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Preface  

Bioelectrical signals have been recorded and analyzed for several decades 
but still continue to excite physicians and engineers. Novel signal processing 
techniques have helped uncover information which completely changed the 
way various diseases previously were diagnosed. In fact, it is today difficult 
to imagine a situation when diseases related to the heart, the brain, or the 
muscles are diagnosed without also including certain information derived 
from bioelectrical signals. Such information is essential to therapeutic de- 
vices in cardiac, neurological, and neuromuscular applications, and will in 
the future, when systematically fused with other types of biomedical signals, 
continue to improve the quality of life of many patients. Monitoring of home- 
based patients is becoming increasingly popular in health care, frequently 
involving bioelectrical signals which can be safely and comfortably recorded 
using noninvasive techniques. 

The aim of this book is to present a comprehensive overview of tech- 
niques with particular relevance to the processing of bioelectrical signals. 
The presentation is problem-driven and deals with issues having received 
considerable attention from both a scientific viewpoint, i.e., in the form of 
publications and conference presentations, and a viewpoint of product de- 
velopment. Since biomedical signal processing has been largely synonymous 
with the processing of ECG, EEG, EMG, and evoked potentials, we have 
focused the presentation on issues related to these four types of bioelectrical 
signals. It is yet our conviction that the reader is fully capable of transfer- 
ring the way of thinking developed herein for bioelectrical signals, as well as 
to transfer the developed methods, when later dealing with other types of 
biomedical signals. 

Choosing a problem-driven presentation means, in this book, that differ- 
ent methods are described within the context of a certain bioelectrical signal. 
For example, power spectral analysis is described within the context of EEG 
signal processing though such analysis is certainly well-established in other 
biomedical applications as well. While some may feel that the realm of a 
method's usefulness is depreciated with this kind of presentation, we hope 
nonetheless that the power in connecting a particular type of signal to a 

vii 
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particular method outweighs the disadvantages. On occasion, the problem- 
driven presentation also means the display of a smorgasbord of methods 
developed to solve a certain problem such as the cancellation of powerline 
interference. We hope that this way of dealing with a problem would serve 
the reader well by offering an idea of the diversity with which a problem can 
be solved. Not all methods considered in this textbook are directly appli- 
cable in clinical practice but may require one or several heuristic add-ons 
before their performance become satisfactory; the exact definition of such 
add-ons is rarely disclosed in the original publication of a method but needs 
to be developed by those interested in the method's pursuit. 

With the display of different methods for solving a particular problem 
comes the natural wish of knowing which method offers the best perfor- 
mance. We have, however, abstained from making such comparisons due to 
the many pitfalls associated with choosing performance measure, data set, 
and so forth. We would instead like to challenge the reader to delve into this 
important aspect. 

Biomedical signal processing has today reached certain maturity as an 
academic subject and is now supported by the availability of a handful of 
textbooks. Being an interdisciplinary subject by nature, biomedical signal 
processing has to be taught quite differently depending on the educational 
program. For students in biomedical engineering a course in physiology is 
part of the curriculum, whereas students in electrical engineering and com- 
puter science usually lack such a course. In order to maintain the interdisci- 
plinary nature when teaching the latter group of students, we have included 
chapters or sections with brief, self-contained introductions to the under- 
lying electrophysiology, recording techniques, and some important clinical 
applications. Without any prior knowledge of these aspects, a course in 
biomedical signal processing runs the risk of losing its very essence. 

It is evident that a course on biomedical signal processing may em- 
brace widely different contents--an observation which not only applies to 
the choice of biomedical signals but also to the choice of methodologies. 
Rather than yield to the temptation to include as much as possible, we have 
deliberately avoided to cover certain important techniques including pattern 
recognition, artificial neural networks, higher-order statistics, and nonlinear 
dynamics. Though important in biomedical applications, the fundamentals 
of these techniques are well-covered by a number of textbooks. 

This book is intended for final year undergraduate students and gradu- 
ate students in biomedical engineering, electrical engineering, and computer 
science. It is suitable for a one-quarter or one-semester course depending 
on the content covered and the amount of emphasis put on problem solving 
and project work. A necessary prerequisite is the fundamentals of digital 
signal processing as presented in textbooks such as [I, 2]. Since many re- 
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cent methods used in biomedical applications are based on concepts from 
statistical modeling and signal processing, a basic course in probability the- 
ory and stochastic processes is another important prerequisite. It is also 
desirable that  the reader has certain familiarity with linear algebra so that  
common matrix operations (summarized in Appendix A) can be performed. 
Readers who want to achieve a deeper understanding of statistical signal pro- 
cessing are referred to a number of highly recommended textbooks on this 
topic [3-5]. Adaptive filtering is a topic which is just briefly touched upon 
in this book; comprehensive coverage of such filters and their properties can 
be found in [6]. 

This book may also be used as a comprehensive reference for practic- 
ing engineers, physicians, researchers and, of course, anyone interested in 
finding out what information can be derived from bioelectrical signals. For 
practicing engineers, we have used selected parts of the book for a short 
course on biomedical signal processing (i.e., 2-3 days); in such cases, the 
main emphasis should be put on the significance of different methods rather 
than on mathematical details. 

