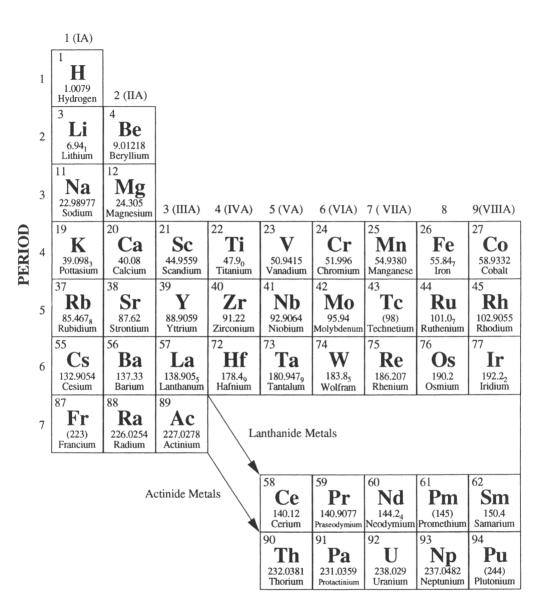

EXTRACTIVE METALLURGY OF COPPER

fourth edition

W.G. DAVENPORT M. KING M. SCHLESINGER A.K. BISWAS



								18 (VIIIB)
								2
								He
			13 (IIIB)	14 (IVB)	15 (VB)	16 (VIB)	17 (VIIB)	4.00260 Helium
			5	6	7	8	9	10
			B	C		0	F	Ne
			10.81 Boron	12.011 Carbon	14.0067 Nitrogen	15.999 ₄ Oxygen	18.998403 Fluorine	20.17 ₉ Neon
			13	14	15	16	17	18
			Al	Si	P	S	Cl	Ar
10	11(IB)	12(IIB)	26.98154 Boron	28.085 ₅ Silicon	30.97376 Phosphorous	32.06 Sulphur	35,453 Chlorine	39.94 ₈ Argon
28	29	30	31	32	33	34	35	36
Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
58.70	63.546	65.38	69.72	72.5 ₉	74.9216	78.9 ₆	79.904	83.80
Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
46	47	48	49	50	51	52	53	54
Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
106.4 Palladium	107.868 Silver	112.41	114.82	118.69	121.75	127.60	126.9045	131.30
		Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
78	79	80	81	82	83	84	85	86
Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
195.09	196.9665	200.5_9	204.37	207.2	208.9804	(209)	(210)	(222)
Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon

63	64	65	66	67	68	69	70	71
Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
151.96	157.2 ₅	158.9254	162.5 ₀	164.9304	167.2 ₆	168.9342	173.0 ₄	174.96 ₇
Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
95	96	97	98	99	100	101	102	103
Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Americium	Curium	Berkelium	Californium	Einsteintium	Fermium	Mendelevium	Nobelium	Lawrencium

Extractive Metallurgy of Copper

FOURTH EDITION

Elsevier Titles of Related Interest

 P. BALÁZ (Slovak Academy of Sciences, Slovakia)
 Extractive Metallurgy of Activated Minerals 2000, Hardbound, 290 pages ISBN: 0-444-50206-8
 K.H.J. BUSCHOW (University of Amsterdam, The Netherlands)

R.W. CAHN (University of Cambridge, UK)
M.C. FLEMINGS (Massachusetts Institute of Technology, MA, USA)
B. ILSCHNE (Swiss Federal Institute of Technology, Switzerland)
E.J. KRAMER (University of California, CA, USA)
S. MAHAJAN (Arizona State University, AZ, USA)
The Encyclopedia of Materials: Science and Technology 2001, Hardbound, approx. 10000 pages ISBN: 0-08-043152-6 (11-volume set) Electronic version is also available: http://www.elsevier.com/emsat/show/index.htt

R.W. CAHN (University of Cambridge, UK)
P. HAASEN (University of Göttingen, Germany)
Physical Metallurgy, 4th Revised and Enhanced Edition 1996, Hardbound, 2888 pages ISBN: 0-444-89875-1 (3-volume set)

V.S.T. CIMINELLI (Universidade Federal de Minas Gerais, Brazil) O. GARCIA Jr. (UNESP-Campus Araraquara, Brazil)

Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, Parts A and B

2001, Hardbound, 1348 pages ISBN: 0-444-50623-3

Y. MURAKAMI (Kyushu University, Japan)

Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions 2002, Hardbound, 380 pages ISBN: 0-08-044064-9

