ADENOVIRAL VECTORS For gene therapy

DAVID T. CURIEL | JOANNE T. DOUGLAS

Adenoviral Vectors for Gene Therapy This Page Intentionally Left Blank

Adenoviral Vectors for Gene Therapy

Edited by

David T. Curiel Joanne T. Douglas

Division of Human Gene Therapy University of Alabama at Birmingham Birmingham, Alabama

An imprint of Elsevier Science

Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo This book is printed on acid-free paper. ⊗

Copyright 2002, Elsevier Science (USA).

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to: Permissions Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida 32887-6777.

Explicit permission from Academic Press is not required to reproduce a maximum of two figures or tables from an Academic Press chapter in another scientific or research publication provided that the material has not been credited to another source and that full credit to the Academic Press chapter is given.

Academic Press An imprint of Elsevier Science 525 B Street, Suite 1900, San Diego, California 92101-4495, USA http://www.academicpress.com

Academic Press Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK http://www.academicpress.com

Library of Congress Catalog Card Number: 2001098272

International Standard Book Number: 0-12-199504-6

PRINTED IN THE UNITED STATES OF AMERICA 02 03 04 05 06 07 SB 9 8 7 6 5 4 3 2 1

Contents

Contributors xxiii

Preface xxvii

CHAPTER 1

Adenovirus Structure

Phoebe L. Stewart

I. Introduction 1 II. Molecular Composition 2 III. Structure of the Intact Virion 3 IV. Structure of the Capsid Components A. Hexon, Polypeptide II 4 B. Penton Base, Polypeptide III C. Fiber, Polypeptide IV 8 D. Polypeptide IIIa 10 E. Polypeptide VI 10 F. Polypeptide VIII 11

4

6

G. Polypeptide IX 11

V.	Core Structure		12	
VI.	Adenovirus Prote	ease		12
VII.	Summary	13		
	References	14		

Biology of Adenovirus Cell Entry

Glen R. Nemerow

I. Pathway of Adenovirus Cell Entry 19	
II. Cell Receptors Involved in Attachment 21	
A. CAR 21	
B. Other Adenovirus Receptors 23	
III. Adenovirus Internalization Receptors 24	
A. Role of av Integrins as Coreceptors 24	
 B. Structural Features of Penton Base-αv Integrin Association 26 	
C. Signaling Events Associated with Adenovirus Internalization 26	
IV. Virus-Mediated Endosome Disruption and Uncoating 29	
A. Role of Penton Base and αv Integrins 29	
B. Role of the Adenovirus Cysteine Protease 30	
 V. Beyond the Endosome: Trafficking of Viral Capsids and Import of Viral DNA into the Nucleus 30 	۶f
A. Intracytoplasmic Transport of Viral Capsids 30	
 B. Docking at the Nuclear Pore and Translocation of Viral DNA 31 	
VI. Conclusions 31	
References 32	

CHAPTER 3

Adenovirus Replication

Jared D. Evans and Patrick Hearing

- I. Introduction **39**
- II. Classification 40

III.	Genome Organization	40	
IV.	Virus Infection 42		
V.	Early Gene Expression	42	
VI.	Early Region 1A (E1A)	43	
VII.	Early Region 1B (E1B)	46	
VIII.	Early Region 2 (E2)	47	
IX.	Early Region 3 (E3)	49	
Х.	Early Region 4 (E4)	52	
XI.	Viral DNA Replication	55	
XII.	VA RNA Genes 5	9	
XIII.	Late Gene Expression ar	nd Virus Assembly	59
XIV.	Vector Design 62		
XV.	Conclusion 63		
	References 64		

Adenoviral Vector Construction I: Mammalian Systems

Philip Ng and Frank L. Graham

I.	Introduction	71			
	A. Adenovirus Bi	ology 7	I		
	B. Adenovirus Ve	ectors 7	3		
	C. Early Method Adenoviruses	s of Construct 73	ng Recombin	ant	
II.	The Two-Plasmid R	escue System	75		
	A. Development	of the Two-Pla	ismid Rescue	System	77
	B. Refinements to	o the Two-Plas	mid Rescue M	Aethod	79
	C. The Ad Genor	nic Plasmid	82		
	D. The Shuttle Pl	asmid 8	2		
III.	Protocols for the Tv	vo-Plasmid Res	cue System	85	
	A. Preparation of	Plasmid DNA	85		
	B. Cell Culture	88			
	C. Cotransfection	1 89			
	D. Analysis of Re	combinant Ve	ctors and Pre	paration of	Working
	Vector Stocks	93			

