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Preface 

One of the major goals of geophysical inversion is to find earth models that 
explain the geophysical observations. Thus, the branch of mathematics known 
as optimization has found significant use in many geophysical applications. 
Geophysical inversion in this context involves finding an optimal value of a 
function of several variables. The function that we want to minimize (or 
maximize) is a misfit (or fitness) function that characterizes the differences (or 
similarities) between observed and synthetic data calculated by using an 
assumed earth model. The earth model is described by physical parameters 
that characterize the properties of rock layers, such as the compressional wave 
velocity, shear wave velocity, resistivity, etc. 

Both local and global optimization methods are used in the estimation of 
material properties from geophysical data. As the title of the book suggests, 
our goal is to describe the application of several recently developed global 
optimization methods to geophysical problems. Although we emphasize the 
application aspects of these algorithms, we describe several parts of the theory 
in sufficient detail for the readers to understand the underlying fundamental 
principles upon which these algorithms are based. At this stage we take the 
opportunity to define some commonly used terms. 

For many geophysical applications, the misfit surface as a function of the 
model parameters which is described by the mismatch between the predicted 
and observed geophysical data may be highly complicated and characterized by 
multiple hills and valleys. Thus such a function will have several minima and 
maxima; the minimum of all the minima is called the global minimum and all 
other minima are called local minima. Note that the global minimum is one of 
the local minima but the converse is not true and it is also possible to have 
several minima of nearly the same depth. Local optimization or search 
algorithms such as gradient descent methods typically attempt to find a local 
minimum in the close neighborhood of the starting solution. Almost all of the 
local search methods are deterministic algorithms. They use local properties of 
the misfit function to calculate an update to the current answer and search in 
the downhill direction. Thus these algorithms will miss the global minimum if 
the starting solution is nearer to one of the local minima than the global 
minimum. The local minimum syndrome has plagued geophysicists for over a 
decade now. 

Recently (owing to the advent of powerful and relatively inexpensive 
computers), global optimization methods have been applied to several 
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geophysical problems. Unlike local optimization methods, these methods 
attempt to find the global minimum of the misfit function. Most of the global 
optimization algorithms are stochastic in nature and use more global 
information about the misfit surface to update their current position. The 
convergence of these methods to the globally optimal solution is not 
guaranteed for all the algorithms. Only for some of the simulated annealing 
algorithms under certain conditions is convergence to the globally optimal 
solution statistically guaranteed. Also, with real observational data it is never 
possible to know whether the derived solution corresponds to the global 
minimum or not. However, our experience indicates that we are able to find 
many good solutions starting with only poor initial models using global 
optimization methods. 

These global optimization methods are computationally intensive but with 
the advent of vector computers, parallel computers and powerful desktop 
workstations, use of these methods is becoming increasingly practical. While 
finding the optimal solution will always be a goal and the global optimization 
methods described here are well suited for this purpose, they can also be used 
to obtain additional information about the nature of the solution. In particular, 
the description of a solution is not complete without assigning uncertainties to 
the derived answer. With noisy data it may not even be advisable to search for 
the so-called global minimum. In these situations a statistical formulation of 
the inverse problem is often appealing. Consequently, we also describe how 
global optimization methods can be applied in a statistical framework to 
estimate the uncertainties in the derived result. 

This is not a book on inverse theory per se; several excellent texts already 
exist [e.g., Menke 1984; Tarantola 1987]. Our goal is to describe in sufficient 
detail the fundamentals of several optimization methods with application to 
geophysical inversion such that students, researchers and practitioners will be 
able to design practical algorithms to solve their specific geophysical inversion 
problems. We attempted to make this book virtually self-contained so that 
there are no pre-requisites, except for a fundamental mathematical background 
that includes a basic understanding of linear algebra and calculus. The material 
presented in the book can easily be covered in a one-semester graduate level 
course on geophysical inversion. We believe that after reviewing the materials 
presented in the book, the readers will be able to develop specific algorithms 
for their own applications. We will be happy to mail sample Fortran codes of 
proto-type Metropolis simulated annealing (SA), heat bath SA, very fast 
simulated annealing (VFSA) and a basic genetic algorithm, to those interested. 