Contents  Overv iew 

Chapter 1 puts biomedical signal processing in context, and gives a brief 
description of bioelectricity and its manifestation on the body surface as 
signals. General aspects on signal acquisition and performance evaluation 
are briefly considered. 

Chapter 2 provides the reader with the basics of the brain, serving as a 
background to the following chapter on EEG signal processing. Some com- 
mon EEG patterns are described and their relationships to cerebral pathol- 
ogy are pointed out. An understanding of EEG signal characteristics, as well 
as the purposes for which the characteristics can be exploited, is essential in- 
formation when assimilating the contents of Chapter 3. The main themes in 
Chapter 3 on EEG signal processing are related to artifact rejection and spec- 
tral analysis; two techniques of critical importance to EEG interpretation. 
Special attention is given to the multitude of spectral analysis techniques 
and a section on time-frequency analysis is included. 

Chapter 4 provides a comprehensive overview of noise reduction tech- 
niques for use with event-related signals, here treated within the context 
of evoked potentials. Similar to EEG signals and spectral analysis, evoked 
potentials and signal averaging became "partners" at a very early stage in 
the history of biomedical signal processing, thus motivating the emphasis 
on this partnership. The overview of noise reduction techniques covers both 
ensemble averaging (and its spawn) and more advanced approaches where 
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the signal is modeled and filtered using a basis function expansion; wavelets 
represent one such popular approach. 

Chapter 5 deals with myoelectric activity and the related EMG signal 
recorded either by noninvasive or invasive techniques (and makes a minor 
departure from the general framework of dealing with signals recorded on 
the body surface). Of the many developed methods for EMG signal analysis, 
we cover some central ones related to muscle force and conduction velocity 
where signal modeling and statistical estimation techniques are involved. 

Chapter 6 contains a background to the electrophysiology of the heart, 
describes the main characteristics of the ECG signal in terms of morphology 
and rhythm, and prepares the way for Chapters 7 and 8 by mentioning the 
most important ECG applications. Chapter 7 describes a suite of methods, 
essential to any system which performs ECG signal analysis, developed for 
the purpose of noise reduction, heartbeat detection and delineation, and 
data compression. Chapter 8 is completely devoted to the analysis of heart 
rate variability--an area of considerable clinical and technical interest in 
recent years--and describes techniques for representing and characterizing 
such variability in the time and frequency domain. 

We have included an extensive, but not exhaustive, number of references 
which give the interested reader rich possibilities to further explore the orig- 
inal presentations of the methods. References are almost exclusively made 
to journal publications since these are easily retrieved from libraries. As a 
result, the very first publication of a method, often appearing in a conference 
proceeding, is not acknowledged for which we apologize. 

A collection of problems has been developed in order to illustrate the pre- 
sented methods and their applications. While some problems are straightfor- 
ward to solve, others require considerable effort and background knowledge 
and are intended as "appetizers" for students interested in pursuing research 
in biomedical signal processing. An accompanying manual with detailed so- 
lutions to all problems is available at the publisher's web site 

www. books, elsevier, corn/0124375529 

to instructors who adopt the book. 
Any course on biomedical signal processing must include one or several 

projects which give the student an opportunity to process signals and to 
learn the pros and cons of a method. We have developed a companion web 
site where several project descriptions are listed and signals available for 
download; its location is 

www.biosignal.lth.se 
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An important goal with this web site is to allow the inclusion of new projects 
so that projects can be submitted by anyone interested in teaching the con- 
tents of this book (submission instructions are available at the web site). 

Those interested in using this book for a one-quarter course may want to 
omit the sections on time-frequency analysis (Section 3.6), basis functions 
and related adaptive analysis (Sections 4.5 and 4.6), wavelets (Section 4.7), 
and certain parts of Chapter 8 dealing with heart rate variability; the math- 
ematical level is relatively advanced in all these parts. A shorter course may 
to a lesser extent deal with problem solving, however, we strongly encour- 
age the inclusion of at least one project since it provides the student with 
experiences essential to the understanding of biomedical signal processing. 
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Chapter 1 

I n t r o d u c t i o n  

The function of the human body is frequently associated with signals of elec- 
trical, chemical, or acoustic origin. Such signals convey information which 
may not be immediately perceived but which is hidden in the signal's struc- 
ture. This information has to be "decoded" or extracted in some way before 
the signals can be given meaningful interpretations. The signals reflect prop- 
erties of their associated underlying biological systems, and their decoding 
has been found very helpful in explaining and identifying various pathologi- 
cal conditions. The decoding process is sometimes straightforward and may 
only involve very limited, manual effort such as visual inspection of the sig- 
nal on a paper print-out or computer screen. However, the complexity of 
a signal is often quite considerable, and, therefore, biomedical signal pro- 
cessing has become an indispensable tool for extracting clinically significant 
information hidden in the signal. 

