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Freface 

The number of human gene therapy cHnical trials employing adenoviral 
vectors is expanding at an unprecedented rate. This increased use of adenoviral 
vectors has both fueled, and has in turn been fueled by, a parallel explosion 
in our knov^ledge of the biology of adenoviruses and their vectors. Moreover, 
there have been concomitant advances in associated technologies. It is therefore 
timely to reviev^ both basic and applied aspects of adenoviruses and adenoviral 
vectors in a single, comprehensive, multi-author volume. 

The first few chapters focus on basic virology—the structure of aden-
oviruses and the biology of adenoviral infection and replication. Advances in 
our understanding of the parental virus have facilitated the rational design of 
adenoviral vectors for gene therapy. The construction, propagation, and purifi-
cation of adenoviral vectors have benefited from a number of technological 
advances, as discussed in the next series of chapters. 

In addition to the underlying biological features that favor their use for 
gene therapy, it is recognized that adenoviral vectors have suffered from a 
number of limitations. These limitations, together w îth strategies by which 
they might be overcome, are considered. Thus, separate contributions discuss 
approaches to target adenoviral vectors to specific cell types, as well as strategies 
to circumvent the host immune response. Replication-competent adenoviruses, 
which are increasingly being used as oncolytic agents for the treatment of 
cancer, are described. Other vectorological advances covered in this section 
include high capacity adenoviral vectors, xenogenic adenoviral vectors, and 
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hybrid adenoviral vectors, which combine the advantages of adenoviral vectors 
with beneficial features derived from other vector systems. 

The next group of contributors describes the use of adenoviral vectors 
in animal models of human disease — cancer, genetic disease, and acquired 
diseases. These chapters discuss the lessons that have been learned from these 
model systems and their implications for the employment of adenoviral vectors 
in humans. Specific approval from the regulatory bodies must be obtained 
prior to the implementation of human trials, as detailed in the following 
chapter. Finally, the recognition of the need for noninvasive methods to 
monitor adenovirus-mediated gene transfer in human patients has predicated 
the development of novel imaging technologies. 

In the aggregate, we have provided herein a comprehensive overview of 
adenoviral technology, both classical and novel. This update should provide 
an entree into the field for the neophyte as well as a reference source for the 
practitioner. 

David T. Curiel 
Joanne T. Douglas 



Adenoviral Vectors for 

Gene Therapy 



This Page Intentionally Left Blank



C H A P T E R 

Adenovirus Structure 

Phoebe L. Stewart 
Department of Molecular and Medical Pharmacology 
Crump Institute for Molecular Imaging 
University of California, Los Angeles 
School of Medicine 
Los Angeles, California 

I. introduction 

The world got its first look at the icosahedral symmetry of adenovirus (Ad) 
in 1959 with published electron micrographs of negatively stained Ad5 [1]. 
In this classic work, Home et al. were able to resolve the basic subunits and 
thus determine that the adenovirus capsid is composed of 252 subunits, 12 
of which have five neighbors (pentons) and 240 of which have six neighbors 
(hexons). A few years later, Valentine and Pereira [2] published a striking 
electron micrograph of a single Ad5 particle, revealing the long protruding 
fibers that are characteristic of adenovirus. In analogy to what was known at 
the time about the role of phage tails, the authors correctly deduced that the 
adenovirus fiber might be involved in adsorption to the host cell surface. Since 
then electron microscopy has continued to play a role in our understanding 
of the structure of adenovirus and its interaction with av integrins [3, 4]. In 
recent years X-ray crystallography has contributed atomic structures for the 
capsid proteins hexon [5, 6], fiber knob [7-9], and shaft [10], the fiber knob 
complexed with a receptor domain[ll], and the virally encoded protease [12]. 

Our growing knowledge of adenovirus structure has already contributed 
to the field of vector design [13]. For example, initial attempts at modifying 
the C-terminal end of the fiber protein gave suboptimal results for gene 
delivery [14], while subsequent efforts utilizing knowledge of the fiber knob 
structure produced vectors with enhanced performance [15, 16]. Strategies 
for improving adenoviral vectors by making genetic modifications to capsid 
proteins and by designing hybrid vectors are discussed in later chapters. An 
understanding of adenovirus structure will be essential for these endeavors. 

