

A great follow-up to Volume L t Volume II is an in-depth guide to the mathematical and
geometric concepts indispensable to advanced Maya programmers.

~Larry Gritz, Exluna/NVIDIA

From Volume I of Complete Maya Programming.

David's book is an excellent learning tool and reference for novice and veteran Maya
developers alike. Maya developers can become more productive with MEL and the Maya
API by applying what they learn from this book.

Tracy Narine, Maya API Technical Lead, Alias

David Gould is an expert at using, programming, and teaching Maya, and it shows. People
who need to program Maya will find this book essential. Even Maya users who don't intend
to do extensive programming should read this book for a better understanding of what's
going on under the hood. Compact yet thorough, it covers both MEL and the C+ + APL and
is written to be informative for both novice and expert programmers. Highly recommended, t

--Larry Gritz, Exluna/NVIDIA, co-author of Advanced RenderMan

This book should be required reading for all Maya programmers, novice and expert
alike. For the novice, it provides a thorough and wonderfully well thought-out hands-on
tutorial and introduction to Maya. The book's greatest contribution, however, is that in
it David shares his deep understanding of Maya's fundamental concepts and architec-
ture, so that even the expert can learn to more effectively exploit Maya's rich and power-
ful programming interfaces.

~Philip J. Schneider, Industrial Light & Magic, co-author of
Geometric Tools for Computer Graphics

Having provided a technical review of David Gould's Complete Maya Programming,
I must say that this book is the definitive text for scripting andplug-in development for
Maya. Never before has there been such a concise and clearly written guide to program-
ruing for Maya. Any user smart enough to pick up this book would be better off for it.

~Chris Rock, technical director at "a Large Animation Studio
in Northern California"

I f you ever wanted to open the Maya toolbox, this is your guide. With clear step-by-step
instructions, you will soon be able to customize and improve the application, as well as create
your own extensions, either through the MEL scripting language or the full C+ + APL

~Christophe Hery, Industrial Light & Magic

The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling

Complete Maya Programming Volume II:
An In-depth Guide to 3D Fundamentals, Geometry,
and Modeling
David A. D. Gould

High Dynamic Range Imaging:
Data Acquisition, Manipulation, and Display
Erik Reinhard, Greg Ward, Sumanta Pattanaik,
and Paul Debevec

MEL Scripting for Maya Animators, Second Edition
Mark R. Wilkins and Chris Kazmier

Advanced Graphics Programming Using OpenGL
Tom McReynolds and David Blythe

Digital Geometry:
Geometric Methods for Digital Picture Analysis
Reinhard Klette and Azriel Rosenfeld

Digital Video and HD TV[:
Algorithms and Intofaces
Charles Poynton

Real- Hme Shader Programming
Ron Fosner

Complete Maya Programming:
An Extensive Guide to MEL and the C+ + API
David A. D. Gould

Texturing & Modeling:
A ProceduralApproach, Third Edition
David S. Ebert, E Kenton Musgrave, Darwyn
Peachey, Ken Perlin, and Steven Worley

Geometric Tools for Computer Graphics
Philip Schneider and David H. Eberly

Understanding ½rtual Reality:
Inte~Cace, Application, and Design
William B. Sherman and Alan R. Craig

tim Blinn's Corner:
Notation, Notation, Notation
Jim Blinn

Level of Detail for 3D Graphics
David Luebke, Martin Reddy, Jonathan D. Cohen,
Amitabh Varshney, Benjamin Watson, and Robert
Huebner

Pyramid Algorithms:
A Dynamic Programming Approach to Curves
and Surfaces for Geometric Modeling
Ron Goldman

Non-Photorealistic Computer Graphics:
Modeling, Rendering, and Animation
Thomas Strothotte and Stefan Schlechtweg

Curves and Surfaces for CAGD:
A Practical Guide, Fifth Edition
Gerald Farin

Subdivision Methods for Geometric Design:
A Constructive Approach
Joe Warren and Henrik Weimer

Computer Animation: Algorithms and Techniques
Rick Parent

The Computer Animator's Technical Handbook
Lynn Pocock and Judson Rosebush

Advanced RenderMan:
Creating CGI for Motion Pictures
Anthony A. Apodaca and Larry Gritz

Curves and Su~Caces in Geometric Modeling:
Theory and Algorithms
Jean Gallier
Andrew Glassner's Notebook:
Recreational Computer Graphics
Andrew S. Glassner

Warping and Morphing of Graphical Objects
Jonas Gomes, Lucia Darsa, Bruno Costa,
and Luiz Velho

tim Blinn's Corner:
Dirty Pixels
Jim Blinn

Rendering with Radiance:
The Art and Science of Lighting Visualization
Greg Ward Larson and Rob Shakespeare

Introduction to Implicit Surfaces
Edited by Jules Bloomenthal

Jim Blinn's Corner:
A Trip Down the Graphics Pipeline
Jim Blinn

Interactive Curves and Surfaces:
A Multimedia Tutorial on CAGD
Alyn Rockwood and Peter Chambers

Wavelets for Computer Graphics:
Theory and Applications
Eric J. Stollnitz, Tony D. DeRose,
and David H. Salesin

Principles of Digital Image Synthesis
Andrew S. Glassner

Radiosity & Global Illumination
Francois X. Sillion and Claude Puech

User Interface Management Systems:
Models and Algorithms
Dan R. Olsen, Jr.
Making Them Move: Mechanics, Control, and
Animation of Articulated Figures
Edited by Norman I. Badler, Brian A. Barsky,
and David Zeltzer