Biomedical signal processing represents an interdisciplinary topic. Know- 
ledge of the physiology of the human body is crucial to avoid the risk of 
designing an analysis method which distorts, or even removes, significant 
information. It is also valuable to have a sound knowledge of other topics 
such as anatomy, linear algebra, calculus, statistics, and circuit design. 

Biomedical signal processing has, by some, been viewed as a stepping- 
stone for developing diagnostic systems which offer fully automated analysis. 
Some decades ago when computers first arrived in the area of medicine, au- 
tomation was the overriding goal. However, this goal has been considerably 
modified over the years, not only because of the inherent difficulties in devel- 
oping such systems, but equally so because the physician must be ultimately 
responsible for the diagnostic decisions taken. While fully automated anal- 
ysis may be warranted in a few situations, today's goal is rather to develop 
computer systems which offer advanced aid to the physician in making well- 
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founded decisions. In these systems biomedical signal processing has come 
to play a very important role. 

Research in biomedical signal processing has so far mainly been con- 
cerned with the analysis of one particular signal type at a time ("unimodal 
signal analysis"); a fact, which to a large extent, influences the content of 
the present textbook. However, the emerging interest in multimodal signal 
analysis will definitely help to explain, in more detail, how different physio- 
logical subsystems interact with each other, such as the interaction between 
blood pressure and heart rate in the cardiovascular system. By exploring the 
mutual information contained in different signals, more qualified diagnostic 
decisions can be made. The increased algorithmic complexity associated 
with multimodal analysis is not a serious limitation since it will be met 
by the rapid advancement of computer technology and the ever-increasing 
computational speed. 

1.1 Biomedical Signal Processing" 
Contexts 

Objectives and 

1.1.1 Objectives 

Biomedical signal processing has many objectives, and some of the most 
important ones are presented below. We also describe the main contexts in 
which biomedical signal processing is applied. Other challenging objectives 
and contexts can certainly be defined by those interested in pursuing a career 
in this fascinating, interdisciplinary field. 

Historically, biomedical signals have often been assessed visually, and 
manual ruler-based procedures were developed to make sure that measure- 
ments could be obtained in a standardized manner. However, it is well- 
known that there is relatively poor concordance between manually obtained 
measurements, and this may lead to unreliable diagnostic conclusions. A 
fundamental objective of biomedical signal processing is therefore to reduce 
the subjectivity of manual measurements. The introduction of computer- 
based methods for the purpose of objectively quantifying different signal 
characteristics is the result of a desire to improve measurement accuracy as 
well as reproducibility. 

In addition to reducing measurement subjectivity, biomedical signal pro- 
cessing is used in its own right for developing methods that extract features 
to help characterize and understand the information contained in a signal. 
Such feature extraction methods can be designed to mimic manual measure- 
ments, but are equally often designed to extract information which is not 
readily available from the signal through visual assessment. For example, 
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small variations in heart rate that  cannot be perceived by the human eye 
have been found to contain very valuable clinical information when quanti- 
fied in detail using a suitable signal processing technique; see Chapter 8 for 
more details on this particular topic. Although it is certainly desirable to 
extract features that  have an intuitive meaning to the physician, it is not 
necessarily those features which yield the best performance in clinical terms. 

In many situations, the recorded signal is corrupted by different types 
of noise and interference, sometimes originating from another physiological 
process of the body. For example, situations may arise when ocular ac- 
tivity interferes with the desired brain signal, when electrodes are poorly 
attached to the body surface, or when an external source such as the sinu- 
soidal 50/60 Hz powerline interferes with the signal. Hence, noise reduction 
represents a crucial objective of biomedical signal processing so as to mitigate 
the technical deficiencies of a recording, as well as to separate the desired 
physiological process from interfering processes. In fact, the desired signal is 
in certain situations so dramatically masked by noise that  its very presence 
can only be revealed once appropriate signal processing has been applied. 
This is particularly evident for certain types of transient, very low-amplitude 
activity such as evoked potentials, which are part of brain signals, and late 
potentials, which are part of heart signals. 

Certain diagnostic procedures require that  a signal be recorded on a long 
timescale, sometimes lasting for several days. Such recordings are, for exam- 
ple, routinely done for the purpose of analyzing abnormal sleep patterns or 
to identify intermittently occurring disturbances in the heart rhythm. The 
resulting recording, which often involves many channels, amounts to huge 
data sizes, which quickly fill up hard disk storage space once a number of pa- 
tients have been examined. Transmission of biomedical signals across public 
telephone networks is another, increasingly important application in which 
large amounts of data are involved. For both these situations, data compres- 
sion of the digitized signal is essential and, consequently, another objective 
of biomedical signal processing. General-purpose methods of data compres- 
sion, such as those used for sending documents over the internet, do not 
perform particularly well since the inherent characteristics of the biomedical 
signal are not at all exploited. Better performance can be obtained by ap- 
plying tailored algorithms for data compression of biomedical signals. Data 
compression can also be understood in a wider sense as the process in which 
clinical information from a long-term recording is condensed into a smaller 
data set that  is more manageable for the person analyzing the data. In this 
latter sense, it is highly desirable to develop signal processing algorithms 
which are able to determine and delimit clinically significant episodes. 