ADENOVIRAL VECTORS FOR GENE THERAPY | 
Copyright 2002, Elsevier Science (USA). 
All rights reserved. 
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II. Molecular Composition 

The approximately 50 known human adenovirus serotypes are classified 
into six subgroups, A-F, and all share a similar structure and genomic organi-
zation [17]. Adenovirus is an nonenveloped virus of ~150 MDa, composed of 
multiple copies of 11 different structural proteins, 7 of which form the icosa-
hedral capsid (II, III, Ilia, IV, VI, VIII, IX) and 4 of which are packaged with 
the linear double-stranded DNA in the core of the particle (V, VII, mu, and 
terminal protein). For clarification of the nomenclature, note that most of the 
Ad polypeptides were named based on their position on a polyacrylamide gel. 
The highest molecular mass protein band turned out to be a complex of com-
ponents, and consequently there is no polypeptide I in adenovirus. Also note 
that polypeptide Ilia was not originally resolved as a separate band; however, it 
is a distinct structural protein. In addition to the capsid and core components, 
approximately 10 copies of the adenovirus protease are incorporated into each 
virion [18]. 

For many icosahedral viruses, determination of a crystal structure has 
resolved outstanding molecular composition issues. In the case of adenovirus, 
there is as yet no atomic structure for the intact virion. In 1985, a prelimi-
nary X-ray crystallographic density map of the Ad2 hexon showed that the 
capsomer was a trimer of polypeptide II with a triangular top and a pseu-
dohexagonal base [19]. Together with the early electron microscopy of the 
intact virion [1], the crystallographically observed hexon symmetry fixed the 
copy number of polypeptide II at 720 in the Ad virion. The stoichiometry 
of eight other structural proteins (III, Ilia, IV, V, VI, VII, VIII, and IX) was 
inferred by careful sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) analyses of radiolabeled virions ([^^S] methionine) using hexon 
as the standard [20]. After adenovirus protease cleavage sites were found in 
the sequences of polypeptides Ilia, VI, and VIII [18], changing the number 
of methionines in the mature proteins, their predicted copy numbers were 
revised [21]. 

The molecular stoichiometry indicated that there is symmetry mismatch 
in the Ad penton [20]. Symmetry mismatches are not unheard of in icosahedral 
viruses. One example is SV40, which has pentamers of VPl at sites of 
both local fivefold and sixfold symmetry in the crystal structure [22]. The 
conformationally flexible C-termini of VPl are able to adapt to the position of 
the pentamer within the SV40 capsid. In the case of adenovirus, three copies 
of polypeptide IV form the fiber and five copies of polypeptide III form the 
penton base. The fiber and penton base together compose the penton, which 
sits at the fivefold symmetry axes of the icosahedral capsid. Microheterogeneity 
in the Ad penton base has been offered as an explanation for the symmetry 
mismatch [20]. 
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More recently a reversed-phase high-performance Hquid chromato-
graphic (RP-HPLC) assay was developed in order to more fully characterize 
the Ad5 proteome [23]. N-terminal protein sequencing and matrix-assisted 
laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy 
were used to identify each component protein contributing at least 2% to the 
total protein mass of the virus. Peaks for the fiber protein, which contributes 
only 1.8% of the total protein mass, as well as the terminal protein and the 
protease, were not identified. The mass of the remaining structural proteins 
was determined to within ± 0 . 1 % . Their copy numbers were estimated using 
hexon as the standard and with the exception of the copy number for the 
core polypeptide VII, which was significantly reduced, the new copy numbers 
are in good agreement with the SDS-PAGE numbers [20, 21]. The precise 
mass measurements confirmed the proteolytic processing of polypeptides Ilia, 
VI, VII, VIII, and mu and interestingly cleaved precursor products of all but 
polypeptide Ilia were found to be present in the purified Ad5 virions. 