Geometric and Solid Modeling: An Introduction
Christoph M. Hoffmann

An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling
Richard H. Bartels, John C. Beatty,
and Brian A. Barsky

COMPLETE MAYA
P RO GRAMMI N G
VOLUME I 1

,

David A. D. Gould

AMSTERDAM BOSTON HEIDELBERG
LONDON NEW YORK OXFORD

PARIS SAN DIEGO SAN FRANCISCO
SINGAPORE SYDNEY TOKYO

ELSEVIER Morgan Kaufmann Publishers is an imprint of Elsevier M 0 R G A N K A U F M A N N P U B L I S H E R S

Senior Editor
Publishing Services Manager
Senior Project Manager
Assistant Editor
Editorial Assistant
Cover Design Direction
Cover Illustration
Text Design Direction
Composition
Technical Illustration
Copyeditor
Proofreader
Indexer
Interior Printer
Cover Printer

Tim Cox
Simon G. Crump
Angela G. Dooley
Richard Camp
Jessica Evans
Cate Rickard Barr
Sean Platter, Studio Splatter
Julio Esperas
Integra Software Services Pvt. Ltd., Pondicherry, India
Dartmouth Publishing Inc.
Daril Bentley
Phyllis Coyne et al.
Northwind Editorial
Maple-Vail Manufacturing Group
Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-f?ee paper.

© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means---electronic, mechanical, photocopying, scanning, or otherwisemwithout prior written permission
of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK"
phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You may also
complete your request on-line via the Elsevier homepage (http://elsevier.com) by selecting "Customer
Support" and then "Obtaining Permissions."

Library of Congress: Application submitted

ISBN: 0-12-088482-8
ISBN: 978-0-12-088482-8

For information on all Morgan Kaufmann publications,
visit our website at www.mkp.com.

Printed in the United States of America
05 06 07 08 09 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com I www.bookaid.org I www.sabre.org

To Agnes, my foundation.

About the Author

With over thirteen years of experience in the computer graphics industry, David Gould
has pursued the dual paths of programmer and artist. This rare ability to combine both
the technical and artistic has won him many awards and credits. He has played a key
role in the development of an eclectic mix of technology, including an award-winning
laser rendering system for Pangolin. He developed software for controlling the Kuper
motion-control rig, as well as the Monkey stop-motion puppet. He personally devel-
oped Illustrate, the market leading toon and technical illustration renderer. This
renderer is used by NASA, British Aerospace, Walt Disney Imagineering, and Sony
Pictures Entertainment, among others.

David's career has spanned a wide variety of companies and continents. In Paris,
he supervised the production of 3D stereoscopic scientific films, including the award
winning film Inside the Cell. In London he developed a patented facial animation
system. Further broadening his experiences, he worked in New York in the post-
production industry where he contributed to many high-profile commercials.

While at Walt Disney Feature Animation, Los Angeles, David developed cutting-
edge animation and modeling technology that was used in the production of their
animated feature films. He diversified further by joining Exluna, Berkeley, the soft-
ware company founded by former Pixar rendering researchers, including Larry Gritz.
While there, he played an active role in the design and development of Entropy, the
Renderman-compatible renderer, as well as other products. David continued his
rendering development efforts while at NVIDIA, in Santa Clara, California, by aid-
ing in the design of their future 3D graphics chips.

David has since joined the academy awarding winning studio WETA Digital in
New Zealand. Having completed work on The Lord of the Rings trilogy he is currently
working on King Kong. His varied roles in production include research and develop-
ment, shader writing, lighting, and effects.

Contents

Preface xiv

1 Introduction I

1.1 Example Files 3
1.1.1 Compiling Example Plug-ins 3
1.1.2 Sourcing Example MEL Scripts 3

1.2 Executing MEL Code in the Script Editor 5

2 Points 9

2.1 Dimensions 9
2.2 Cartesian Coordinates 9
2.3 Homogeneous Coordinates 10
2.4 Polar and Spherical Coordinates
2.5 Conversions 12