Much of our work on nonlinear inversion has been supported by grants 
from the National Science Foundation, the Office of Naval Research, Cray 



Preface vii 

Research, Inc., and the Texas Higher Education Coordinating Board. We 
acknowledge The University of Texas System Center for High Performance 
Computing for their support and computational resources. Adre Duijndam, 
Jacob Fokkema, Cliff Frohlich, John Goff, Lester Ingber, Tad Ulrych and 
Lian-She Zhao reviewed the manuscript and offered valuable suggestions. 
Milton Porsani who worked with us for one year as a visiting scientist along 
with several of our graduate students including Faruq Akbar, Carlos Calderon, 
Raghu Chunduru, Mike Jervis, Vik Sen, Mehmet Tanis, and Carlos Varela, 
participated in the research and reviewed the manuscript. Their contribution 
to the project has been extremely valuable. We thank Milo Backus for his 
many critical comments during the early stages of the work which helped 
tremendously in shaping our ideas on inverse theory in general. Charlene 
Palmer receives our thanks for painstakingly typesetting the manuscript. We 
also thank Gus Berkhout and Jacob Fokkema for inviting us to write the book 
for the series Advances in Exploration Geophysics. 

Several figures and parts of the text in Chapter 7 are based on a paper 
presented at the 1994, EAEG 56th Annual Meeting and Exposition meeting in 
Vienna, Austria, which have been printed by permission of the copyright 
holders. The copyright of the paper belongs to the European Association of 
Geoscientists and Engineers. 

Mrinal K. Sen wishes to thank his wife Alo and children Amrita and Ayon 
for their sacrifice and encouragement. He also thanks Neil Frazer for his 
suggestions following the 1990 Society of Exploration Geophysicists Meeting 
to write a book on this subject. 

Paul L. Stoffa wishes to thank his wife Donna for her constant support and 
Gus Berkhout who motivated the writing of this book. 

The University of Texas Institute for Geophysics contribution number 1075. 

Mrinal K. Sen (mrinal@bullen.ig.utexas.edu) 
Paul L. Stoffa (pauls@tau-p.ig.utexas.edu) 
Institute for Geophysics 
The University of Texas at Austin 



This Page Intentionally Left Blank



ix 

Con tents 

Preface ............................................................................................... 

Chapter 1 . Preliminary Statistics ...................................................... 

1.1. 
1.2. 
1.3. 
1.4. 

1.5. 
1.6. 
1.7. 
1.8. 
1.9. 
1.10. 
1.11. 
1.12. 
1.13. 

Random variables ......................................................................... 
Random numbers ......................................................................... 
Probability ............ ................................................................. 
Probability distribution. distribution function and density function .............. 
1.4.1. Examples of distribution and density functions ........................... 
Joint and marginal probability distributions ......................................... 
Mathematical expectation. moments. variances. and covariances ................ 

Monte Carlo integration .................................................................. 

Stochastic processes ...................................................................... 
Markov chains ........................... .............................................. 
Homogeneous. inhomogeneous. irreducible and aperiodic Markov chains ..... 
The limiting probability .................................................................. 

Conditional probability ..................... ........................... .... 

Importance sampling ................... ............................................. 

Chapter 2 . Direct. Linear and Iterative-linear Inverse Methods ........... 

2.1. 
2.?. 
2.3. 

2.4. 
2.5. 
2.6. 

2.7. 

Direct inversion methods ................................................................ 
Model based inversion methods ....................................................... 
Linear/linearized inverse methods ................................... 
2.3.1. Solution of linear inverse problems .......................................... 
2.3.2. Stability and uniqueness-singular value decomposition analysis ....... 
2.3.3. Methods of constraining the solution .......................... 

Iterative linear methods for quasi-linear problems ................................. 