- E. Titration of Adenovirus 94
- F. Preparation of High-Titer Viral Stocks (Crude Lysate) **95**
- G. Purification of Adenovirus by CsCl Banding 97
- H. Characterization of Adenoviral Vector Preparations **99**
- I. Alternative Procedures to Expedite Vector Production **101**

References 101

CHAPTER 5

Adenoviral Vector Construction II: Bacterial Systems

M. Lusky, E. Degryse, M. Mehtali, and C. Chartier

I.	Introduction	105	
II.	Generation of Ad:	Traditional Approaches	106
III.	Generation of Ad:	Bacterial Systems	07
IV.	Homologous Recor	mbination in E. coli	108
V.	Homologous Recor Plasmids 10	nbination with Linear Ad V 9	/ector Genome
VI.	Homologous Recor Plasmids 11	nbination with Circular Ac 6	Vector Genome
VII.	Ad Vector Constru Recombination	ction by Transposon-Medie 118	ated
VIII.	Ad Vector Constru	ction by in Vitro Ligation	119
IX.	Conclusion	121	
	References 1	123	

CHAPTER 6

Propagation of Adenoviral Vectors: Use of PER.C6 Cells

W. W. Nichols, R. Lardenoije, B. J. Ledwith, K. Brouwer, S. Manam, R. Vogels,

D. Kaslow, D. Zuidgeest, A. J. Bett, L. Chen, M. van der Kaaden,

S. M. Galloway, R. B. Hill, S. V. Machotka, C. A. Anderson, J. Lewis,

D. Martinez, J. Lebron, C. Russo, D. Valerio, and A. Bout

I. Introduction 129

	Α.	Scope of the Chapter 129
	В.	Adenoviruses 130
	C.	Adenovirus Replication 131
١١.	Cel	s Expressing E1 of Adenovirus 134
	A.	Transformation of Cells by E1 of Adenovirus 134
	B.	E1-Expressing Cell Lines for Adenoviral Vector Production 135
111.	PER	.C6 Prevents RCA during Vector Production 136
	A.	RCA 136
	B.	PER.C6: Absence of Sequence Overlap Eliminates RCA Generation 137
	C.	Frequency of RCA Occurrence 139
IV.	Pro	duction of Adenoviral Vectors 141
	A.	Vector Stability 141
	B.	The Production Process 143
	C.	Yields of Adenoviral Vectors 145
	D.	Scale of Adenoviral Vector Production 145
V.	Saf	ety Considerations of PER.C6 146
	A.	QC Testing of PER.C6 Cells for Use in the Manufacture of Biologicals and Vaccines 146
	В.	Tumorigenicity 150
	C.	Prion-Related Issues 156
	D.	Genetic Characterization of PER.C6 Cells 157
VI.	Cor	nclusions 159
	Refe	erences 160

Purification of Adenovirus

Paul Shabram, Gary Vellekamp and Carl Scandella

- I. Introduction 167
 - A. The Physical Characteristics of the Adenovirus Particle in Solution 167

B. Features of the Milie	eu 170
C. Summary of Charac	teristics 173
II. Recovery and Purification	of Adenoviral Particles 173
A. Harvest Methods	173
B. Lysis Methods	175
C. Clarification	79
D. Purification	81
E. Buffer Exchange	189
III. Analytical Methods for Pr Tracking 190	rocess Development and Process
A. Plaque-Forming Tite	er Assays 190
B. Adenovirus 96-Well	Titer Plate Assay 191
C. Flow Cytometry	194
D. Particle Concentration Absorbance 1	on Determination by Ultraviolet 94
E. Analytical Reverse-I	Phase HPLC 195
F. Analytical Anion-Ex	change HPLC 196
IV. Formulation and Stability	196
V. Conclusions 200	
References 200	

Targeted Adenoviral Vectors I: Transductional Targeting

Victor Krasnykh and Joanne T. Douglas

١.	Introduction 205		
II.	The Pathway of Adenoviral Infection	206	
III.	Strategies and Considerations 207	,	
IV.	Conjugate-Based Targeting 209		
	A. Bispecific Chemical Conjugates	209	
	B. Bispecific Recombinant Fusion Prot	eins	213
	C. Bispecific Peptides 215		
	D. Polymer-Mediated Coupling of Liga	ands to .	Ad Capsid
	Proteins 215		

- E. Biotinylated Ad/Avidin Bridge/Biotinylated Ligand **216**
- V. Genetic Targeting 216
 - A. Ad-Targeting Strategies Involving Genetic Manipulations of the Fiber Protein **217**
 - B. Ad-Targeting Strategies Involving Genetic Manipulations of the Hexon and Penton Base Proteins 231
- VI. Transductionally Targeted Ad Vectors for Clinical Gene Therapy Applications 232
- VII. Conclusion 235 References 236