11

2.5.1 Cartesian to Homogeneous 12

2.5.2 Homogeneous to Cartesian 13

2.5.3 Cartesian to Polar 13

2.5.4 Polar to Cartesian 13

2.5.5 Cartesian to Spherical 14

2.5.6 Spherical to Cartesian 14

2.6 MEL 15
2.7 C++API 16
2.8 Locators 17

.j Vectors 19

3.1 MEL 19
3.2 C++API 20
3.3 Adding 21
3.4 Subtracting 22
3.5 Scaling 22
3.6 Length 23

3.6.1 MEL 25
3.6.2 Ct+ API 26

3.7 Distance Between Points 26
3.7.1 MEL 26

3.7.2 C++ API 27

3.8 Normalizing Vectors 27
3.8.1 MEL 27

3.8.2 C t t API 28

3.9 Dot Product 28
3.9.1 Angle Between 29

3.9.2 Length Squared 31

3.9.3 Perpendicular Projection 31

3.10.1 Perpendicular Vector 35

3.10.2 Area ofTriangle 38

3.10 Cross Product 35

3.1 1 Points Versus Vectors 40

Rotations 43

4.1 Angles 43
4.1.1 MEL 43

4.1.2 C++ API 44

4.2 Rotations 44
4.3 Orientation Representations 47

4.3.1 Euler Angles 47

4.3.2 Quaternions 57

Contents IX

5 Trans format ions 61

5.1 Matrices 62
5.1.1 Matrix Multiplication 63

5.1.2 Matrix Transpose 65
5.1.3 Identity Matrix 67
5.1.4 Inverse Matrix 68

5.1.5 MEL 69
5.1.6 C++API 71

5.2 Transforming Points 72

5.2.1 MEL 72
5.2.2 C++API 74

5.3 Transforming Vectors 74
5.3.1 MEL 74

5.3.2 C++API 75
5.4 Transforming Normals 75

5.4.1 MEL 77
5.4.2 C++API 77

6 Transform N o d e s 79

6.1 Pivot Points 79
6.2 Transformation Matrices 84

6.2.1 Querying Transformation Matrices 90

6.2.2 Editing Transformation Matrices 93

6.3 Hierarchies of Transformations 97
6.3.1 Transformation Spaces 98

6.3.2 MEL 99
6.3.3 C++API 100

~v C o o r d i n a t e Frames 103

7.1 Up Axis 103
7.1.1 MEL 104
7.1.2 C++API 104

7.2 Handedness 104

7.3 Custom Coordinate Frames 106

7.3.1 C++API 109

X Contents

8 Polygonal Meshes 113

8.1 Displaying Meshes 1 13
8.1.1 General 114

8.1.2 Components 1 15

8.1.3 Normals 117

8.1.4 Back-face Culling 1 18

8.1.5 UV Texture Coordinates 1 18

8.1.6 Vertex Colors 119

8.1.7 Nonplanar Faces 120

8.2 Querying Meshes 121
8.2.1 Vertices 121

8.2.2 Edges 132

8.2.3 Polygons 141

8.2.4 Face Vertices 15 1

8.2.5 Normals 160

8.2.6 UV Texture Coordinates 177

8.2.7 Blind Data 189
8.3 Creating Meshes 207

8.3.1 Problematic Meshes 207

8.3.2 Creation Checks 209

8.3.3 Molecule1 Plug-in 210

8.3.4 Molecule2 Plug-in 231

8.3.5 Molecule3 Plug-in 261

8.3.6 Molecule4 Plug-in 276

8.4.1 Construction History 301

8.4.2 Supporting Construction History

8.4.3 Supporting Tweaks 313

8.4.4 Mesh-editing Framework 3 13

8.4.5 DisplaceMesh Plug-in 337

8.4 Editing Meshes 301

31 1

9 NURBS 357

9.1 Concepts 361
9.1.1 ControlVertex (CV) 361

9.1.2 Hull 361

9.1.3 Span 362

Contents Xi.

9.1.4 Degree 363

9.1.5 Order 364

9.1.6 Edit Points 365

9.1.7 Curve Point 365

9.1.8 Parameterization 366

9.1.9 Knots 368

9.1.10 Form 372

9.1.11 Surface Point 375

9.1.12 Surface Isoparms 376

9.1.13 Surface Patches 377

9.1.14 Surface Curves 378

9.1.15 Trimmed Surfaces 379

9.2 NURBS Curves 380

9.2.1 Displaying Curves 380

9.2.2 Querying Curves 382

9.2.3 Creating Curves 400

9.2.4 Editing Curves 430

9.3 NURBS Surfaces 436

9.3.1 Displaying Surfaces 436

9.3.2 Querying Surfaces 440

9.3.3 Creating Surfaces 459

9.3.4 Editing Surfaces 489

I0 Subdivision Surfaces 493
10.1 Concepts 494

10.1.1 Control Mesh 494

10.1.2 Subdivision 495

10.1.3 Limit Surface 496

10.1.4 Creases 497

10.1.5 Hierarchical Subdivisions 498

10.1.6 Ordinary and Extraordinary Points 499

10.1.7 Subdivision Scheme 499

10.2 Displaying Subdivision Surfaces 500

10.3 Querying Subdivision Surfaces 503

10.3.1 Components 503

10.3.2 Creases 506

10.3.3 UV Texture Coordinates 507

xii Contents

10.3.4 MEL 507
10.3.5 C++API 519

10.4 Creating and Converting Subdivision Surfaces
10.4.1 Polygonal Mesh to Subdivision Surface 540
10.4.2 Subdivision Surface to Polygonal Mesh 548
10.4.3 NURBS Surface to Subdivision Surface 557
10.4.4 Subdivision Surface to NURBS Surface 558

10.5 Editing Subdivision Surfaces 564
10.5.1 MEL 564

540

11 Contexts (Tools) 569
11.1 SelectRingContextl Plug-in

11.1.1 Usage 572
11.2 SelectRingContext2 Plug-in

11.2.1 Installation 589
11.2.2 Usage 592

11.3 SelectVolumeContextl Plug-in
11.3.1 Installation 634
11.3.2 Usage 635

571

588

633

A Further Learning 683

A.1 Online Resources 683
A. 1.1 Companion Web Site
A.1.2 Additional Web Sites

A.2 Maya Application 685
A.2.1 Documentation 685
A.2.2 Examples 685

683
684

B Further Reading 687
B.1 Mathematics 687
B.2 Programming 688

B.2.1 General 688
B.2.2 C++ Language 688

Contents xi i i

B.3 Computer Graphics 688
B.3.1 General 688
B.3.2 Modeling 689
B.3.3 Animation 689
B.3.4 Image Synthesis 689

Glossary 691
Index 709

Preface

Given the depth and breadth of Maya's programming functionality, it became
quickly clear that a single book couldn't possibly cover it all. The first volume
focused on giving the reader a solid understanding of how Maya works and on its
two programming interfaces: MEL and the C÷÷ application programming interface
(API). This book extends on that work, while paying particular attention to the areas
of geometry and modeling. Clearly, in order to have a deeper understanding of these
areas it is important to first understand the fundamentals of computer graphics, and
in particular the mathematical foundations on which they are built. This book,
therefore, explains the fundamental building blocks of computer graphics so that a
complete understanding of geometry and modeling is possible.