Solution using probabilistic formulation .............................................. 
2.6.1. Linear case ........................................................................ 
2.6.3. Case of weak non-linearity .................................................... 
2.6.3. Quasi-linear case ................................................................. 
Summary .................................................................................... 

2.3.4. Uncertainty estimates ............................................................. 

Bayesian formulation ..................................................................... 

V 

1 

1 
2 
3 
5 
7 
9 

10 
13 
15 
16 
18 
20 
24 
25 

21 

28 
34 
37 
41 
45 
47 
49 
50 
53 
60 
60 
61 
62 
64 



X Contents 

Chapter 3 . Monte Carlo Methods ...................................................... 67 

3.1. Enumerative or grid search techniques ............................................... 67 
3.2. Monte Carlo inversion ................................................................... 71 
3.3. Hybrid Monte Carlo-linear inversion ................................................. 76 
3.4. Directed Monte Carlo methods ......................................................... 77 

Chapter 4 . Simulated Annealing Methods .......................................... 79 

4.1. 

4.2. 

4.3. 
4.4. 
4.5. 
4.6. 

4.7. 

4.8. 

Metropolis algorithm ...................................................................... 
4.1.1. Mathematical model and asymptotic convergence .......................... 

4.2.1. Mathematical model and asymptotic convergence .......................... 
Simulated annealing without rejected moves ........................................ 

Heat bath algorithm ...................................................................... 

Fast simulated annealing ................................................................. 
Very fast simulated reannealing ........................................................ 
Mean ......................................................................................... 
4.6.1. Neurons ............................................................................ 
4.6.2. Hopfield neural networks ...................................................... 
4.6.3. Avoiding local minimum ....................................................... 
4.6.4. Mean field theory ................................................................ 

4.7.1 . Bayesian formulation ............................................................ 
Summary .................................................................................... 

Using SA in geophysical inversion ................................................... 

83 
87 
91 
96 

102 
103 
106 
110 
110 
113 
115 
115 
122 
122 
123 

Chapter 5 . Genetic Algorithms ......................................................... 125 

5.1. 

5.2. 
5.3. 
5.4. 
5.5. 
5.6. 
5.7. 
5.8. 

5.9. 

A classical GA ............................................................................ 
5.1.1. Coding ............................................................................. 
5.1.2. Selection ........................................................................... 
5.1.3. Crossover .......................................................................... 
5.1.4. Mutation ............................................................................ 
Schemata and the fundamental theorem of genetic algorithms .................. 
Problems .................................................................................... 
Combining elements of SA into a new GA ........................................ 
A mathematical model of a GA ....................................................... 
Multimodal fitness functions, genetic drift ........................................... 
Uncertainty estimates ..................................................................... 
Evolutionary programming .............................................................. 

125 
126 
129 
131 
136 
137 
139 
140 
144 
152 
155 
155 

Summary .................................................................................... 157 



Contents xi 

Chapter 6 . Geophysical Applications of SA and G A ......................... 

6.1. 1 -D Seismic waveform inversion ...................................................... 
6.1.1. Application of heat bath SA ................................................... 
6.1.2. Application of GA ............................................................... 
6.1.3. Real data examples .............................................................. 
6.1.4. Hybrid GNLI .................................................................... 
Pre-stack migration velocity estimation ............................................... 
6.2.1. 1-D earth structure ............................................................... 
6.2.2. 2-D earth structure ............................................................... 
Inversion of resistivity sounding data for I-D earth models .................... 

6.2. 

6.3. 
6.3.1. Exact parameterization ........................................................... 
6.3.2. Over parameterization with smoothing ....................................... 

6.4. Inversion of resistivity profiling data for 2-D earth models ..................... 
6.4.1. Inversion of synthetic data ..................................................... 
6.4.2. Inversion of field data .......................................................... 
Inversion of magnetotelluric sounding data for 1-D earth models ............. 

Seismic deconvolution by mean field annealing and Hopfield network ....... 

6.5. 
6.6. Stochastic reservoir modeling ........................................ 
6.7. 

Chapter 7 . Uncertainty Estimation .................................................... 