Mathematical signal modeling and simulation constitute other important 
objectives in biomedical signal processing which can help to attain a bet- 
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ter understanding of physiological processes. With suitably defined model 
equations it is possible to simulate signals which resemble those recorded 
on the cellular level or on the body surface, thereby offering insight into the 
relationship between the model parameters and the characteristics of the ob- 
served signal. Examples of bioelectrical models include models of the head 
and brain for localizing sources of neural activity and models of the thorax 
and the heart for simulating different cardiac rhythms. Signal modeling is 
also central to the branch of signal processing called "model-based signal 
processing," where algorithm development is based on the optimization of 
an appropriately selected performance criterion. In employing the model- 
based approach, the suggested signal model is fitted to the observed signal 
by selecting those values of the model parameters which optimize the perfor- 
mance criterion. While model-based biomedical signal processing represents 
a systematic approach to the design of algorithms--to be frequently adopted 
in the present textbook--i t  does not always lead to superior performance; 
heuristic approaches may actually perform just as well and sometimes even 
better. It is a well-known fact that many commercial, medical devices rely 
on the implementation of ad hoc techniques in order to achieve satisfactory 
performance. 

The complexity of a signal model depends on the problem to be solved. 
In most signal processing contexts, it is fortunately not necessary to develop 
a multilevel model which accounts for cellular mechanisms, current propa- 
gation in tissue, and other biological properties. Rather, it is often sufficient 
to develop a "phenomenological" model which only accounts for phenomena 
which are relevant to the specific problem at hand. 

1.1.2 C o n t e x t s  

The other purpose of this section is to point out the three major clinical 
contexts in which algorithms for biomedical signal processing are designed, 
namely, the contexts of 

�9 diagnosis, 

�9 therapy, and 

�9 monitoring. 

In the diagnostic context, medical conditions are identified from the ex- 
amination of signal information, reflecting the function of an organ such 
as the brain or the heart, in combination with other symptoms and clinical 
signs. A signal is often acquired by a noninvasive procedure which makes the 
examination less taxing on the patient. Most of these procedures are also 
associated with inexpensive technology for acquisition and analysis, thus 
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increasing the likelihood that the technology can be disseminated to coun- 
tries with less developed economies. A diagnostic decision rarely requires 
immediate availability of the results from signal analysis, but it is usually 
acceptable to wait a few minutes for the analysis to be completed. Hence, 
signal analysis can be done off-line on a personal computer, thus relying on 
standardized hardware and operating system, possibly supplemented with 
a digital signal processor (DSP) board for accelerating certain bottleneck 
computations. Algorithms for biomedical signal processing do not define the 
entire diagnostic computer system, but their scope ranges from performing 
a simple filtering operation to forming a more substantial part of the clinical 
decision-making. 

Therapy generally signifies the treatment of disease and often involves 
drug therapy or surgery. With regard to biomedical signal processing, ther- 
apy may imply a narrower outlook in the sense that an algorithm is used to 
directly modify the behavior of a certain physiological process, for example, 
as the algorithms of a pacemaker do with respect to cardiac activity. In a 
therapeutic context, an algorithm is commonly designed for implementation 
in an implantable device like a heart defibrillator, and, therefore, it must, 
unlike an algorithm operating in a diagnostic context, strictly comply with 
the demands of on-line, real-time analysis. Such demands pose some serious 
constraints on algorithmic complexity as well as on the maximal acceptable 
time delay before a suitable action needs to be taken. Low power consump- 
tion is another critical factor to be considered in connection with devices 
that are implanted through a surgical procedure; for example, the battery of 
an implantable device is expected to last up to ten years. Hence, algorithms 
which involve computationally demanding signal processing techniques are 
less suitable for use in a therapeutic context. 

Biomedical signal processing algorithms form an important part of real- 
time systems for monitoring of patients who suffer from a life-threatening 
condition. Such systems are usually designed to detect changes in cardiac 
or neurological function and to predict the outcome of a patient admitted 
to the intensive care unit (ICU). Since such changes may be reversible with 
early intervention, irreversible damage can sometimes be prevented. Similar 
to therapeutic contexts, the signal is processed during monitoring in an es- 
sentially sequential fashion such that past samples constitute the main basis 
for a decision, while just a few seconds of the future samples may also be 
considered--a property which usually stands in sharp contrast to signal pro- 
cessing for diagnostic purposes, where the signal is acquired in its entirety 
prior to analysis. Thus, a noncausal approach to signal analysis can only 
be adopted in the diagnostic context which mimics that of a human reader 
who interprets a signal by making use of both past and future properties. 
Constraints need to be imposed on the algorithmic design in terms of max- 
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imal delay time because the occurrence of a life-threatening event must be 
notified to the ICU staff within a few seconds. Another important issue to 
be considered is the implications of a clinical event that is missed by the 
algorithm or the implications of a nonevent that is falsely detected causing 
the staff to be notified. 