Although the mathematics and principles of computer graphics are explained
in other books, I felt it necessary to place these in the context of Maya program-
ming. So, rather than explain the theory alone, sample source code and scripts are
provided so that the reader can see how the mathematics and principles can be
directly applied and implemented. Many of the examples can be used directly in
your own implementations.

Because the first book was focused on teaching the fundamentals of MEL and the
C+÷ API, these two areas were covered separately. This book takes a more problem-
solving approach. The utility of a particular mathematical concept is explained
together with both the MEL and C÷÷ source code used to implement the concept.
The key is to understand the concept; the syntax then follows. By building up a wider
understanding of computer graphics concepts, you will have a larger toolbox of solu-
tions from which to draw when tackling your own problems.

This book contains a great deal of knowledge I have accumulated over the years.
Much of it is taken from experience, books, courses, and notes. All of this informa-
tion isn't of much use if you can't readily access it. As such, another important goal of
this book is to provide the reader with a pertinent reference resource. By dividing the
book by concept, rather than by programming language, it is easy to refer to particu-
lar sections as needed. The subject index has been extensively expanded and is more
useful for finding when and where a particular function or command can be used.

Preface XV

Although every attempt was made to present each area with an equal emphasis
on MEL and the C++ API, it will soon become obvious to the reader that the C++
API is clearly more powerful and versatile when it comes to handling larger and
more complex problems. With the ever-increasing need for more detailed and com-
plex models, it becomes even more important that your solution work quickly and
efficiently. In addition to the speed gains it makes possible, the C++ API offers a
great many convenience classes. For example, because MEL doesn't have direct sup-
port for quaternions, you would need to implement them yourself. The C++ API has
the MQuaternion class, which provides a complete implementation of quaternions.
This class can be used directly in your plug-ins. You can also rest assured that the
class has been extensively tested so that it is guaranteed to be both robust and stable.
Integrating your solutions into Maya in a clean and seamless manner is often only
possible through the C++ API. Your users will be more appreciative of a solution that
resembles the standard Maya implementation than one that is compromised simply
because of MEL's limitations. Admittedly, the learning curve for the C++ language is
steeper than that for MEL, but in the long run the additional functionality provided
by knowing C++ will pay off. You will have a greater scope for handling more diverse
and complex problems, some of which may be difficult, if not impossible, to imple-
ment in MEL. Ideally, a solid knowledge of both programming interfaces will give
you the maximum freedom of choice.

ACKNOWLEDGEMENTS
The process of writing a book can be likened to a marathon and like any successful
athelete the role of the support staff is critical to their success. I would like to make a
particular acknowledgement to my editor, Tim Cox, and his very capable assistants
Richard Camp and Jessie Evans. They pressed ahead, undaunted, as the book con-
tinued to grow ever larger and more complex.

If each page looks as outstanding as it does it is due to the professionalism and
hard work of Angela Dooley and her great team of designers and copy editors.

To my reviewers I'd like to thank them for their critical eye and abundant feed-
back. Their ideas and opinions assisted me greatly in defining the book's core goals and
focus. My dream team of reviewers included Scott Firestone, Bryan Ewert, Christophe
Hery, Michael Lucas, Andrd Mazzone, Philip Schneider, and Andre Weissflog.

This Page Intentionally Left Blank

I

Introduction

This book endeavors to build upon your existing experience in Maya programming.
As such, this book assumes that you are already familiar with basic MEL and/or
C÷÷ API programming. If you have never written MEL scripts or C÷÷ plug-ins, you
are highly encouraged to read the first volume. It covers all of the basics of Maya
programming, as well as how Maya works internally. This knowledge will be critical
when developing more advanced scripts and plug-ins.

All too often your work in Maya will involve problem solving. Although it is
often easy to formulate a solution in general abstract terms, the task of actually
implementing the solution can be daunting. If you read the first volume, you have a
strong understanding of how Maya works, as well as of the MEL and C÷÷ API pro-
gramming interfaces. Thus, the actual task of writing a script or plug-in shouldn't be
too difficult. The next step will be to apply your knowledge of computer graphics
principles and mathematics to implement the solution.

This often proves to be the greatest hurdle. The most common reason for not
being able to implement a solution is due to a lack of understanding of computer
graphics principles. Without a solid grasp of basic computer graphics concepts, all
problem solving will become more difficult. Computer graphics is based on math-
ematics, and many people are quite reluctant to learn mathematics. A common rea-
son for this is that the mathematics is presented in abstract and theoretical terms
with little application to solving real-world problems. This book presents the most
important fundamental mathematical concepts without diverging into esoteric
mathematical areas that have little practical use. For instance, the datpraa!uct is cov-
ered in detail. This mathematical operation is used extensively in computer graphics
for calculating such things as angles, rotations, sidedness, lengths, areas, and the
amount of light reflected from a surface. All of this is possible from an operation

C H A P T E R I In t roduc t ion

that involves little more than a few multiplications and additions. Independently of
Maya programming, a solid grasp of these computer graphics concepts will hold you
in good stead for all of your future work. As your knowledge increases, you will
become more adept at combining and using these mathematical building blocks to
create more robust and efficient solutions.