7.1. Methods of Numerical Integration ..................................................... 
7.1.1. Grid search or enumeration .................................................... 
7.1.2. Monte Carlo integration ......................................................... 
7.1.3. Importance sampling ............................................................. 
7.1.4. Multiple MAP estimation ....................................................... 

7.2. Simulated annealing: The Gibbs’ sampler ... .................................... 

7.4. Numerical examples ...................................................................... 
7.4.1. Inversion of noisy synthetic vertical electric sounding data ............ 

7.5. Summary .................................................................................... 

7.3. Genetic algorithm: The parallel Gibbs’ samp ............................... 

References  ......................................................................................... 
Subject Index .................................................................................... 

159 

161 
162 
171 
180 
180 
192 
192 
198 
212 
212 
216 
216 
219 
222 
225 
227 
234 

245 

246 
248 
249 
249 
250 
250 
253 
254 
254 
263 

269 
279 



This Page Intentionally Left Blank



Chapter 1 

Preliminary Statistics 

The solution of a geophysical inverse problem can be obtained by a 
combination of information from observed data, the theoretical relation 
between data and earth parameters (models) and prior information on data and 
models. Due to uncertainties in the data and model, probability theory can be 
used as a tool to describe the inverse problem. Excellent introductory books 
on the subject of probability theory are those of Feller [1968], Papoulis [1965] 
and Ross [1989]. In this chapter, we will review probability theory and 
stochastic processes, the concepts that will be used later to describe the global 
optimization methods used in geophysical inverse problems. Readers familiar 
with the subject can proceed directly to Chapter 2. 

1.1 .  Random variables 

In simple language, a random variable is a variable that is used to represent 
the outcome of a random experiment. Familiar random experiments are the 
tossing of a die and flipping of a coin. When a die is tossed, there are six 
possible outcomes and it is not certain which one will occur. Similarly when a 
coin is tossed, there are two possible outcomes and it is not certain which one 
will occur. The outcome of a random experiment is usually represented by a 
point, called a sample point s. The set which consists of all possible sample 
points is called the sample space 5. Subsets of 5 represent certain events such 
that an event A consists of a certain collection of possible outcomes s. If two 
subsets contain no points s in common, they are said to be disjoint, and the 
corresponding events are said to be mutually exclusive. Formally, any single 
valued numerical function X(s) defined on a sample space 5 is called a random 
variable and a unique real number is associated with each point s. 
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1 . 2 .  R a n d o m  n u m b e r s  

Most of the methods of geophysical inversion that we will discuss in this 
book will use probability or statistical theory that involves studying processes 
arising from random experiments. This means that we will need to simulate 
random processes on a computer. In practice this will require an algorithm to 
generate random numbers. Computer generated random numbers have been 
used extensively in several applications. Most commonly, sampling methods 
using computer generated random numbers have been used in situations where 
the mathematics become intractable. Metropolis and Ulam [1940] first 
proposed the use of random sampling to the solution of deterministic problems 
such as the evaluation of an integral of the type 

X 
m a x  

I = ~ f(x) dx . (1.1) 
x 

rain 

If this integral exists, it is given by the expected value of the function. For 
a random number X that has a uniform distribution over the interval (Xmi n, 
Xmax), the above integral can be replaced by the following sum 

i - n  
1 

I -  -ff ~_~ f ( X i )  
i=1 

(1.2) 

where X i is a random sample from the uniform distribution. Techniques using 
this idea are referred to as Monte Carlo methods. In general, any method 
using a random walk is usually included in the category of Monte Carlo 
methods. 

To apply any technique that involves random processes, computer 
generated random numbers are required. Although a computer is a machine 
that produces output which is always predictable, computer generated random 
numbers are used extensively and are called pseudo-random numbers. Most 
computers use a method called the congruential method to generate random 
samples from a uniform distribution [Kennedy and Gentle, 1980; Rubinstein, 
1981 ]. The machines produces a sequence of pseudo random integers I 1, 12, 13, 
� 9  between 0 and N by the recurrence relation: 

N) , 


