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FOREWORD 

This book represents thirteen papers that are based on the presentations made in the five 
session symposium on "Damage and Interfacial Debonding in Composites" on the occasion 
of the 32nd Society of Engineering Science Meeting; held in New Orleans, Louisiana, 
October 29 - November 1, 1995. The five sessions were mainly in the area of constitutive 
modeling of the micromechanics of damage of composites. It includes macromechanical/ 
micromechanical constitutive modeling, experimental procedures, and numerical modeling. 
Inelastic behavior, interfaces, damage, fracture, failure, and computational methods are 
included. 

The book is divided into two parts. Part I deals with the study of damage of composites, 
and Part II is on the interfacial debonding of composites. The papers discuss topics ranging 
from theoretical treatments to experimental investigation. The papers investigate both micro- 
mechanics and continuum aspects of damage and interfacial debonding in composites. 

We express our thanks to all the authors that contributed to this work. Their time and 
effort are greatly appreciated. 

George Z. Voyiadjis 
Baton Rouge, Louisiana 

David H. Allen 
College Station, Texas 

March 1996 
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The Stress Intensity Factors and Interaction Between Cylindrical Cracks in Fiber- 
1Vfatrix Composites 

S. Close and H.M. Zbib 

School of Mechanical and Materials Engineering 
Washington State University, Pullman, WA 99164-2920, USA 

The elastic interaction between two cylindrical cracks in an infinite, homogeneous, isotropic, 
elastic medium is investigated. The cylindrical cracks represent a case of fiber-matrix debonding. 
We examine the effect of the cracks spacing and size on the stress intensity factors, K I and KII, 
which result from a pressure loading. Each crack is modeled as a pile-up of Somigliana ring 
dislocations. The solution is based on analytical expressions obtained earlier for the ring 
dislocation. Continuous distributions of dislocation densities, modeling the two cracks, are 
obtained numerically using a piecewise quadratic approximation and an iterative scheme to 
evaluate the interaction between the two cracks. The analysis provides estimates for the stress 
intensity factors and their relation to the cracks spacing and size. The analysis also reveals that 
each crack can be represented by a pair of superdislocations, which leads to the analytical 
solution. The interaction among the superdislocations also provides a closed form expression for 
the stress intensity factor. 

I. INTRODUCTION 

Recent advances in the field of material science have led to the development of a class of 
unconventional materials, such as fibrous composites. In general, composites are composed of 
strong, lightweight fibers embedded in a matrix. As the development of composites has 
progressed, the utilization of these materials in industry has become increasingly more common. 
As with any solid material, there are unavoidable stress raisers present, due to internal defects, 
which have important implications on the mechanical behavior of the material. Some of the most 
common defects which have been studied extensively include crystal defects and planar cracks. 
The development of composite materials has given rise to a series of internal defects which have 
not been thoroughly investigated. These defects arise from the characteristic, geometric structure 
of fiber-matrix composites, and include matrix cracking, broken fibers, fiber pull-out, and fiber- 
matrix debonding as shown in Figure 1. Stress singularities caused by cracks, voids or inclusions, 
may lead to structural failure at stress levels far below the limits estimated using a 
macromechanical analysis. Therefore, it is necessary to have a comprehensive understanding of 
fracture initiation and growth, the effects of voids and small inclusions, and their interaction with 



each other. In this instance, we examine the interaction between cylindrical cracks; a defect type 
which might occur in the case of fiber-matrix debonding, as shown in Figure ld. 
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Figure 1. Defects in fibrous composite materials: 
(a) matrix cracking, (b) broken fibers, (c) fiber 
pull-out, (d) fiber-matrix debonding. 

Figure 2. The Somigliana ring dislocation. 

The fiber-matrix debonding problem has been previously addressed by a number of 
investigators. When debonding occurs, cylindrical cracks are formed at the fiber-matrix interface. 
The overall strength of the composite becomes dependent upon the sizes and geometries of these 
cracks. A review of the interface crack can be found in the recent work of Rice [1]. The most 
common method of modeling interfacial cracks is the dislocation approach, in which the crack is 
represented by a pile:up of dislocations. The work of Erdogan [2] gives a comprehensive review 
of fracture problems in composite materials with special emphasis on the linear elastic fracture 
mechanics models. 

The theory of dislocations has become an increasingly useful tool for modeling many mechanical 
properties. Dislocation theory arose in an attempt to explain why the observed yield stresses of 
crystals are much lower than the theoretical yield stresses. Dislocations were first considered as 
singularities in continuous media and then later as crystal imperfections. A review of the early 
works and developments of the concepts of dislocations can be found in [3-5]. The original 
purpose for developing the theory of dislocations was to model singularities in a continuum, but 
later, the concepts and the, ones were adapted to a variety of problems in continuum mechanics. 
Today, the theory of dislocations is an important tool for modeling the continuum elastic-plastic 
description of deformable sofids. By combining large numbers of dislocations in various ways, it 
is possible to model many different defects in both homogeneous and nonhomogeneous media. 
An introduction to the mathematical theory of dislocations can be found in [6]. 