1.2 Basics  of Bioelectr ical  Signals 

Although the scope of the present textbook is to present signal processing 
techniques useful for the analysis of electrical signals recorded on the body 
surface, it may still be well-motivated to consider the genesis of bioelectrical 
signals from a cellular perspective. Bioelectrical signals are related to ionic 
processes which arise as a result of electrochemical activity of a special group 
of cells having the property of excitability. The mechanisms which govern 
the activity of such cells are similar, regardless of whether the cells are part 
of the brain, the heart, or the muscles. In particular, the electrical force 
of attraction has central importance for the processing and transmission of 
information in the nervous system, as well as for sustaining the mechanical 
work done by the heart and the muscles. Since the origin of these voltages is 
only briefly described below, the interested reader is referred to textbooks on 
human physiology which offer a much more detailed description of the cellu- 
lar aspects [1, 2]. The basic concepts introduced for mathematical modeling 
of bioelectrical phenomena are described in [3], while more comprehensive 
reading is found in [4-6]. 

1 .2.1 O n  the  Cel lular  Level  

A cell is bounded by a plasma membrane which basically consists of lipid 
layers with poor ability to conduct an electrical current. The membrane pos- 
sesses permeability properties which allow certain substances to pass from 
the inside of the cell to the outside through different channels, defined by 
body fluids, while other substances remain blocked. Intracellular and extra- 
cellular fluids mainly consist of water, which is electrically neutral; however, 
the fluids become electrically conductive since they contain several types of 
ions. The dominant ions in a nerve cell (neuron) are sodium (Na+), potas- 
sium (K+), and chloride (e l - ) .  Other ions such as calcium (Ca 2+) are also 
present but play roles of varying importance depending on where the ex- 
citable cell is located; the calcium ion is much more important in the cells 
of the heart than in the nerves, for example. 

Under resting conditions, the inside of a cell is negatively charged with 
respect to the outside, and, therefore, a negative transmembrane potential 
results since the outside is assumed to have zero voltage. The difference in 
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charge is due to the fact that the concentration of negatively charged ions 
inside the cell is higher than on the outside, whereas the opposite relation 
applies to the concentration of positive ions. In addition to the difference 
in ion concentration, the actual magnitude of the resting transmembrane 
potential is also determined by the permeability of the membrane to the 
different ions. 

A potential arises when membrane channels open so that a certain ion 
may diffuse across the membrane. This process can be illustrated by the 
simplified situation in which potassium ions are assumed to be inside the 
cell and sodium ions outside and when the initial transmembrane potential 
is equal to zero. When the potassium channels are opened, an increase in 
positive electrical charge outside the cell is created as a result of the diffusion 
process; at the same time, the inside of the cell becomes increasingly negative 
and a potential arises across the membrane. This electrical potential con- 
stitutes the other force which causes ions to move across the membrane. As 
the outside of the cell becomes increasingly positive, the resulting potential 
will increasingly influence the outbound movement of potassium ions. The 
ion movement ceases when the concentration force balances the electrical 
force; an equilibrium potential is then said to have been reached. It should 
be noted that some other active transport mechanisms, not considered here, 
also come into play when a potential is created. 

The resting transmembrane potential of a cell is determined by the equi- 
librium potentials of the different ions involved and is thus not equal to any 
of the equilibrium potentials of an individual type of ion. For the situation 
considered above with open potassium channels, the equilibrium potential 
for potassium in a nerve cell is found to be about - 9 0  mV, while the equi- 
librium potential for sodium--assuming instead open sodium channels--is 
about +60 mV. The resting transmembrane potential is within the range of 
- 6 0  to -100  mV, depending on the type of cell. 

When a cell is stimulated by a current, rapid alterations in membrane ion 
permeability take place which give rise to a change in the membrane poten- 
tim and generate a signal referred to as an action potential. The propagation 
of action potentials is the very mechanism which makes the heart contract 
and the nervous system communicate over short and long distances. The 
stimulus current must exceed a certain threshold level in order to elicit an 
action potential, otherwise the cell will remain at its resting potential. An 
excited cell exhibits nonlinear behavior: once a stimulus intensity exceeds 
the threshold level the resulting action potential is identical and indepen- 
dent of intensity--the all-or-nothing principle. An action potential consists 
mainly of two phases: depolarization during which the membrane potential 
changes toward zero so that the inside of the cell becomes less negative, and 
ultimately reverses to become positive, and repolarization during which the 



Chapter 1. Introduction 

potential returns to its resting level so that the inside again becomes more 
negative. 

The membrane potential remains at its resting level until it is perturbed 
by some external stimulus, such as a current propagating from neighbor- 
ing cells. Depolarization is then initiated, and the membrane permeability 
changes so that sodium channels are opened and the sodium ions can rush 
into the cell. At the same time, potassium ions try to exit since these are 
concentrated on the inside, but cannot, thereby causing the charge inside the 
cell to become increasingly positive, and eventually the membrane potential 
reverses polarity. Once the rush of sodium ions into the cell has stopped 
and the membrane potential approaches the sodium equilibrium potential, 
the peak amplitude of an action potential is reached. During repolarization, 
sodium channels close and potassium channels open so that the membrane 
potential can return to its resting, negative potential. The activity of a 
potassium channel is illustrated in Figure 1.1. 