The explanation of each mathematical concept is accompanied by ample
source code and scripts that demonstrate how to implement the concept. The
source code and scripts can be used as a starting point for your own solutions.
The entire spectrum of computer graphics concepts through to geometry and
modeling is covered.

The most fundamental building blocks of computer graphics are points and
vectors. Many problems can be solved using the simple point and vector opera-
tions, and thus understanding them will provide a strong foundation for all fur-
ther chapters. Rotations merit their own chapter in that they can often be the
source of much confusion. There are many ways to represent rotations and orien-
tations, and thus it is important to understand their advantages and disadvantages
in order to best apply them to your work. Integral to computer graphics is the
process of transforming (scaling, shearing, rotating, translating, and projecting)
objects. Transformations are most efficiently implemented using matrices, covered
in this book in detail. Transformations provide an important level of abstraction
for building hierarchies of objects. Being able to retrieve and transform points at
any level in a hierarchy are particularly useful skills in many computer graphics
applications.

Progressing from the basic building blocks, the next topic covered is geometry.
Geometry uses points and vectors to represent more complex shapes such as curves and
surfaces. All of Maya's supported geometry types are covered in their own respective
chapters. Each chapter covers the tasks of displaying, editing, and creating each geome-
try type. A detailed explanation of the components that make up each type is also
given. The most basic, yet most pervasive, type of geometry ~ polygonal meshes ~ is
covered first. NURBS curves and surfaces are subsequently explained in detail.

Finally, the increasingly popular geometry type, subdivision surfaces, is covered.
Each different type of geometry has its strengths and weaknesses. Some are better
suited for games development, whereas others are more appropriate for industrial
design. The reader will gain a greater understanding of each geometry type's advan-
tages and disadvantages, so that an informed decision can be made as to which one is
best to use. The process of writing geometry importers and exporters is greatly sim-
plified once you have a greater understanding of Maya's various geometry types.
Custom modeling tools can also be created that are adapted to a given geometry

1.1 Example Files ~

type. Developing your own tools will provide you with a far greater level of control
and functionality than those provided with Maya.

71 t.. E X A M P L E F I L E S

Note that all files used in this book are available at:

www.davidgould.com

Information available at the site includes the following.

• MEL scripts, C++ source code, and makefiles for all examples in the book

• Additional example MEL scripts

• Additional example C++ source code

• Errata for this book

• Continually updated glossary

• Updated list of other relevant web sites and online resources

.! ~ C O M P I L I N G E X A M P L E P L U G - I N S

New versions of both Maya and C++ compilers are being constantly released.
Rather than provide potentially outdated and obsolete instructions in this book, the
complete set of instructions for downloading and compiling the companion files for
this book are available at:

www.davidgould.com

Here you will find all C++ source code and makefiles necessary to compile the
plug-ins on your own computer. There are also instructions for creating your own
plug-in makefiles from scratch.

~~I ~ 2:~ S O U R C I N G E X A M P L E M E L S C R I P T S

To source any of the example MEL scripts, Maya must be able to locate them. It is
possible to include the complete path to the source command, but if multiple MEL
scripts are being sourced it is easier to set up the MAYA SCRIPT_PATH environment

/~ C H A P T E R I Introduction

variable correctly. This variable simply needs to be updated, as follows, to include
the directory where the example MEL scripts are located.

1. Open the Script Editor.

2. Execute the following to initialize the $exampleScripts string to the path of the
directory containing the example MEL scripts.

s t r ing $exampleScripts - <example_mel_scripts_directory>.

For example:

st r ing $exampleScripts = "C./DavidGould/MEL Scr ip ts" .

When specifying a path in Windows with backslashes, be sure to use two back-
slashes. A single backslash will be interpreted as an escape sequence. The same
path with backslashes would therefore be written as follows.

s t r ing $exampleScripts- "C-\\DavidGould\\MEL Scr ipts"-

Maya will automatically convert all directory paths with backslashes to forward
slashes.

3. Execute the following:

str ing $newScriptPath-$exampleScripts + +'getenv "MAYA_SCRIPT_PATH"'-
putenv "MAYA_SCRIPT PATH" $newScriptPath-

The first line initializes the $newScri ptPath variable to the example MEL scripts
path and then appends the current setting for the MAYASCRIPT_PATH variable.
The second line uses the putenv command to set the MAYA_SCRIPT_PATH variable
to the path.

With the MAYA_SCRIPT_PATH environment variable now updated, sourcing any MEL
script can be done the same way. For example, to source the foobar.mel script the
following code would be executed:

source foobar.mel •

1.2 Executing MEL Code in the Script Editor 5

The previous steps need to be completed for each new Maya session. Thus, if Maya
is restarted the previous steps should be performed.

1.2 EXECUTING MEL CODE IN THE
SCRIPT EDITOR

There are a lot of snippets of MEL code throughout this book. Many readers will
want to type this MEL code into the Script Editor and then execute it. This will
work fine in most cases. There will often be a problem when you execute different
blocks of MEL code that use the same variable name but assume a different type.
This problem is demonstrated in Maya as follows.

1. Open the Script Editor.

2. Execute the following.

$myVar = 1.0

The result is displayed.

/ / Resu l t . 1 / /

.

This creates the $myVar and assigns it an initial value.

To see what would happen if there were another piece of MEL code that used
the same variable but as a different type, execute the following.

$myVar = " h i "

This produces an error.