III. Structure of the Intact Virion 

In 1991 the first structure of an intact Ad particle was determined by cryo-
electron microscopy (cryo-EM) and three-dimensional image reconstruction 
methods [24]. The technique of cryo-EM was developed in the mid-1980s by 
Dubochet and colleagues [25] for imaging viruses and other macromolecular 
assemblies in a native-like, frozen-hydrated state. Since then it has proven 
to be a powerful approach for studying icosahedral viruses and it has been 
applied to numerous members of over 20 different viral families [26]. The 
method involves placing a droplet of concentrated virus on an EM grid layered 
with a holey carbon film (carbon with holes 1-10 ixm in diameter), blotting 
with a piece of filter paper to leave a thin (~1000 A) layer of water and sample 
stretched across the holes of the grid, and then plunge freezing into a cryogen 
such as ethane slush chilled by liquid nitrogen. This rapid freezing causes 
formation of vitreous (amorphous) ice rather than crystalline ice. Formation 
of normal crystalline (hexagonal) ice would be harmful to the biological 
sample because of its expansion relative to liquid water. After cryo-freezing 
the sample grids are maintained at liquid nitrogen temperature to preserve the 
vitreous state. Transmission electron micrographs are collected using a low 
dose of electrons to avoid significant radiation damage to the frozen, unstained 
sample. The real power of the technique lies in the fact that many particle 
images can be computationally combined to generate a three-dimensional 
density map [26-28]. 

In the early 35-A-resolution reconstruction of Ad2, the features of the 
icosahedral protein capsid were clear and its dimensions without the fiber were 
measured as 914, 884, and 870 A along the five-, two-, and threefold symmetry 
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axes, respectively [24]. The reconstruction showed the trimeric shape of the 
hexon, the pentameric shape of the penton base, and a short portion (^^88 A) 
of the fiber shaft. The full-length fiber, ~300 A long including the knob at the 
distal end, was occasionally visible in cryo-electron micrographs. Comparison 
of these particle images with projections of modeled full-length fibers indicated 
that the knobs were not positioned as would be expected if the fibers were 
straight. This suggested that the Ad fibers in the intact Ad2 particle are bent 
or flexible. Electron micrographs of negatively stained Ad2 fibers show a bend 
close to the N-terminal end, which binds the penton base [29]. A pseudo repeat 
of 15 residues was noted in the central section of the Ad2 fiber sequence [30] 
and later analysis of the fiber sequences from a variety of Ad serotypes revealed 
a range of 6-23 pseudorepeats in the shaft [31]. A long, nonconsensus repeat at 
motif 3 was proposed to induce a bend in the shaft of many Ad serotypes [31]. 
The idea that the fiber is bent for many Ad serotypes is consistent with both 
negative-stain electron micrographs [29] and the fact that only a short rigid 
portion of the Ad2 fiber shaft was reconstructed [24]. 

A more recent cryo-EM reconstruction of Ad2 [3] is shown in Fig. 1 
(see color insert) with modeled full-length fibers. Reconstructions have now 
been pubHshed of Ad2 at 17-A resolution [32], Ad5 [33], Adl2 [3], Ad2 
complexed with a Fab fragment from a monoclonal antibody directed against 
the integrin-binding region of the penton base [34], both Ad2 and Adl2 
complexed with a soluble form of avp5 integrin, the internalization receptor 
for many Ad serotypes [3], and a fiberless Ad5 vector [33]. The capsids of 
these Ad serotypes appear quite similar, with only subtle differences observed 
in the size and flexibility of the surface protrusions of the hexon and penton 
base [3]. 

IV. Structure of the Capsid Components 

A. Hexon, Polypeptide II 

Crystal structures have been published for hexon of serotype Ad2 [5] 
and Ad5 [6], two members of subgroup C. The sequences of these hexons 
(967 amino acids for Ad2, 951 for Ad5) are closely related with 86% amino 
acid identity. Both structures show that the monomer has two eight-stranded 
P-barrels at the base and long loops that intertwine in the trimer to form 
a triangularly shaped top (Fig. 2). The high degree of interlocking observed 
between the monomers might explain why an adenovirus-encoded 100-kDa 
protein is required for trimer assembly [35]. In the trimer the six ^-barrels, two 
from each monomer, form a ring with pseudohexagonal symmetry that allows 
for close packing with six neighboring capsomers in the icosahedral capsid. 
Regions of the electron density for the Ad2 hexon, refined to 2.9-A resolution. 
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Figure 2 The crystallographic structure of the Ad5 hexon trimer [6] with one monomer shown in 
block (PDB ID: 1RUX [90]). (A) A side view showing the two p-borrels near the bottom of the block 
monomer. Note that there are several gaps in the atomic model at the top of the molecule. (B) A top 
view revealing the pseudohexagonal shape of the bottom of the trimer. This figure was generated 
with the program MOLSCRIPT [91 ]. 