W. PETRUK (Ottawa, Canada) Applied Mineralogy in the Mining Industry 2000, Hardbound, 286 pages ISBN: 0-444-50077-4

to search for more Elsevier books, visit the Books Butler at http://www.elsevier.com/homepage/booksbutler/

Extractive Metallurgy of Copper

W.G. DAVENPORT

Department of Materials Science and Engineering University of Arizona Tucson, AZ, USA

M. KING Phelps Dodge Mining Company Phoenix, AZ, USA

M. SCHLESINGER Metallurgical Engineering Department University of Missouri – Rolla Rolla, MO, USA

A.K. BISWAS[†]

FOURTH EDITION

ELSEVIER SCIENCE Ltd The Boulevard, Langford Lane Kidlington, Oxford OX5 1GB, UK

© 2002 Elsevier Science Ltd. All rights reserved.

This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier Science via their homepage (http://www.elsevier.com) by selecting 'Customer support' and then 'Permissions'. Alternatively you can send an e-mail to: permissions@elsevier.co.uk, or fax to: (+44) 1865 853333.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (+44) 207 631 5555; fax: (+44) 207 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or distribution of such material.

Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.

Address permissions requests to: Elsevier Science Global Rights Department, at the fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition	1976
Second edition	1980
Third edition	1994
Fourth edition	2002

British Library Cataloguing in Publication Data

```
Davenport, W. G. (William George)
Extractive metallurgy of copper. - 4th ed.
1.Copper - Metallurgy
I.Title II.King, M. III.Schlesinger, M. IV.Biswas, A. K.
(Anil Kumar)
669.3
```

```
ISBN 0080440290
```

Library of Congress Cataloging in Publication Data A catalog record from the Library of Congress has been applied for.

ISBN: 0-08-044029-0

⁶⁰ The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). Printed in The Netherlands.

CONTENTS

1

Preface	xiii
Preface to the Third Edition	xv
Preface to the Second Edition	xvii
Preface to the First Edition	xix

1 Overview 1 1.1 Introduction Extracting Copper from Copper-Iron-Sulfide Ores 1.2 1 Hydrometallurgical Extraction of Copper 11 1.3 Melting and Casting Cathode Copper 13 1.4 Recycle of Copper and Copper-Alloy Scrap 15 1.5 Summary 15 1.6 Suggested Reading 16 16

References

2 **Production and Use**

17

31

2.1	Locations of Copper Deposits	18
2.2	Location of Extraction Plants	18
2.3	Copper Minerals and 'Cut-Off' Grades	19
2.4	Price of Copper	28
2.5	Summary	29
	References	29

Concentrating Copper Ores 3

3.1	Concentration Flowsheet	31
3.2	Crushing and Grinding (Comminution)	33
3.3	Flotation Feed Particle Siz.	38
3.4	Froth Flotation	42
3.5	Specific Flotation Procedures for Cu Ores	46
3.6	Flotation Cells	49
3.7	Sensors, Operation and Control	50

vi	Contents

3.8	The Flotation Product	52
3.9	Other Flotation Separations	53
3.10	Summary	53
	Suggested Reading	54
	References	54

4 Matte Smelting Fundamentals

Why Smelting?	57
, .	59
Reactions During Matte Smelting	65
	66
	67
8	70
	70
References	70
	Why Smelting? Matte and Slag Reactions During Matte Smelting The Smelting Process: General Considerations Smelting Products: Matte, Slag and Offgas Summary Suggested Reading References

5 Flash Smelting – Outokumpu Process 73

5.1	Outokumpu Flash Furnace	74
5.2	Peripheral Equipment	77
5.3	Furnace Operation	82
5.4	Control	83
5.5	Impurity Behavior	86
5.6	Future Trends	87
5.7	Summary	87
	Suggested Reading	88
	References	88

6 Inco Flash Smelting

91

6.1	Furnace Details	91
6.2	Auxiliary Equipment	96
6.3	Operation	97
6.4	Control Strategy	98
6.5	Cu-in-Slag and Molten Converter Slag Recycle	100
6.6	Inco vs. Outokumpu Flash Smelting	101
6.7	Summary	101
	Suggested Reading	101
	References	102

vii

Nora	anda and Teniente Smelting	103
7.1	Noranda Process	104
7.2	Reaction Mechanisms	106
7.3	Operation and Control	108
7.4	Production Rate Enhancement	109
7.5	Noranda Future	110
7.6	Teniente Smelting	110
7.7	Process Description	111
7.8	Operation	111
7.9	Control	113
7.10	Impurity Distribution	114
7.11	Teniente Future	115
7.12	Discussion	115
7.13	Summary	116
	Suggested Reading	117
	References	117
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12	 7.2 Reaction Mechanisms 7.3 Operation and Control 7.4 Production Rate Enhancement 7.5 Noranda Future 7.6 Teniente Smelting 7.7 Process Description 7.8 Operation 7.9 Control 7.10 Impurity Distribution 7.11 Teniente Future 7.12 Discussion 7.13 Summary Suggested Reading