/ / Warning" Conver t i ng s t r i n g " h i " to a f l o a t va lue o f O. / /

/ / Resu l t - 0 / /

4. Execute the following.

what l s "$myVar"

() C H A P T E R I Introduction

The variable's data type is printed out.

/ / R e s u l t " f l o a t v a r i a b l e / /

The problem is that although you are executing another piece of MEL code the
$myVar variable still exists. The attempt to assign a string to it failed because the
variable is already defined as a float. Once the data type (string, float, int, and so
on) is defined for a variable it can't be changed.

The underlying problem is that all variables defined in the Script Editor are
automatically made global variables, even if you don't explicitly make them.
Thus, executing the statement

$myVar = 1 .0

in a script would make it a local variable. This same statement executed in the
Script Editor is the equivalent of writing

g l o b a l $myVar = 1 .0

The variable is implicitly made global. Once a variable is global there is no way
to delete it. The only way is to restart Maya and thereby remove all global vari-
ables and start afresh. Note that this behavior also extends to procedures. Any
procedure defined in the Script Editor will automatically become global.

What is needed is a way of defining the variable to be local. Unfortunately there
is no explicit keyword (an opposite to the g l 0bal keyword) that makes a variable
local. This is, however, a way of implicitly making a variable local. By using code
blocks, a variable is implicitly made local. At the end of the code block the vari-
able is automatically deleted. This is precisely what is needed to ensure that run-
ning several sections of MEL code doesn't define the same global variable. This
also prevents a "contamination" of the global name space of variables with vari-
ables you intended only for learning and testing.

5. Restart Maya by closing it and then opening it again.

6. Execute the following in the Script Editor.

{

$myVar = 1 . 0 ;

p r i n t $myVar ;
}

1.2 Executing MEL Code in the Script Editor 7

The value of $myVar is printed out.

Because the definition of the variable was enclosed in braces, this created a sep-
arate code block. All variables defined within the block are automatically local.
When the closing brace (}) is reached, all variables defined within the block are
deleted. This ensures that the $myVar variable no longer exists after the code is
executed and prevents it being added to the list of global variables.

7. Execute the following.

{

$myVar = " h i " ;
p r i n t $myVar ;
}

The value of $myV a r is printed out.

hi

There was no error this time when $myVar was defined because it is local to the
block and is deleted when the block is finished.

Thus, the general rule is that if you ever intend on executing MEL code in the
Script Editor simply enclose it in braces to ensure that it runs as a separate block.
There may be times when you want to determine if a given variable is global. The
following MEL procedure is designed to return t rue if the supplied variable is
global, and fa 1 s e otherwise.

global proc i n t i s G l o b a l (s t r i n g $var)
{

s t r i n g $ g l o b a l s [] = ' e n v ' ;
f o r ($glob in $g loba ls)
{

i f ($glob = - $ v a r)
re tu rn t r u e ;

}

re tu rn f a l s e ;

C H A P T E R I Introduct ion

This procedure can then be used to test if $myVa r is a global variable.

i s G l o b a l ("$myVar")

The result is 0 (false). Note that the variable name is enclosed in quotation marks (").
This ensures that the variable name is passed to the procedure and not its value. Also
note that this procedure is a global procedure and thus can be called from anywhere
within Maya (script, Script Editor, and so on) once it is defined.

~ii ¸̧ ii l i l / \ [~ I~ i~! i:i~,

Points

Points and vectors provide the fundamental building blocks upon which geometry
is based. Before covering the specifics of Maya's point and vector types it is impor-
tant to understand the mathematical basis for points and vectors.

2 o I DIMENSIONS
The dimension of a point is the number of coordinates it has. Maya doesn't provide
an explicit 2D point or vector, although a 3D point or vector can be used for the
same purpose. Maya provides 3D points in MEL and 4D points (homogenous
points) in the C++ API.

2 ° 2 CARTESIAN COORDINATES
A 3D Cartesian point is represented as follows.

p = (x, y, z)

Cartesian coordinates are based on distances from the origin (0,0,0). Each coordi-
nate is a distance measured along an axis, starting at the origin. Because each of the
axes is perpendicular to the others, the combination of coordinates defines a precise
position in space.

For 3D points, the three coordinates define the distance along the standard
X (1,0,0), Y (0,1,0), and Z (0,0,1) axes. Figure 2.1 shows a point with Cartesian
coordinates (3, 4, 1). This point is located by starting at the origin and moving three

]..() C H A P T E R 2 Points

y axis

/ I ¢- ,

point (3, 4, I) i
I
I
I

origin l

I

~ x axis

z axis

FIGURE 2.1 Cartesian coordinates.

units along the X axis. Next, move four units along the Y axis, followed by one unit
along the Z axis. This is the final position of the point.

H O M O G E N E O U S COORDINATES
A point can also be represented in homogeneous coordinates. Such a point has four
dimensions and is represented as follows.

p = (x, y, z, w)

The additional coordinate, w, can be thought of as providing a scaling of the point.
Keeping the x, y, and z components the same and simply varying the w component
will produce a series of points along a line. The line runs through the origin and the
point (x, y, z). Homogeneous coordinates are particularly useful for calculating
projections. A projection is where a 3D point is projected onto a 2D point. A good
example of this is the perspective projection, wherein a point in the scene is
projected onto the image plane. The result is a 2D pixel in the image plane.

2. 4 Polar and Spherical Coordinates iI. '~

The addition of another coordinate is also very useful for applying more general-
ized transformations to points. This is covered in the transformation section.