The duration of an action potential varies much more than its amplitude: 
the repolarization phase of a cardiac cell is much longer than the depolariza- 
tion phase and lasts from 200 to 300 milliseconds, while for a neuron the two 
phases combined only last for about one millisecond with both phases having 
about the same duration. Figure 1.2 shows the action potentials for cells of 
the brain (motor neuron), the skeletal muscle, and the heart. From these 
waveforms, it can be observed that the cardiac action potential differs con- 
siderably from the others in its lack of an immediate repolarization phase. 
Instead, there is a plateau in the action potential because the membrane 
channels of the different ions open and close at different speeds. 

Once an action potential has been elicited, the membrane cannot imme- 
diately respond to a new stimulus but remains in a "refractory" state for 
a certain period of time. The refractory period is related to changes that 
take place in sodium and potassium permeability of the membrane. Ob- 
viously, the refractory period imposes an upper limit on the frequency at 
which action potentials can be communicated through the nervous system 
or the heart can beat. 

The propagation of an action potential exhibits special behavior since 
it travels a distance through the triggering of new action potentials rather 
than by traveling itself along the membrane. The current created by the 
initial membrane depolarization triggers an adjacent membrane so that a 
new action potential results, and so on. This process repeats itself until the 
membrane ends and delivers an action potential which is identical to the 
initial action potential. Due to the refractory period, the action potential 
travels away from membranes which recently have been excited and continues 
to do so until it reaches a point on the membrane where the voltage is 
insufficient for further stimulation. 
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Figure  1.1: Cellular activity of potassium channels (which is similar for sodium 
but the reverse). (a) Concentration distribution of potassium (K+), sodium (Na+), 
and chloride (C1-) ions inside and outside a cell. (b) The relationship between 
chemical gradient and electrical gradient for K + ions and K + channels. 

1.2.2 O n  t h e  Body Surface 

The ability of excitable cell membranes to generate action potentials causes 
a current to flow in the tissue that  surrounds the cells. With  the tissue 
being a conducting medium, commonly referred to as a volume conductor, 
the collective electrical activity of many cells can be measured noninvasively 
on the body surface [4-6]. The recording of a bioelectrical signal in clinical 
practice is done by attaching at least two electrodes to the body surface. In 
its simplest form, a signal is recorded by making use of two electrodes: the 
"exploring" electrode, placed close to the electrical source, and the "indiffer- 
ent" electrode, placed elsewhere on the body surface [7]. Multiple electrode 
configurations are commonly used in clinical practice to obtain a spatial de- 
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Figure  1.2: Examples of action potentials with shapes that range from the spike- 
like waveform of a nerve cell (left) to the much more extended waveform of a cardiac 
cell (right). The transmembrane potential difference was measured by placing one 
microelectrode inside the cell and another outside. It should be noted that the 
timescale differs from waveform to waveform. 

scription of the bioelectrical phenomenon. Since the activity of excitable 
cells is viewed from a distance by the electrodes, with different tissues in 
between, such as blood, skeletal muscles, fat, and bone, it is impossible to 
noninvasively determine detailed information about cellular properties and 
propagation patterns. Nonetheless, significant empirical knowledge has over 
the years been acquired from analyzing the patterns of signals recorded on 
the body surface, which have been found crucial for clinical decision-making; 
this observation constitutes an important  motivation for the writing of the 
present textbook. 

The problem of characterizing the electrical source by noninvasive mea- 
surements has, in spite of the above-mentioned limitations, been the subject 
of considerable research due to the far-reaching clinical implications of its 
potential solution. In order to arrive at a meaningful solution, it is necessary 
to introduce a mathematical  model in which the collective electrical cellular 
activity is treated as a volume source, i.e., it is defined by a fixed dipole, a 
multiple dipole, or some other source model. Furthermore, by introducing 
a model for the volume conductor which accounts for essential properties of 
the human body, such as geometry and resistivity, the electrical field mea- 
sured on the body surface can be modeled. The important  inverse problem 
consists of determining the electrical source from measurements on the body 
surface under the assumption that  the geometry and electrical properties of 
the volume conductor are known [5]. 
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1.2.3 Bioelectrical Signals 

The present textbook deals with the processing of electrical signals that 
describe the activity of the brain, the heart, and the muscles. Some of 
these signals reflect spontaneous, ongoing activity, while others only occur 
as the result of external stimulation. The properties of these signals call for 
widely different processing techniques; an individual waveform can in some 
signals be directly linked to a specific clinical diagnosis, while in other signals 
the composite of many waveforms must be analyzed before a meaningful 
interpretation can be made. 