The first dislocation models utilized straight dislocations of the edge and screw type. The 
Burgers vector of a straight dislocation remains constant and fixed at all positions along the 
dislocation line. Dislocations of this type are called Voltera dislocations. Later development led 
to the introduction of dislocations where the Burgers vector changed in magnitude and/or 



direction along the dislocation line. Dislocations of this type are called Somigliana dislocations 
[7]. We define a special type of Somigliana dislocation where the two ends of the dislocation are 
joined together to form a circular loop, as shown in Figure 2. This type of dislocation is called a 
Somigliana ring dislocation, and the stress and displacement fields associated with it are given in 
[8]. 

In continuum mechanics, dislocations are used to model internal defects. The defect which is 
most commonly modeled by dislocations is the planar crack. The planar crack is modeled as a 
pile-up of straight dislocations, and the macroscopic effects of the crack can be determined by 
summing the effects of the individual dislocations. The procedure for modeling planar cracks is 
thoroughly established [9], but this practice is not only limited to planar crack problems. The 
theory of dislocation pile-ups can also be applied to the cylindrical cracks which may occur in a 
fiber-matrix debonding problem. Cylindrical cracks may propagate along the fiber-matrix 
interface in composite materials. Since excessive crack propagation may ultimately lead to failure 
of the structure, one is very interested in the stress state in the neighboring region surrounding the 
crack. This problem has been investigated by a number of people who considered interfacial 
cracks between two isotropic materials [10,11], homogeneous transversely isotropic materials 
[12], and nonhomogeneous anisotropic materials [13]. These studies modeled the cylindrical 
crack as a pile-up of Somigliana ring dislocations. Approximate solutions for the stress fields near 
the crack tip were achieved by numerically solving a set of integral equations. This problem was 
recently re-examined by Demir et al. [14], who modeled the cylindrical crack as a pile-up of ring 
dislocations, but also utilized an earlier result they obtained for a single ring dislocation [8]. 
Demir et al. were able to achieve numerical solutions for the dislocation distributions, the 
extended stress field, and the stress intensity factors associated with a cylindrical crack. In 
addition, they were able to show that the pile-up of dislocations can be approximately represented 
by an equivalent pair of superdislocations, with magnitudes and positions determined toproduce a 
similar stress field. Since the solution for the single dislocation was already given in [8], and the 
authors additionally provided an exact expression for the interaction between two Somigliana ring 
dislocations in [ 15], the superdislocation representation provided a closed form solution for the 
extended stress field of a cylindrical crack. The next logical step is to analyze a crack-crack 
interaction problem, establishing the framework for examining a multiple crack problem. 

The two-crack problem shown in Figure 3 is proposed to investigate the macroscopic effects of 
the interaction between two collinear cylindrical cracks. The purpose of this study is to determine 
the total stress field and the stress intensity factors which arise from the interaction between the 
stress fields of the two cracks. Each crack is represented by a distribution of dislocation loops. 
From these distributions, we are able to numerically calculate the stress field and stress intensity 
factors resulting from applied stress in the presence of two cracks. 

After the final dislocation distributions are determined, we replace the continuous distributions 
by sets of discrete superdislocations with magnitudes and positions calculated to produce similar 
extended stress fields. Based on these results, we then propose a simplified procedure to 
determine the extended stress field surrounding a pair of coupled cylindrical cracks. This 
procedure involves a series of graphs from which one can select the magnitudes and positions for 
the sets of superdislocations necessary to produce the extended stress field. Once the stress field 
has been established, the calculations for the stress intensity factors are performed by summing the 



interaction between all superdisloeations representing the cracks. Furthermore, from the 
superdisloeation representation, we then propose an approximate analytical model to calculate the 
magnitudes and positions for the sets of superdislocations. Once these expressions are 
established, they can be used to obtain an approximate expression for the stress intensity factors 
near the crack tips. 

/ 
Figure 3. The dual, collinear cylindrical crack problem. 

2. COLLINEAR CRACKS 

We consider the case of two cylindrical cracks, both with radius R and collinear axes of 
syrmnetry as shown in Figure 3. The longer of the two cracks is designated the alpha crack and 
the remaining crack is designated the beta crack. The length of the alpha crack is 2a and the 
length of the beta crack is 2h. The distance separating the two inner crack tips is d We define 
two local cylindrical coordinate systems. The first coordinate system is defined with the origin at 
the center of the alpha crack, and the second is defined with the origin at the center of the beta 
crack. It is important to note that the z-axes of both coordinate systems are coincident with each 
other. 

The same method that is used by Demir et. al. [14] to model the single cylindrical crack is 
utilized to model each of the cylindrical cracks in the two-crack problem. In an actual composite, 
the fiber and surrounding matrix are composed of two dissimilar materials. However, in this 
model, we consider the case of similar material because it can be treated analytically, which makes 
it possible to establish a framework for the treatment of the more complicated case of fiber-matrix 
problems where the solution must be carried out numerically. Therefore, although this case does 