2 ° 4 POLAR AND SPHERICAL COORDINATES
A 2D point can be represented using polar coordinates, as follows.

p = (r, O)

The r coordinate is a distance from the origin. The 0 (Greek theta symbol) is the angle
(in radians) rotated around from the X axis. (See Section 4.1 for further details on
angles and angle units.) The direction of rotation is counterclockwise. Figure 2.2 shows
a point at polar coordinates (1.5, 0.78). The angle 0.78 is 45 degrees in radians.

y axis

point (1.5,0.78)

r

FIGURE 2.2 Polar coordinates.

x axis

To represent a 3D point in a similar manner, an additional angle ~ ~b (Greek phi
symbol) ~ is needed.

p = (r, 6 , O)

The point is now located on a sphere with radius r. The 0 angle specifies the rota-
tion about the Z axis from the X axis. The ~b angle is rotation from the Z axis. Both
rotations are counterclockwise. Figure 2.3 shows a point with spherical coordinates
(1, 0.78, 0.78). Note that the vertical axis is the Z axis.

] 2 CHAPTER 2. Points

z axis

N
\

\

x axis
FIGURE 2.3 Spherical coordinates.

y axis

The final position is constructed as follows. Move from the origin along the Z axis
by a distance of r. Rotate the position around the Y axis by an angle of &. The point
is on the X - Z plane. Rotate the point around the Z axis by the angle 0. The point is
now in its final position.

The 0 angle has a range of 0 to -rr radians (0 to 180 degrees). The & angle has a
range of 0 to "rr/2 radians (0 to 90 degrees).

2.5 CONVERSIONS
This section defines how to convert points between the various representations.

2.5.1 CARTESIAN TO H O M O G E N E O U S
Any point with n dimensions can be converted to a point with n + 1 dimensions by
multiplying each coordinate by a scalar. The n + l tb coordinate is then set to this
scalar. Thus, to convert from a 3D Cartesian point

p = (x, y, z)

2.5 Conversions 1.3

to a 4D homogeneous point

p ' = (x', y ' , z', w)

the original coordinates are multiplied by a scalar. The simplest scalar is obviously 1.

p ' = (1 • x, 1 • y, 1 • z, 1)
= (x', y', z', 1)

2 . 5 . 2 H O M O G E N E O U S TO CARTESIAN
To convert from a homogeneous point back to a Cartesian point, the opposite oper-
ation is performed. All coordinates are divided by the last coordinate, w.

p = (x' / w, y' / w, z' / w, w / w)
= (x, y, z, 1)
= (x, y, z)

When implementing this formula it is important to check for w = 0. This will cause a
division-by-zero error. If w = 0 the vector can be immediately set to the zero vector.

2 . 5 . 3 CARTESIAN TO POLAR
Because a polar coordinate only has two dimensions, the z coordinate is ignored. To
convert the Cartesian coordinates

p = (x, y, O)

to polar coordinates, the r coordinate is calculated as the distance from the point to
the origin. The angle is the arc tangent of the y and x values.

p ' = (r, O)
_ .

= G/x 2 + y2, t a n - l (y , x))

2.5.°4 POLAR TO CARTESIAN
The polar coordinate

p = (r,O)

1.~ CHAPTER Z Points

is converted to Cartesian coordinates as follows.

p ' = (x, y, z)
= (r cos(O), r s in(O), O)

2°5°5 CARTESIAN TO SPHERICAL
To convert a Cartesian point

p = (x, y, z)

to spherical coordinates, use the following.

p'= (r, 6, O)

where

= + y2 + 22

(b = t a n - l ({ x2 + y2, z)

0 = t a n - l (y , x)

2 . 5 . 6 SPHERICAL TO CARTESIAN
To convert the spherical coordinates

p = (r, &, O)

to Cartesian coordinates, use the following.

p ' = (x, y, z)

where

x = r s in((b) cos(O)
y = r s i n ((b) s i n (O)
z = r c o s (6)

2.6 MEL 15

2.6 MEL
MEL's use of the term vec tor is more closely related to the computer science definition
of a vector: a one-dimensional array of scalars. As such, there are very few restrictions
on what operations can be performed on a vector.

A vector's elements can be accessed through its x, y, and z components. Vectors
can be added, subtracted, and multiplied by other vectors, resulting in another vector.
These operations are simply performed in a component-wise fashion.

Because a vector has just three components, it can only be used to represent
Cartesian coordinates. The lack of a fourth component prevents it from being used
in homogenous calculations. A point is defined as follows.

v e c t o r $p-

v e c t o r $p = 3"

v e c t o r $p = <<4.5, 3 . 8 , 3.2>>"

/ / I n i t i a l i z e d as (0 , 0 , 0)

/ / I n i t i a l i z e d as (3 , 3 , 3)

/ / I n i t i a l i z e d as (4 . 5 , 3 . 8 , 3 . 2)

Although the vector data type is convenient for performing vector operations,
many of Maya's MEL commands and procedures don't support vector operations.
For instance, a quite common task is getting the position of a transform. The
command

g e t A t t r t r a n s f o r m l . t r a n s l a t e "

will return an array of three floating-point numbers:

/ / Resu l t - 0 0 0 / /

From Maya 6.0 onward, it is valid to explicitly assign this array of three scalars to a
vector as follows.

v e c t o r $ t = " g e t A t t r t r a n s f o r m l . t r a n s l a t e ' .