Targeted Adenoviral Vectors II: Transcriptional Targeting

Sudhanshu P. Raikwar, Chinghai H. Kao, and Thomas A. Gardner

I.	Intro	oduction: Rationale of Transcriptional Targeting	247
IJ.	Reg	gulation of Transcription in Eukaryotes 248	
	A.	Molecular Organization of DNA 248	
	B.	The Central Dogma 248	
	C.	Transcription 249	
	D.	Mechanism of Transcription 251	
	E.	Structural Motifs 253	
	F.	Regulation of Adenoviral DNA TranscriptionProcess 256	
111.	Ар	proaches of Transcriptional Regulation 256	
	A.	Prior Rationale Universal Promoters 256	
	B.	Current Rationale of Tissue-Specific Promoters	257
	C.	MN/CA9 Promoter 268	
	D.	Inducible Transcription 269	
IV.	Enh	nanced Control of Transgene Expression 271	
	A.	Safety Improvements 271	
	В.	Potency Concerns 272	
V.	Futu	ure Directions 272	
	A.	Enhancement of Weak But Specific Promoters	272

	B.	Improving Segments	Specificit 274	y with Mul	tiple Pro	omoter
	C.	Tumor-Spec	cific Onc	olysis	274	
	D.	Combined ^r	Targeting	g Approach	ies	274
VI.	Sun	nmary	274 275			
	KCR	ST CHCC3	2/ 3			

Development of Attenuated Replication Competent Adenoviruses (ARCAs) for the Treatment of Prostate Cancer

Daniel R. Henderson and De-Chao Yu

I.	Introduction 287
II.	ARCAs for Prostate Cancer: CV706 and CV787 290
	A. Adenovirus: Gene Expression and Regulation 290
	B. Tissue Specificity of ARCA 291
	C. Antitumoral Efficacy of ARCA 295
	D. Mechanism for Cell-Killing of ARCA 296
III.	Synergy of ARCA and Conventional Therapy 298
	A. Synergy of CV706 and Irradiation 299
	B. Synergy of CV787 and Chemotherapy 302
IV.	Toxicity of Intravenously Administered ARCAs in the Absence or Presence of Docetaxel 305
V.	Effects of Preexisting Adenovirus Antibody on Antitumor Activity and Immunoapheresis for Human Therapy 308
	 A. Preexisting Adenovirus Antibodies Inhibit Systemic Toxicity and Antitumor Activity 309
	 B. SIAPA: Screening and Immunoapheresis of Preexistent Antibody for Monitoring and Removing Preexistent Ad5 Antibodies from Blood 313
VI.	Clinical Development of CV706 and CV787 314
	A. CV706 Phase I/II Trial for Locally Recurrent Prostate Cancer 314
	B. Factors Impacting Clinical Efficacy and Safety 317

VII.	Summary	318
	References	319

Replication-Selective Oncolytic Adenovirus E1-Region Mutants: Virotherapy for Cancer

David Kirn

I.	Introduction 329
II.	Attributes of Replication-Selective Adenoviruses for Cancer Treatment 332
III.	Biology of Human Adenovirus 332
IV.	Mechanisms of Adenovirus-Mediated Cell Killing 333
V.	Approaches to Optimizing Tumor-Selective Adenovirus Replication 333
VI.	E1A-CR2 Region Deletion Mutants 334
VII.	E1B 55-kDa Gene Deletion Mutant: dl1520 335
VIII.	Clinical Trial Results with Replication-Competent Adenoviruses in Cancer Patients 337
	A. Clinical Trial Results with Wild-Type Adenovirus 337
	 B. A Novel Staged Approach to Clinical Research with Replication-Selective Viruses: The Example of <i>dl</i>1520 (Onyx-015) 338
IX.	Results from Clinical Trials with <i>d</i> /1520 (Onyx-015 or Cl-1042) 340
	A. Toxicity 340
	B. Viral Replication 340
	C. Immune Response 342
Х.	Clinical Trial Results with <i>d</i> /1520 (Onyx-015): Summary 343
XI.	Future Directions: Why Has <i>d</i> /1520 (Onyx-015) Failed to Date as a Single Agent? 344
XII.	Improving the Efficacy of Replication-Selective Oncolytic Adenoviral Agents 345
XIII.	Summary 345
	References 346

Innate Immune Responses to in Vivo Adenovirus Infection Bruce C. Trapnell and Thomas P. Shanley

