished elements T, F: Boole given by T = Ac~.~.x :ot.lky:ot.X and F =
Aot.)~x :~ .X y :~ . y , together with a Definition by Cases operator (for each type A) DA " A =~

(A =~ (Boole :=~ A)) defined by D A u v t = (t [A] ' u) ' v where u, v" A, t 'Boole . One may
easily verify that D z u v T =~ u and D A u v F =~ v (where/3 stands for/31 tO f12).

EXAMPLE 2.38. The type of (Church) numerals

N a t - Vc~((~ ~ c~) =~ (c~ ~ c~)).

The numeral n : N a t corresponds at each c~ to n-fold composition f ~ f n , where
f n = f o f o . . . o f (n times) and f0 = Ida = Xx~ �9 x. Formally, it is the closed term
n = Aot .)~ f :a=,c~ . f n :Nat. Thus for any type B we have a uniform algorithm: n[B] =
) ~ f : B = , B . f n : (B :=~ B) =:~ (B =:~ B). Successor is given by S = ~.n:Nat.n q- 1, where
n + 1 = Aot .)~ f : a ~ o t . f n + l " - Aot .~ . f : a ~ . f o f n = Aot .)~ f : ~ = f o (n[c~]'f). Finally, it-
eration is given by: if a : A, h : A =r A, Zah = Lx :Nat.(x[A]'h) 'a: Nat =~ A. The reader
may easily calculate that ZahO =[~ a and Zah(n + 1) --/~ h' (Zahn) for numerals n.

Let us illustrate the power of impredicativity in this situation. See the discussion of
Church vs. Curry typing, Section 2.5.3. Notice that for any type B, n[B =, B] 'n[B] makes
perfectly good sense. In particular, let B = Nat, the type of n itself. This is a well-defined
term and if we erase all its types we obtain the untyped expression n 'n -- ~.f. f n . This latter
untyped term is not typable in simply typed lambda calculus.

Formal systems describing far more powerful versions of polymorphism have been de-
veloped. For example, Girard's thesis described the typed lambda calculus corresponding
to w-order intuitionist type theory, so-called .T'~o. Programming in the various levels of
Girard's theories {.T'n}, n = 1,2 , w, is described in [PDM89]. Other systems include
Coquand-Huet's Calculus of Constructions and its extensions [Luo94]. These theories in-
clude not only Girard's ~'~o but also Martin-L6f's dependent type theories [H97a]. Indeed,
these theories are among the most powerful logics known, yet form the basis of various
proof-development systems (e.g., LEGO and Coq) [LP92,D+93].

2.4.2. What is a model o f System 5r? The problem of f ind ing- and indeed defining
precisely - a model of System .T" was difficult. Cartesian closedness is not the issue. The
problem, of course, is the universal quantifier: clearly in u the cr is to range over all the
objects of the model, and at the same time u should be interpreted as some kind of product
(over all objects). Such "large" products create havoc, as foreshadowed in the following
theorem of Freyd (cf. [Mac71], Proposition 3, p. 110).

THEOREM 2.39 (Freyd). A small category which is small complete is a preorder.

Cartesian closed preorders (e.g., complete Heyting algebras) are of no interest for mod-
elling proofs; we seek "nontrivial" categories.

Some aspects of categories in computer science 23

Suppose instead we try to define a naive "set-theoretic" model of System Y, in which
x, =~ have their usual meaning, and Vc~ is interpreted as a "large" product. Such models
are defined in detail in [RP,Pi87]. John Reynolds proved the following

THEOREM 2.40. There is no Set model for System Y.

There is an elegant categorical proof in Reynolds and Plotkin [RP]. Let us sketch the
proof, which applies to somewhat more general categories than Set.

Let C be a category with an endofunctor T :C --+ C. A T-algebra is an object A together
a

with an arrow TA > A. A morphism of T-algebras is a commutative square:

Tf
TA ~ TB

A ~ B

An initial T-algebra (resp. weakly initial T-algebra) is one for which there exists a unique
morphism (resp. there exists a morphism) to any other T-algebra.

We shall be interested in objects and arrows of the model category C which are "defin-
able", i.e. denoted by types and terms of System Y. There are simple covariant endofunc-
tors T on C whose action on objects is definable by types and whose actions on arrows
is definable by terms (of System ,T'). For example, the identity functor T (or) = ol and the
functor T (c0 -- (a =~ B) :=~ B, for any fixed B, have this property.