were unclear and gaps were left in the atomic model. During refinement of 
the Ad5 hexon to 2.5-A resolution, significant changes were made in the 
atomic model involving reassignment of greater than 25% of the sequence. 
In light of this result and the high homology between the two hexons, it has 
been suggested that the Ad2 atomic model should be revised [6], The most 
significant change was a shift of the first 130 amino acids leaving a gap of just 
four residues at the N-terminus of the Ad5 structure vs an N-terminal gap of 
43 residues in the initial Ad2 model. 
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Revision of the hexon structure has cleared up several mysteries in the lit-
erature. First, a comprehensive comparison of hexon sequences from serotypes 
in all six human subgroups as v^ell as bovine and mouse serotypes found seven 
hypervariable regions [36]. Alignment vv̂ ith the Ad2 hexon structure indicated 
that five regions w êre in exposed loops as expected, v^hile tw ô regions w êre 
buried. The Ad5 hexon structure nov^ show ŝ all seven hypervariable loops 
exposed on the top of the molecule [6]. Second, trypsin cleavage sites v^ere 
identified at Arg-142 and Arg-165 in Ad2 [37] and these are nov\̂  located in 
the exposed top of the hexon molecule [6]. Similarly a pH-dependent cleavage 
site for the proteolytic enzyme dispase w âs found somew^here betw^een residues 
135 and 150 of the Ad2 hexon [38]. In the original Ad2 hexon structure this 
stretch w âs buried and far from the top of the molecule. In the Ad5 hexon 
structure this region is likely exposed on the molecule, although it is in an 
unmodeled region of the structure [6]. 

The Ad5 structure places a previously buried highly acidic stretch of 
residues, 133-161 for Ad2, at the top of the molecule and accessible to 
solvent [6]. The acidic region is also found in the Ad5 hexon sequence, but 
not in those of Ad9, Adl2, or Ad37. In the Ad8 hexon sequence there is a 
longer, slightly basic insertion at this position [36]. It has been suggested that 
the acidic stretch may create an electrostatic repulsion betw^een the exterior 
of the Ad2 or Ad5 virion and acidic cell surface proteins [39]. Others have 
proposed that perhaps the acidic region plays a role in tissue tropism for the 
subgroup C viruses [40]. 

B. Penton Base, Polypeptide III 

In the absence of a crystal structure for the penton base, structural 
information on this protein comes mainly from cryo-EM reconstructions of 
the dodecahedron formed by Ad3 pentons [41] and intact Ad virions of various 
serotypes [3, 32-34]. Alignment of the know^n penton base sequences from 
subgroups A, B, C, and E shoves high homology throughout the protein except 
for a central variable length region that contains the nearly alw^ays conserved 
Arg-Gly-Asp (RGD) sequence, residues 340-342 for Ad2 [4,42]. The Ad2 and 
Ad5 penton bases (571 residues each) have among the longest variable RGD 
regions [4,43,44]. The RGD sequence, utilized for interaction w îth cellular 
av integrins [4,45], is lacking from the enteric Ad40 and Ad41 serotypes 
of subgroup F [46]. Presumably these tv^o serotypes don't interact with av 
integrins during viral cell entry. 

Site-directed mutagenesis of the Ad2 penton base has indicated particular 
residues that are important for various functions including pentamerization and 
stable fiber-penton base interaction [47]. While recombinantly expressed Ad2 
penton base is knov^n to self-assemble into homo-pentamers, tw ô mutations 
in the N-terminal portion of penton base, R254E and W119 H, and several 