In earlier versions of Maya, this would have caused an error. In all versions it isn't
possible to directly assign a vector to an attribute.

v e c t o r $t = << 1, 2, 3 >>;
s e t A t t r t r a n s f o r m l . t r a n s l a t e St" / / Causes an e r r o r

1 6 CHAPTER 2. Points

Instead, the vector must be assigned in a component-wise fashion.

s e t A t t r t r a n s f o r m l . t r a n s l a t e ($ t . x) ($ t . y) ($ t . z) - / / OK

2.7 C++ API
The C++ class for points is the MPoint class. The MPoint class is a homogeneous
point with four coordinates: x, y, z, w. Each coordinate is stored as a double. There
also exists a f loa t variation of this class, MFloatPoint. The default constructor
initializes the coordinates to the following.

MPoint pt- / / x=y=z=O, w=l

The point can be converted from a Cartesian point to a homogeneous point via the
homogeni ze function.

MPoint pt"
pt .homogenize() . / / pt = (w'x, w'y, w'z, w)

This function simply multiplies each component by the w component. Note that if
w is 0 then a zero vector (0,0,0,0) will result. To convert the point from a homoge-
neous point to a Cartesian point the car tes i anize function is used.

MPoint pt"
p t . c a r t e s i a n i z e () " / / p t - - (x / w , y/w, z/w, 1)

This function is the inverse of the homogenize function and thus divides all compo-
nents by w. There also exists a final conversion function, ra t ional ize , that works
similarly to cartesi ani ze, but instead of setting w to 1 at the end it leaves it.

MPoint pt"
p t . r a t i o n a l i z e () . / / pt = (x/w, y/w, z/w, w)

It is important to note that Maya doesn't explicitly store which form (Cartesian,
homogeneous, rational) the point is in. It is up to the developer to ensure that
only those functions that are valid for a given form are used. There is nothing
to prevent the r a t i ona l i ze function from being called twice, which will clearly

2.8 Locators 17,

result in an incorrect point. For convenience the predefined class instance,
0 r i g i n, exists.

MPo in t : : o r i g i n / / po int at (0 ,0 ,0)

These can be used like regular class instances, as in the following example.

MPoint pO;
i f (pO == MPo in t : : o r i g i n)
MGloba l : : d i sp lay ln fo ("po in t is at the o r i g i n ");

2.8 LOCATORS
Maya doesn't have a geometry shape for a single point. However, locators can be
used for this purpose. Locators are visual guides that are drawn in viewports but are
not rendered. To create a locator at a given position, use the following.

spaceLoca to r -p 1 3 6;

Because a locator has its own transform node it can be scaled, rotated, and translated
like any other geometry. The position of a locator can be retrieved in object and
world space as follows.

xform -query -objectSpace - t r a n s l a t i o n ;
xform -query -worldSpace - t r a n s l a t i o n ;

This Page Intentionally Left Blank

3

Vectors

A vector has both a direction and a magnitude. The magnitude of a vector is simply
its length. Vectors are often used to define the difference between points, which is
the displacement from the first point to the second. A series of vectors (combined
with an origin) can also define a coordinate flame. This can then be used for defin-
ing a custom space in which to define other points and vectors.

In Maya, all vectors are 3D. The three components are named x, y, and z. It is
important to understand that while many books show vectors located somewhere
in space, vectors don't have a location. A vector is a relative movement, an offset.
In terms of position, a vector has no meaning without a point. The vector
is added to the point to give a new point. At no time does the vector represent a
position.

It is sometimes more intuitive to think of vectors as arrows sticking out
of the origin. This helps understand that they are not positions but simply
directions. Imagining all vectors being grouped around the origin makes such
operations as comparing two vectors, flipping their direction, or rotating them
more intuitive.

3,I MEL
A vector is defined using the v e c t o r data type. Because MEL doesn't make the
distinction between points and vectors, all operations that can be performed on
points can be applied to vectors.

[20 CHAPTER 3 Vectors

3.2 C++ API
The C++ API makes a distinction between points and vectors. Whereas points
are represented by the MPoint class, vectors are represented by the MVector class.
The operations that can be performed on them conform to the mathematical rules
set out previously. The MVector class has three coordinates: x, y, and z. All coordi-
nates use the d0uble data type. There also exists a gl0at variation of this class,
MFloatVector. The default constructor initializes the instance to the zero vector.

MVector vec. / / x=y=z=O

Even though Maya makes the mathematical distinction between points and vectors, for
convenience the MPoint and MVector classes can be easily converted from each other.

MPoint p t ;

MVector vec;

p t = vec;

vec = pt ;

Instances of MFloatPoint and MFloatVector can be converted to instances of
MPoint and MVector, respectively. Note that when converting an MPoint to an
MVector Maya assumes that the point is already in Cartesian coordinates. If it isn't,
simply call the cartesianize function before assignment. For convenience, several
predefined instances of MVector exist.

M V e c t o r : : z e r o / / v e c t o r (0 , 0 , 0)

M V e c t o r : : x A x i s / / v e c t o r (1 , 0 , 0)

M V e c t o r : : y A x i s / / v e c t o r (0 , 1 , 0)

M V e c t o r : : z A x i s / / v e c t o r (0 , 0 , 1)

MVec to r : : xNegAx i s / / v e c t o r (- I , 0 , 0)

MVec to r : : yNegAx i s / / v e c t o r (0 , - 1 , 0)

MVec to r : : zNegAx i s / / v e c t o r (0 , 0 , - 1)

These can be used like regular class instances, as in the following example.

MVector vO"

i f (vO == MVector" " xAx is)

M G l o b a l ' - d i s p l a y l n f o (" v e c t o r i s the same as the x a x i s ") .