8	Ausmelt/Isasmelt Matte Smelting	119
---	---------------------------------	-----

8.1	Basic Operations	119
8.2	Feed Materials	120
8.3	The Isasmelt Furnace and Lance	120
8.4	Smelting Mechanisms	125
8.5	Startup and Shutdown	126
8.6	Current Installations	126
8.7	Other Coppermaking Uses of Ausmelt/Isasmelt Technology	127
8.8	Summary	127
	Suggested Reading	128
	References	129

9 Batch Converting of Cu Matte

9.1	Chemistry	131
9.2	Industrial Peirce-Smith Converting Operations	137
9.3	Oxygen Enrichment of Peirce-Smith Converter Blast	144
9.4	Maximizing Converter Productivity	145
9.5	Recent Developments in Converting – Shrouded Blast Injection	148
9.6	Alternatives to Peirce-Smith Converting	148
9.7	Summary	150
	Suggested Reading	151
	References	151

viii	Contents

10 Continuous Converting

10.1	Common Features of Continuous Converting	155
10.2	Downward Lance Mitsubishi Continuous Converting	157
10.3	Solid Matte Outokumpu Flash Converting	162
10.4	Submerged-Tuyere Noranda Continuous Converting	166
10.5	% Cu-in-Slag	170
10.6	Summary	170
	Suggested Reading	171
	References	171

11 Copper Loss in Slag

	11.1	Copper in Slags	173
	11.2	Decreasing Copper in Slag I: Minimizing Slag Generation	175
	11.3	Decreasing Copper in Slag II: Minimizing Cu Concentration in Slag	176
	11.4	Decreasing Copper in Slag III: Pyrometallurgical Slag Settling/Reduction	176
	11.5	Decreasing Copper in Slag IV: Slag Minerals Processing	181
	11.6	Summary	181
		Suggested Reading	183
		References	183
12	Dire	ct-To-Copper Flash Smelting	187
	12.1	The Ideal Direct-to-Copper Process	187
	12.2	Industrial Single Furnace Direct-to-Copper Smelting	188
	12.3	Chemistry	189
	12.4	Industrial Details	190
	12.5	Control	190
	12.6	Cu-in-Slag: Comparison with Conventional Matte Smelting/Converting	193
	12.7	Cu-in-Slag Limitation of Direct-to-Copper Smelting	194
	12.8	Direct-to-Copper Impurities	195
	12.9	Summary	195
		Suggested Reading	196
		References	196

13	Mitsubishi Continuous Smelting/Converting	199
13	Mitsubishi Continuous Smelting/Converting	19

13.1	The Mitsubishi Process	201
13.2	Smelting Furnace Details	201

13.3	Electric Slag Cleaning Furnace Details	203
13.4	Converting Furnace Details	203
13.5	Recent Mitsubishi Process Developments	207
13.6	Reaction Mechanisms in Mitsubishi Smelting	208
13.7	Optimum Matte Grade	210
13.8	Impurity Behavior in Mitsubishi Smelting/Converting	210
13.9	Process Control in Mitsubishi Smelting/Converting	211
13.10	Summary	212
	Suggested Reading	214
	References	215

14 Capture and Fixation of Sulfur

217

14.1	Offgases from Smelting and Converting Processes	217
14.2	Sulfuric Acid Manufacture	218
14.3	Smelter Offgas Treatment	222
14.4	Gas Drying	224
14.5	Acid Plant Chemical Reactions	227
14.6	Industrial Sulfuric Acid Manufacture	231
14.7	Recent and Future Developments in Sulfuric Acid Manufacture	240
14.8	Alternative Sulfur Products	241
14.9	Future Improvements in Sulfur Capture	241
14.10	Summary	242
	Suggested Reading	243
	References	243

15 Fire Refining and Casting of Anodes: Sulfur and 247 Oxygen Removal

15.1	Industrial Methods of Fire Refining	247
15.2	Chemistry of Fire Refining	252
15.3	Choice of Hydrocarbon for Deoxidation	253
15.4	Casting Anodes	253
15.5	Continuous Anode Casting	256
15.6	New Anodes from Rejects and Anode Scrap	260
15.7	Removal of Impurities During Fire Refining	260
15.8	Summary	261
	Suggested Reading	261
	References	262