Ι.	Overview: Components of Innate Immunity 349	
II.	Distribution and Clearance of Adenovirus from the Respiratory	
	110CI 334	
	A. Clinical Aspects of Natural Adenoviral Infection in Humans 354	
	B. Distribution of Recombinant, Replication-Deficient Adenoviral Vectors 355	
	C. Kinetics and Mechanisms of Clearance of Adenovirus 356	
III .	Molecular Mediators of Inflammation 359	
	A. Clinical Adenovirus Infections in Humans 360	
	B. Adenovirus Infections in Animal Models 361	
	C. Acute Cytokine Responses 362	
	D. Intermediate Cytokine Responses 363	
	E. Late Cytokine Responses 364	
IV.	Inflammatory Cell Recruitment 364	
V.	Innate Immunity and Programming of Adaptive Responses 36	7
VI.	Innate Immunity and <i>in Vivo</i> Gene Therapy 368	
VII.	Future Directions 369	
	References 369	

CHAPTER 13

Humoral Immune Response

Catherine O'Riordan

I.	Intro	oduction	375		
II.	Ade	enovirus St	ructure and	Serotype	376
	A.	Classifica	tion of Ad	enoviruses	376
	B. Adenoviral Structural Proteins and			and Type-Specific	
		Epitopes	376		

C. Chimeric Adenovirus Vectors 379

D. Influence of Serotypic Variations on Adenoviral Cell Interactions 380	
III. Host Response to Gene Therapy Vectors 381	
A. Innate Immune Response 381	
B. Adaptive Immune Response: B–T Cell Interactions	382
IV. Strategies to Overcome the Humoral Immune Response	384
A. General Immunosuppression 384	
B. Transient Selective Immunosuppression 386	
C. Oral Tolerance 387	
D. Serotype Switching 388	
E. Masking Neutralizing Epitopes 389	
F. Immunoapheresis 390	
 V. Factors Modulating Host Responses to Gene Transfer Vectors 390 	
A. Viral Vector Backbone 390	
B. Species and Strain 393	
C. Route of Delivery 395	
VI. Immune Response to Adenoviral–based Vectors in	
Humans 396	
VII. Conclusion 398	
References 399	

Novel Methods to Eliminate the Immune Response to Adenovirus Gene Therapy

Huang-Ge Zhang, Hui-Chen Hsu, and John D. Mountz

- I. Introduction 409
- II. Immune Suppression 410
- III. Immune Modulation 411
- IV. Treatment with Soluble TNFR1 to Eliminate Ad Inflammation in Lung and Liver 414
- V. Inhibition of Cell Cytolysis Which Combines Treatment with Soluble DR5, Soluble Fas, and Soluble TNFR1 415
- VI. Immune Privilege 417

VII.	APC-AdFasL Prolong	s Transgene	Expression	and Specifically
	Minimizes T-Cell Res	oonse	419	

- VIII. Production of AdsTACI Prolongs Gene Expression and Minimizes B-Cell Response **421**
 - IX. Summary 423 References 424

High-Capacity "Gutless" Adenoviral Vectors: Technical Aspects and Applications

Gudrun Schiedner, Paula R. Clemens, Christoph Volpers, and Stefan Kochanek

I.	Introduction 429		
١١.	Technical Aspects	430	
	A. Vector Production	430	
	B. Stuffer DNA	432	
	C. Vector Capsid Modi	ification 434	
III.	Applications 435		
	A. Liver Gene Transfer	435	
	B. Gene Transfer into S	Skeletal Muscle 439	
	C. Gene Transfer into t	the Eye and into the CNS	440
IV.	Conclusion 442		
	References 442		

CHAPTER 16

Xenogenic Adenoviral Vectors

Gerald W. Both

١.	Impetus and Rationale	447		
11.	Classification of Adenov	viruses	447	
111.	Factors Affecting Vector	Design and L	Jtility	448
	A. Host Range and Pa	thogenicity	448	
	B. Neutralization	450		
	C. Genome Structure	and Function	450	

D. Transforming	Ability 454		
E. Cell Lines	456		
F. Strategies for V	vector Construction	n and Rescue	458
IV. Utility of Xenogenic	Vectors 460		
A. Veterinary Stud	dies 460		
B. Vector Biology	462		
C. Gene Therapy	Studies 466		
V. Biosafety 466	ć		
A. Complementat	ion and Recombination	ation 466	
B. Oncogenes in V	Viral and Cellular I	DNA 468	
C. Virus/Cell Inter	ractions 468		
D. Replication Co	mpetent Viruses	469	
VI. Vector Production a	nd Purification	469	
References 42	70		