The e l e c t r o e n c e p h a l o g r a m  (EEG) reflects the electrical activity of the 
brain as recorded by placing several electrodes on the scalp, see Figure 1.3(a). 
The EEG is widely used for diagnostic evaluation of various brain disorders 
such as determining the type and location of the activity observed dur- 
ing an epileptic seizure or for studying sleep disorders. The brain activity 
may also be recorded during surgery by attaching the electrodes directly to 
the uncovered brain surface; the resulting invasive recording is named an 
electrocorticogram (ECoG). The background to EEG signals is presented in 
Chapter 2 and is then followed by Chapter 3 where different EEG signal 
processing techniques are described. 

Evoked  po ten t i a l s  (EPs) constitute a form of brain activity which 
usually is evoked by a sensory stimulus such as one of visual or acoustic 
origin. Their clinical use includes the diagnosis of disorders related to the 
visual pathways and the brainstem. An EP, also referred to as an event- 
related potential, is a transient signal which consists of waves of such tiny 
amplitudes that its presence in the "background EEG" is typically invisible 
to the human eye, see Figure 1.4(a). Evoked potentials are recorded using 
an electrode configuration similar to that of an EEG. Chapter 4 contains an 
overview of methods developed for "revealing" EPs and for analyzing the 
resulting signal waveform. 

The electrocardiogram (ECG) reflects the electrical activity of the 
heart and is obtained by placing electrodes on the chest, arms, and legs, see 
Figure 1.3(b). With every heartbeat, an impulse travels through the heart 
which determines its rhythm and rate and which causes the heart muscle to 
contract and pump blood. The ECG represents a standard clinical procedure 
for the investigation of heart diseases such as myocardial infarction. The 
electrogram (EG) is an intracardiac recording where the electrodes have been 
placed directly within the heart; the EG signal is used in implantable devices 
such as pacemakers and defibrillators. The background to ECG signals is 
presented in Chapter 6, while Chapters 7 and 8 present different ECG signal 
processing techniques. 
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Figure 1.3: Examples of the three major bioelectrical signals recorded from the 
body surface: (a) an electroencephalogram (EEG) containing alpha activity, (b) an 
electrocardiogram (ECG) during sinus rhythm, and (c) an electromyogram (EMG) 
obtained from the chin in the waking state. All three signals were obtained from 
different normal subjects. 

The e l e c t r o m y o g r a m  (EMG) records the electrical activity of skeletal 
muscles which produce an electrical current, usually proportional to the 
level of activity, see Figure 1.3(c). The EMG is used to detect abnormal 
muscular activity which occurs in many diseases such as muscular dystrophy, 
inflammation of muscles, and injury to nerves in arms and legs. Recording 
the surface EMG involves placing the electrodes on the skin overlying the 
muscle, whereas the intramuscular EMG involves inserting needle electrodes 
through the skin into the muscle to be examined. Chapter 5 presents an 
overview of EMG signal processing techniques. 

Some other types of bioelectrical signals also deserve mentioning although 
their related signal analysis will not be further considered in the present 
textbook. 

The electroneurogram (ENG) results from the stimulation of a periph- 
eral nerve with an electric shock such that the response along the nerve can 
be measured. The ENG, usually acquired with needle electrodes, is used 
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Figure 1.4: Examples of bioelectrical signals resulting from stimulation. (a) An 
evoked potential (EP) resulting from auditory stimulation (the brainstem response). 
The displayed signal is actually the result of averaging several responses in order 
to reduce the high noise level of the original signal; see Section 4.3 for details on 
noise reduction. (b) An electroneurogram (ENG) recorded at two electrode loca- 
tions, where the delay between the two signals is used to estimate nerve conduction 
velocity. (c) An electroretinogram (ERG) obtained during stimulation with a flash 
of light. 

to determine the conduction velocity of the nerve, thereby assisting in the 
diagnosis of nerve injury. By stimulating a nerve at two different sites sep- 
arated by a well-defined distance, it is possible to estimate the conduction 
velocity from the distance by which the resulting two signal waveforms are 
separated, see the example in Figure 1.4(b). The ENG can be measured 
both invasively and noninvasively. 

An electroretinogram (ERG) is used for studying the electrical poten- 
tials generated by the retina of the eye during light stimulation [8, 9], see 
Figure 1.4(c). The ERG is recorded by placing the exploring electrode, en- 
capsulated in a contact lens, on the cornea. The ERG has been found useful 
for assessing the electrical response of the rods and cones, i.e., the visual 
cells at the back of the retina. A normal ERG shows appropriate responses 
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with increased light intensity, while an abnormal ERG is obtained in condi- 
tions such as arteriosclerosis of the retina or detachment of the retina. The 
algorithms described in Chapter 4 for signal processing of EPs are, by and 
large, also applicable to the analysis of ERGs. 

The electrooculogram (EOG) is the recording of the steady corneal- 
retinal potential which is proportional to vertical and horizontal movements 
of the eye, thus offering an objective way to quantify the direction of the 
gaze [5, 10], see Figure 1.5(a). The EOG is of particular interest in pa- 
tients who suffer from sleep disorders, where the presence of rapid eye move- 
ment (REM) is important for determining certain sleep stages. The EOG is 
recorded when studying nystagmus, i.e., a rapid, involuntary oscillation of 
the eyeballs, for example, in patients suffering from vertigo and dizziness. 
The EOG is also useful in virtual reality environments where a device for 
eye-tracking may be needed. The EOG is briefly touched upon in Chapter 3 
in connection with EEG signal processing since the electrical activity caused 
by eye movements often interferes with the EEG and, therefore, needs to be 
cancelled. 