16 Electrolytic Refining	265
--------------------------	-----

16.1	Principles	265
16.1	Principles	20

Contents х

	16.2	Behavior of Anode Impurities During Electrorefining	269
	16.3	Industrial Electrorefining	272
	16.4	Cathodes	273
	16.5	Electrolyte	273
	16.6	Cells and Electrical Connections	278
	16.7	Typical Refining Cycle	279
	16.8	Refining Objectives	280
	16.9	Maximizing Cathode Copper Purity	280
	16.10	Optimum Physical Arrangements	280
	16.11	Optimum Chemical Arrangements	281
	16.12	Optimum Electrical Arrangements	282
	16.13	Minimizing Energy Consumption	283
	16.14	Recent Developments in Electrorefining	283
	16.15	Summary	284
		Suggested Reading	284
		References	285
17	Hydi	rometallurgical Copper Extraction:	289
	Intro	oduction and Leaching	
	17.1	Heap Leaching	289
	17.2	Industrial Heap Leaching	293
	17.3	Steady-State Leaching	299
	17.4	Leaching of Chalcopyrite Concentrates	300
	17.5	Other Leaching Processes	301
	17.6	Future Developments	301
	17.7	Summary	301
		Suggested Reading	303
		References	303
18	Solv	ent Extraction Transfer of Cu	307
10		Leach Solution to Electrolyte	
	18.1	The Solvent Extraction Process	307
	18.2	Chemistry	309
	18.3	Extractants	310
	18.4	Industrial Solvent Extraction Plants	312
	18.5	Quantitative Design of Series Circuit	312
	18.6	Stability of Operation	321
	18.7	'Crud'	322
	18.8	Summary	323
		Suggested Reading	324
		References	324

Contents	xi

19	Elec	trowinning	327
	19.1 19.2 19.3 19.4 19.5 19.6	Electrowinning Reactions Electrowinning Tankhouse Practice Maximizing Copper Purity Maximizing Current Efficiency Future Developments Summary Suggested Reading References	328 329 335 335 337 337 338 338
20	Collection and Processing of Recycled Copper		341
	20.1 20.2 20.3 20.4	The Materials Cycle Secondary Copper Grades and Definitions Scrap Processing and Beneficiation Summary Suggested Reading References	341 344 346 351 351 352
21	Cher	mical Metallurgy of Copper Recycling	355
	21.1 21.2 21.3	The Secondary Copper Smelter Scrap Processing in Primary Copper Smelters Summary Suggested Reading References	355 360 363 363 364
22	Melt	ing and Casting	367
	22.1 22.2 22.3 22.4	Product Grades and Quality Melting Technology Casting Machines Summary Suggested Reading References	367 370 374 380 381 381
23	Cost	s of Copper Production	385
	23.1 23.2 23.3	Overall Investment Costs: Mine through Refinery Overall Direct Operating Costs: Mine through Refinery Total Production Costs, Selling Prices, Profitability	386 389 389

xii Contents

23.4	Concentrating Costs	391
23.5	Smelting Costs	393
23.6	Electrorefining Costs	395
23.7	Production of Copper from Scrap	397
23.8	Leach/Solvent Extraction/Electrowinning Costs	397
23.9	Profitability	398
23.10	Summary	399
	References	399

Appendices

401

A	Stoichiometric Data for Copper Extraction	401
В	Lesser-Used Smelting Processes	403
С	Copper Recovery from Anode Slimes	413
D	Sketch of Series-Parallel Solvent Extraction Circuit	415
E	Extended List of Chinese Copper Refineries and their Capacities	416

Index

Preface

This edition contains more-than-ever industrial information, all of it provided generously by our industrial friends and colleagues. We thank them profusely for their help and generosity over the years.

The publication we consulted most for this edition was *Copper 99/Cobre99* (TMS, Warrendale, PA [six volumes]). For a near-future update, we direct the reader to *Copper 03/Cobre 03* being held in Santiago, Chile, November 30, 2003 (www.cu2003.cl).

As with previous editions, Margaret Davenport read every word of our manuscript. After 27 years of proofreading, she may well know more than the authors.

Dedication

It is with great sadness that we report the death of Anil Biswas – friend, colleague and inspiration. Co-author of all previous editions, Anil was at the Department of Mining and Metallurgical Engineering, University of Queensland, St Lucia, Brisbane, Australia.

Anil's objectives for this book were to (i) describe how copper metal is extracted from ore and scrap, and (ii) indicate how the extraction could be made more efficient. We are proud to continue with his original plan.