Hybrid Adenoviral Vectors

Stephen J. Murphy and Richard G. Vile

 A. Retroviral Vectors 483 B. Adenoviral Vectors 487 C. Adeno-associated Viruses 487 D. Herpes Simplex Viruses 488 E. Lentiviral Vectors 488 F. The Choice of Gene Therapy Vector 489 G. How to Maintain Stable Transgene Expression II. Hybrid Viral Vectors 492 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 	١.	Introduction 481			
 B. Adenoviral Vectors 487 C. Adeno-associated Viruses 487 D. Herpes Simplex Viruses 488 E. Lentiviral Vectors 488 F. The Choice of Gene Therapy Vector 489 G. How to Maintain Stable Transgene Expression II. Hybrid Viral Vectors 492 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 		A. Retroviral Vectors	483		
 C. Adeno-associated Viruses 487 D. Herpes Simplex Viruses 488 E. Lentiviral Vectors 488 F. The Choice of Gene Therapy Vector 489 G. How to Maintain Stable Transgene Expression II. Hybrid Viral Vectors 492 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 		B. Adenoviral Vectors	487		
 D. Herpes Simplex Viruses 488 E. Lentiviral Vectors 488 F. The Choice of Gene Therapy Vector 489 G. How to Maintain Stable Transgene Expression II. Hybrid Viral Vectors 492 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 		C. Adeno-associated Virus	ies 487		
 E. Lentiviral Vectors 488 F. The Choice of Gene Therapy Vector 489 G. How to Maintain Stable Transgene Expression II. Hybrid Viral Vectors 492 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 		D. Herpes Simplex Viruses	488		
 F. The Choice of Gene Therapy Vector 489 G. How to Maintain Stable Transgene Expression II. Hybrid Viral Vectors 492 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 		E. Lentiviral Vectors	488		
 G. How to Maintain Stable Transgene Expression II. Hybrid Viral Vectors 492 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 		F. The Choice of Gene Th	erapy Vector	489	
 II. Hybrid Viral Vectors 492 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 		G. How to Maintain Stabl	e Transgene Expre	ession	491
 A. Are Hybrid Vectors Truly New Technology? III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 	II.	Hybrid Viral Vectors	192		
 III. Hybrid Adenoviral Vector Systems 494 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 		A. Are Hybrid Vectors Tru	ly New Technolog	gy?	493
 A. Pseudotyping and Retargeting Adenoviral Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496 	111.	Hybrid Adenoviral Vector Sy	/stems 494		
Vectors 494 B. Adenoviral/Retroviral Hybrid Vector Technologies 496		A. Pseudotyping and Retain	rgeting Adenoviral	l	
B. Adenoviral/Retroviral Hybrid Vector Technologies 496		Vectors 494			
Technologies 496		B. Adenoviral/Retroviral H	Hybrid Vector		
		Technologies 490	5		

	C. Adenoviral/	Epstein–Barr Virus Hybrid Vectors	508	
	D. Hybrid Retr	oviruses Trafficking to the Nucleus	511	
	E. Hybrid Ade	noviral/Adeno-Associated Virus Vectors		512
IV.	Conclusion	518		
	References	524		

Utility of Adenoviral Vectors in Animal Models of Human Disease I: Cancer

Raj K. Batra, Sherven Sharma, and Lily Wu

I.	Introduction 533
11.	Animal Models of Lung Cancer 535
	A. Human Lung Cancer 535
	B. Animal Models of Human Lung Cancer 537
	C. Gene Therapy of Lung Cancer Using Adenoviral Vectors 543
III.	Animal Models of Human Prostate Cancer 547
	A. Human Prostate Cancer 547
	B. Spontaneous and Transgenic Models of Human Prostate Cancer 547
	C. Xenograft Models of Human Prostate Cancer 548
	D. Gene Therapy Approaches with Adenovectors in Prostate
	Cancer 550
IV.	Summary and Discussion 551
	References 553

CHAPTER 19

Utility of Adenoviral Vectors in Animal Models of Human Disease II: Genetic Disease

Raymond John Pickles

- I. Introduction 565
- II. Pathophysiology of Cystic Fibrosis (CF) Lung Disease 566

Ш.	Trials and Tribula Disease 56	itions with Adenoviral Ve 7	ectors for CF Lung	
IV.	The Airway Epith Therapy 50	elium: Cellular Targets fo 5 8	or CF Gene	
V.	Adenoviral Vecto	rs as Gene Transfer Vect	ors in the Lung	570
	A. Animal Mod Studies	els for CF Airway Gene 570	Transfer	
	B. Success and	Limitations of Ad	571	
	C. Overcoming	the Limitations of Ad	577	
VI.	Other Vectors	585		
VII.	Conclusion	586		
	References	586		