The electrogastrogram (EGG) is a recording of the impulses which prop- 
agate through the muscles of the stomach and which control their contrac- 
tions [11], see Figure 1.5(b). The EGG is studied when the muscles of the 
stomach or the nerves controlling the muscles are not working normally, for 
example, when the stomach does not empty food normally. The EGG is 
recorded by attaching a number of electrodes over the stomach during fast- 
ing and subsequent to a meal. In normal individuals a regular "rhythmic" 
signal is generated by the muscles of the stomach, having an amplitude which 
increases after a meal; the normal frequency of the gastric rhythm is approx- 
imately 3 cycles/minute. However, in symptomatic patients the rhythm is 
often irregular and sometimes without the increase in amplitude that follows 
a meal. A small selection of papers describing technical means of analyzing 
the EGG signal can be found in [12-16]. 

1.3 Signal Acquisition and Analysis 

The acquisition of bioelectrical signals is today accomplished by means of 
relatively low-cost equipment which appropriately amplifies and digitizes the 
signal. As a result, several clinical procedures based on bioelectrical signals 
are in widespread use in hospitals around the world. In many situations, 
PC-based systems can be utilized as an efficient and cost-effective solution 
for signal analysis, especially considering the availability of expansion cards 
for data acquisition. Such a system includes one or several sensors, exter- 
nal hardware for patient insulation and signal amplification, an acquisition 
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Figure 1.5: Recordings which exemplify (a) an electrooculogram (EOG) of the 
right eye and (b) an electrogastrogram (EGG). Note that the two timescales differ. 

card with analog/digital (A/D) conversion, and software for signal analy- 
sis (Figure 1.6) [17]. In situations where the analysis is performed in an 
implantable device, the system design involves additional considerations, 
e.g., those related to the design of application-specific integrated circuitry 
and the selection of appropriate battery technology. 

In the digitization process, it is usually sufficient to use 12-14 bits for 
amplitude quantization in order to cover the dynamic range of a signal; 
it is presumed that very slow, large-amplitude drift in the direct current 
(DC) level has been removed prior to quantization without modifying the 
physiological content of the signal. The amplitude of individual bioelectri- 
cal waveforms ranges from 0.1 pV, observed in certain types of EPs once 
subjected to noise reduction, to several millivolts, as observed in the ENG, 
ECG, and EOG. 

Most bioelectrical signals recorded on the body surface have a spectral 
content confined to the interval well below 1 kHz, and thus the sampling 
rate--chosen to be at least the Nyquist rate--rarely exceeds a few kilohertz. 
However, since signals measured on the body surface are subjected to lowpass 
filtering caused by the intermediate tissue, invasively recorded signals, such 
as those on action potentials, generally exhibit a much higher frequency 
content. 

In a PC-based system, signal analysis is often done locally by relying ei- 
ther on the internal CPU or an expansion digital signal processor (DSP) card. 
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Figure 1.6: Block diagram describing the main steps in biomedical signal analysis. 
The signal is often processed at the time of its acquisition, but may also be stored 
on a local hard disk or a server on the web for later retrieval and processing. 

However, with today 's  availability of web-based resources, it is no longer nec- 
essary to perform the entire signal analysis locally. It is equally possible to 
acquire the signal at one physical location, using the PC-based system, and 
then to process it at another  location, i.e., relying on a client/server solu- 
tion [18]. Since the acquired signal in most cases is stored in a database  tha t  
resides on a server, it can be advantageous to also process the signal on the 
server since it may offer more computat ional  power. 

1.4 P e r f o r m a n c e  E v a l u a t i o n  

Performance evaluation is an impor tan t  and challenging part  of biomedical 
signal processing required before any algori thm can be implemented in a 
clinical context. Unlike many other engineering applications where the in- 
formation in the signal source is known a priori, the message "sent" by a 
bioelectrical source is unknown and has to be unmasked in some manual  way 
in order to render performance evaluation possible. For example, the eval- 
uation of an algori thm for detecting hear tbeats  is relatively straightforward 
since it is an easy task for a physician to determine the times of occurrence of 
the heartbeats;  the performance figures would then be designed to reflect how 
well the output  of the algori thm agrees with the manual ly obtained times of 
occurrence. The performance evaluation becomes much more complicated 
when the goal is to develop an algori thm tha t  computes a parameter  set 
which accurately discriminates signals obtained from healthy subjects and 
patients who suffer from a part icular  disease. In such cases, an assessment of 
the output  of the algori thm cannot be carried out simply because the "truth" 
cannot be retrieved from the observed signal. Instead, the performance may 
be evaluated in terms of its ability to correctly discriminate between the two 