Now it may be shown (see [RP]) that for any definable functor T, the System Y expres-
sion P = Vot.(T(ot) =:~ or) :=~ c~ is a weakly initial T-algebra. Suppose the ambient model
category C has equalizers of all subsets of arrows (e.g., Set has this property). Essen-
tially by taking a large equalizer (cf. the Solution Set Condition in Freyd's Adjoint Functor
Theorem, [Mac71], p. 116) we could then construct a subalgebra of P which is an initial
T-algebra. Call this initial T-algebra Z. We then use the following important observation
of Lambek:

PROPOSITION 2.41 (Lambek). If T(Z)
isomorphism.

f
> 2- is an initial T-algebra, then f is an

Applying this to the definable functor T (or) = (or =~ B) :=~ B, we observe that T (2-) _--__ 2-.
In particular, let C = Set and B -- Boole, and take the usual Set interpretation of x as
Cartesian product and =:~ as the full function space. Notice card(B) ~> 2 (since there are

always the two distinct closed terms T and F). Hence we obtain a bijection B Bz ~- Z, for
some set 2-, which is impossible for cardinality reasons.

The search for models of System Y led to some extraordinary phenomena that had con-
siderable influence in semantics of programming languages. Let us just briefly mention
the history. Notice that the Reynolds-Plotkin proof depends on a simple cardinality argu-
ment, which itself depends on classical set theory. Similarly, the proof of Freyd's result,
Theorem 2.39, depends on using classical (i.e. non-intuitionistic) logical reasoning in the

24 PJ. Scott

metalanguage. This suggests that it is really the non-constructive nature of the category
Sets that is at fault; if we were to work within a non-classical universe - say within a
model of intuitionistic set theory - there is still a chance that we could escape the above
problems but still have a "set-theoretical" model of System ~'. And, from one point of
view, that is exactly what happened.

These ambient categories, called toposes [LS86,MM92], are in general models of in-
tuitionistic higher-order logic (or set-theory), and include such categories as functor cate-
gories and sheaves on a topological space, as well as Sets. Moggi suggested constructing
models of System .T" based on an internally complete internal full subcategory of a suitable
ambient topos. This ambient topos would serve as our constructive set-theory, and func-
tion types would still be interpreted as the full "set-theoretical" space of total functions. M.
Hyland [Hy88] proved that the Realizability (or Effective) Topos had (non-trivial) such in-
ternal category objects. The difficult development and clarification of these internal models
was undertaken by many researchers, e.g., D. Scott, M. Hyland, E. Robinson, P. Rosolini,
A. Carboni, P. Freyd, A. Scedrov, A. Pitts et al. (e.g., [HRR,Rob89,Ros90,CPS88,Pi87]).

In a separate development, R. Seely [See87] gave the first general categorical defini-
tion of a so-called external model of System .T', and more generally ~-o~. The definition
was based on the theory of indexed or fibred categories. This view of logic was pioneered
by Lawvere [Law69] who emphasized that quantifiers were interpretable as adjoint func-
tors. Pitts [Pi87] clarified the relationship between Seely's models and internal-category
models within ambient toposes of presheaves. Moreover, he showed that there are enough
such internal models for a Completeness Theorem. It is worth remarking that Pitts' work
uses properties of Yoneda embeddings. For general expositions see [AL91]. Extensions
of "set-theoretical" models to cases where function spaces include partial functions (i.e.
non-termination) is in [RR90].

One can externalize these internal category models [Hy88,AL91] to obtain ordinary cat-
egories. And one such internal category in the Realizability Topos, the modest sets, when
externalized is precisely the ccc category Per(N) discussed in Section 2.1.

PROPOSITION 2.42. Per(N) is a model of System J:.

The idea is that in addition to the ccc structure of Per(N), we interpret V as a large
intersection (the intersection of an arbitrary family of pers is again a per). We shall return
to this example in Section 3.2.

Ironically, in essence this model was already in Girard's original PhD thesis [Gi72].
Later, domain-theoretic models of System ~- were considered by Girard in [Gi86] and
were instrumental in his development of linear logic

2.5. The untyped world

The advantages of types in programming languages are familiar and well-documented
(e.g., [Mit96]). Nonetheless, there is an underlying untyped aspect of computation, already
going back to the original work on lambda calculus and combinatory logic in the 1930's,
which often underlies concrete machine implementations. In this early view, developed