Utility of Adenoviral Vectors in Animal Models of Human Disease III: Acquired Diseases

Erik Lubberts and Jay K. Kolls

A. Tuberculosis 596	
B. Pneumonia 598	
C. Opportunistic Infections 601	
D. Viral Hepatitis 603	
II. Chronic Inflammatory Diseases 603	
A. Inflammatory Bowel Disease 603	
B. Arthritis 604	
C. Fibrotic Lung Disease 607	
III. Conclusions 608	
References 608	

CHAPTER 21

Testing of Adenoviral Vector Gene Transfer Products: FDA Expectations

Steven R. Bauer, Anne M. Pilaro, and Karen D. Weiss

I. Introduction 615

۱۱.	Ma	nufacturing Control and Product Characterization	616		
	A.	Purity, Safety, and Potency 616			
	B.	Regulation of Process as Well as Product 617			
	C.	Current Good Manufacturing Practices 617			
III.	Dev Cha	velopment of Recommendations for the Manufacture and aracterization of Adenoviral Vectors 618			
IV.	V. Considerations in Manufacturing Adenoviral Vectors				
	A.	Components and Characterization 620			
	B.	Protocols 621			
V.	Pro	cess Controls 621			
	A.	Standard Operating Procedures 621			
	B.	Quality Assurance and Quality Control Programs 622			
VI.	Cho Inte	aracterization of Adenoviral Vector Production ermediates 623			
	A.	Master Cell Bank 623			
	B.	Working Cell Bank 626			
	C.	Master Virus Bank 626			
VII.	Cho Pro	aracterization of Adenoviral Vector Final ducts 628			
VIII.	Pre	clinical Testing of Adenoviral Vectors 630			
	A.	Pharmacologic Activity 631			
IX.	Тох	kicology Testing 632			
	A.	Scope of Toxicity Testing 632			
	В.	Species Selection 633			
	C.	Route of Administration 634			
	D.	Selection of Dose 634			
Х.	Bio	distribution 636			
	A.	Good Laboratory Practices 637			
XI.	Intr	oduction to Clinical Testing 637			
	A.	Phases of Clinical Development 638			
XII.	Go	od Clinical Practices 639			
	A.	Responsibilities of a Sponsor and Investigators 639			
	B.	Adverse Event Reporting 639			

C. Consent and Vulnerable Populations	640
D. Monitoring and Auditing 641	
XIII. Clinical Safety of Adenoviral Vector Products	642
XIV. Bioactivity of Adenoviral Vector Products	643
XV. Clinical Efficacy of Adenoviral Vector Products	644
A. Choice of Control 645	
B. Endpoint Selection 645	
XVI. How the Role of FDA Regulators Has Changed 1999 646	Since September
A. Safety Symposia in Conjunction with OBA	A 647
B. Results of FDA's Directed Inspections	648
C. Description of the March 6, 2000, Letter a Responses 649	and Summary of
D. Results of Additional Inspections 65	50
E. Sponsor Outreach and Education 6	51
XVI. Summary 651	
References 652	

Imaging Adenovirus-Mediated Gene Transfer

Kurt R. Zinn and Tandra R. Chaudhuri

I.	Intro	oduction 655	
II.	Wh	at Information Is Provided by Imaging	656
111.	Scie	entific Basis for Imaging 657	
	A.	Electromagnetic Energy 657	
	B.	Contrast 657	
	C.	Gamma Rays and Detection 6	57
	D.	Light-Based Imaging and Detection	661
	E.	Magnetic Resonance Imaging and	
		Spectroscopy 662	
IV.	lma	ging and Gene-Therapy Vectors	663
	A.	Gamma-Ray Imaging 663	
	B.	Light-Based Imaging 666	
	С.	Magnetic Resonance Technologies	668

V. Gene-Therapy Vectors May Advance Molecular Imaging 669		
VI. Conclusion	671	
References	671	

Contributors

Numbers in parentheses indicate the page numbers on which the authors' contributions begin.