March 31, 2002

W.G. Davenport, Cambridge, England M.J. King, Phoenix, Arizona M.E. Schlesinger, Rolla, Missouri

Preface to the Third Edition

This edition chronicles the changes which have taken place in copper extraction over the last 20 years. The major changes have been the shrinkage of reverberatory smelting, the continued growth of flash smelting and the remarkable (and continuing) growth of solvent extraction/electrowinning. The use of stainless steel cathodes (instead of copper starting sheets) in electrorefining and electrowinning has also been a significant development.

These industrial growth areas receive considerable attention in this edition as do SO_2 collection and sulphuric acid manufacture. SO_2 capture has continued to grow in importance – only a few smelters now emit their SO_2 to the atmosphere.

Several important volumes on copper extraction have appeared recently, namely: *Copper 91/Cobre 91* (Pergamon Press, New York [four volumes]) and *Extractive Metallurgy of Copper, Nickel and Cobolt* (TMS, Warrendale, Pennsylvania [two volumes]). A volume on *Converting, Fire-refining and Casting* is scheduled to appear in 1994 (TMS) and the proceedings of *Cobre95/Copper 95* will appear in 1995. The reader is directed to these publications for updated information.

We wish to thank our colleagues in the copper industry for their many contributions to this edition. They have responded to our questions, encouraged us to visit their plants and engaged us in rigorous debate regarding extraction optimization. We would particularly like to thank Brian Felske (Felske and Associates), David Jones (Magma Copper Company) and Eric Partelpoeg (Phelps Dodge Mining Company). Without them this edition would not have been possible.

The manuscript was prepared and proofed by Patricia Davenport and Margaret Davenport. Their perseverance, skill and enthusiasm are happily acknowledged.

Preface to the Second Edition

For this edition we have concentrated mainly on bringing the operating data and process descriptions of the first edition up to date. Typographical errors have been corrected and several passages have been rewritten to avoid misinterpretation. Since most of the new data have come directly from operating plants, very few new references have been added. For collections of recent published information, the reader is directed to the excellent symposium publications: Extractive Metallurgy of Copper, Volumes I and II, Yannopoulos, J. C. and Agarwal, J. C. editors, A.I.M.E., New York, 1976, Copper and Nickel Converters, Johnson, R.E., A.I.M.E., New York, 1979, and to the reviews of copper technology and extractive metallurgy published annually in the Journal of Metals (A.I.M.E., New York). Most of the credit for this edition should go to the many industrial engineers and scientists who almost without exception responded to our requests for new information on their processes. We would like in particular to single out Jan Matousek of INCO. Keith Murden of Outokumpu Oy and John Schloen of Canadian Copper Refiners (now a metallurgical consultant) for their help.

September 1979

A. K. Biswas W. G. Davenport

Preface to the First Edition

This book describes the extraction of copper from its ores. The starting point is with copper ores and minerals and the finishing point is the casting and quality control of electrical grade copper. Techniques for recovering copper from recycled scrap are also discussed.

The main objectives of the book are to describe the extractive metallurgy of copper as it is today and to discuss (qualitatively and quantitatively) the reasons for using each particular process. Arising from these descriptions and discussions are indications as to how copper-extraction methods will develop in the future. Control of air and water pollution is of tremendous importance when considering future developments and these are discussed in detail for each process. Likewise, the energy demands of each process are dealt with in detail. Costs are mentioned throughout the text and they are considered in depth in the final chapter.

The book begins with an introductory synopsis (for the generalist reader) of the major copper-extraction processes. It then follows copper extraction in a stepwise fashion beginning with mineral benefication and advancing through roasting, smelting, converting, refining, casting and quality control. Hydrometallurgy and its associated processes are introduced just before electrorefining so that electrowinning and electrorefining can be discussed side by side and the final products of each method compared. The last two chapters are not in sequence – they are devoted to the sulphur pollution problem and to economics.

As far as possible, the length of each chapter is commensurate with the relative importance of the process it describes. Blast-furnace copper smelting is, for example, given a rather brief treatment because it is a dying process while newer techniques such a continuous copper-making and solvent extraction are given extensive coverage because they may assume considerable importance in the near future.

A word about units: the book is metric throughout, the only major exception to the Standard International Unit System being that energy is reported in terms of kilocalories and kilowatt-hours. The principal units of the book are metric tons (always written tonnes in the text), kilograms and metres. A conversion table is provided in Appendix I. A knowledge of thermodynamics is assumed in parts of the book, particularly with respect to equilibrium constants. For concise information on the thermodynamic method as applied to metallurgy, the reader is