- C. A. Anderson (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- Raj K. Batra (533) Division of Pulmonary and Critical Care Medicine, Veterans Administration Greater Los Angeles Health Care System, and University of California, Los Angeles, School of Medicine and Jonsson Comprehensive Center, Los Angeles, California 90073
- Steven R. Bauer (615) Division of Cellular and Gene Therapies, CBER Food and Drug Administration, Rockville, Maryland 20852
- A. J. Bett (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- Gerald W. Both (447) Molecular Science, CSIRO, North Ryde, New South Wales 1670, Australia
- A. Bout (129) Crucell NV, 2301 CA Leiden, The Netherlands
- K. Brouwer (129) Crucell NV, 2301 CA Leiden, The Netherlands
- C. Chartier¹ (105) Department of Genetic Therapy, Transgene, 67082 Strasbourg Cedex, France
- Tandra R. Chaudhuri (655) University of Alabama at Birmingham, Birmingham, Alabama 35294
- L. Chen (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486

¹ Present address: Children's Hospital, Boston, Massachusetts

- Paula R. Clemens (429) Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
- E. Degryse² (105) Department of Genetic Therapy, Transgene, 67082 Strasbourg Cedex, France
- Joanne T. Douglas (205) Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Jared D. Evans (39) Department of Molecular Genetics and Microbiology, State University of New York, School of Medicine, Stony Brook, New York 11794
- S. M. Galloway (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- Thomas A. Gardner (247) Urology Research Laboratory, Indiana University Medical Center, Indianapolis, Indiana 46202
- Frank L. Graham (71) Departments of Biology, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- Patrick Hearing (39) Department of Molecular Genetics and Microbiology, State University of New York, School of Medicine, Stony Brook, New York 11794
- Daniel R. Henderson (287) Calydon, Incorporated, Sunnyvale, California 94089
- **R. B. Hill** (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- Hui-Chen Hsu (409) Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Chinghai H. Kao (247) Urology Research Laboratory, Indiana University Medical Center, Indianapolis, Indiana 46202
- D. Kaslow (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- David Kirn (329) Program for Viral and Genetic Therapy of Cancer, Imperial Cancer Research Fund, Hammersmith Hospital, Imperial College School of Medicine, London, W12 ONN, United Kingdom
- Stefan Kochanek (429) Center for Molecular Medicine, University of Cologne, D-50931 Cologne, Germany
- Jay K. Kolls (595) Department of Medicine and Pediatrics, Louisanna State University, Health Sciences Center, New Orleans, Louisianna 70112
- Victor Krasnykh (205) Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, and VectorLogics, Inc., Birmingham, Alabama 35294
- R. Lardenoije (129) Crucell NV, 2301 CA Leiden, The Netherlands

² Present address: Laboratoire Microbiologie, Pernod-Ricard, Creteil Cedex, France.

- J. Lebron (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- B. J. Ledwith (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- J. Lewis (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- Erik Lubberts (595) University Medical Center St. Radboud, Nijmegen Center for Molecular Life Science, 6500 HB Nijmegen, The Netherlands
- M. Lusky (105) Department of Genetic Therapy, Transgene, 67082 Strasbourg Cedex, France
- S. V. Machotka (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- S. Manam (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- D. Martinez (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- M. Mehtali³ (105) Department of Genetic Therapy, Transgene, 67082 Strasbourg Cedex, France
- John D. Mountz (409) Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, and Birmingham Veterans Administration Medical Center, Birmingham, Alabama 35294
- Stephen J. Murphy (481) Molecular Medicine Program, Mayo Clinic and Foundation, Rochester, Minnesota 55905
- Glen R. Nemerow (19) Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
- Philip Ng⁴ (71) Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- W. W. Nichols (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486
- Catherine O'Riordan (375) Genzyme Corporation, Framingham, Massachusetts 01701
- Raymond John Pickles (565) Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Anne M. Pilaro (615) Division of Clinical Trial Design and Analysis, CBER Food and Drug Administration, Rockville, Maryland 20852
- Sudhanshu P. Raikwar (247) Urology Research Laboratory, Indiana University Medical Center, Indianapolis, Indiana 46202

³ Present address: Deltagen, Illkirch, France.

⁴ Present address: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.

C. Russo (129) Merck Research Laboratories, Merck & Company, Inc., West Point, Pennsylvania 19486

Carl Scandella (167) Carl Scandella Consulting, Bellevue, Washington

Gudrun Schiedner (429) Center for Molecular Medicine, University of Cologne, D-50931 Cologne, Germany

Paul Shabram (167) Canji Inc., San Diego, California 92121

- Thomas P. Shanley (349) Divisions of Pulmonary Biology and Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229
- Sherven Sharma (533) Division of Pulmonary and Critical Care Medicine, Veterans Administration Greater Los Angeles Health Care System, and Wadsworth Pulmonary Immunology Laboratory, University of California, Los Angeles, Los Angeles, California 90073
- Phoebe L. Stewart (1) Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
- Bruce C. Trapnell (349) Divisions of Pulmonary Biology and Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229
- D. Valerio (129) Crucell NV, 2301 CA Leiden, The Netherlands
- M. van der Kaaden (129) Crucell NV, 2301 CA Leiden, The Netherlands
- Gary Vellekamp (167) Shering-Plough Research Institute, Kenilworth, New Jersey
- Richard G. Vile (481) Molecular Medicine Program, Mayo Clinic and Foundation, Rochester, Minnesota 55905
- R. Vogels (129) Crucell NV, 2301 CA Leiden, The Netherlands
- Christoph Volpers (429) Center for Molecular Medicine, University of Cologne, D-50931 Cologne, Germany
- Karen D. Weiss (615) Division of Clinical Trial Design and Analysis, CBER Food and Drug Administration, Rockville, Maryland 20852
- Lily Wu (533) Departments of Urology and Pediatrics, University of California, Los Angeles, School of Medicine and Jonsson Comprehensive Center, Los Angeles, California 90073

De-Chao Yu (287) Cell Genesys, Incorporated, Foster City, California 94404

- Huang-Ge Zhang (409) Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, and Birmingham Veterans Administration Medical Center, Birmingham, Alabama 35294
- Kurt R. Zinn (655) University of Alabama at Birmingham, Birmingham, Alabama 35294
- D. Zuidgeest (129) Crucell NV, 2301 CA Leiden, The Netherlands

Preface

The number of human gene therapy clinical trials employing adenoviral vectors is expanding at an unprecedented rate. This increased use of adenoviral vectors has both fueled, and has in turn been fueled by, a parallel explosion in our knowledge of the biology of adenoviruses and their vectors. Moreover, there have been concomitant advances in associated technologies. It is therefore timely to review both basic and applied aspects of adenoviruses and adenoviral vectors in a single, comprehensive, multi-author volume.

The first few chapters focus on basic virology — the structure of adenoviruses and the biology of adenoviral infection and replication. Advances in our understanding of the parental virus have facilitated the rational design of adenoviral vectors for gene therapy. The construction, propagation, and purification of adenoviral vectors have benefited from a number of technological advances, as discussed in the next series of chapters.

In addition to the underlying biological features that favor their use for gene therapy, it is recognized that adenoviral vectors have suffered from a number of limitations. These limitations, together with strategies by which they might be overcome, are considered. Thus, separate contributions discuss approaches to target adenoviral vectors to specific cell types, as well as strategies to circumvent the host immune response. Replication-competent adenoviruses, which are increasingly being used as oncolytic agents for the treatment of cancer, are described. Other vectorological advances covered in this section include high capacity adenoviral vectors, xenogenic adenoviral vectors, and hybrid adenoviral vectors, which combine the advantages of adenoviral vectors with beneficial features derived from other vector systems.

The next group of contributors describes the use of adenoviral vectors in animal models of human disease—cancer, genetic disease, and acquired diseases. These chapters discuss the lessons that have been learned from these model systems and their implications for the employment of adenoviral vectors in humans. Specific approval from the regulatory bodies must be obtained prior to the implementation of human trials, as detailed in the following chapter. Finally, the recognition of the need for noninvasive methods to monitor adenovirus-mediated gene transfer in human patients has predicated the development of novel imaging technologies.

In the aggregate, we have provided herein a comprehensive overview of adenoviral technology, both classical and novel. This update should provide an entrée into the field for the neophyte as well as a reference source for the practitioner.

> David T. Curiel Joanne T. Douglas

Adenoviral Vectors for Gene Therapy This Page Intentionally Left Blank

C H A P T E R

Adenovirus Structure

Phoebe L. Stewart

Department of Molecular and Medical Pharmacology Crump Institute for Molecular Imaging University of California, Los Angeles School of Medicine Los Angeles, California

I. Introduction

The world got its first look at the icosahedral symmetry of adenovirus (Ad) in 1959 with published electron micrographs of negatively stained Ad5 [1]. In this classic work, Horne *et al.* were able to resolve the basic subunits and thus determine that the adenovirus capsid is composed of 252 subunits, 12 of which have five neighbors (pentons) and 240 of which have six neighbors (hexons). A few years later, Valentine and Pereira [2] published a striking electron micrograph of a single Ad5 particle, revealing the long protruding fibers that are characteristic of adenovirus. In analogy to what was known at the time about the role of phage tails, the authors correctly deduced that the adenovirus fiber might be involved in adsorption to the host cell surface. Since then electron microscopy has continued to play a role in our understanding of the structure of adenovirus and its interaction with αv integrins [3, 4]. In recent years X-ray crystallography has contributed atomic structures for the capsid proteins hexon [5, 6], fiber knob [7–9], and shaft [10], the fiber knob complexed with a receptor domain[11], and the virally encoded protease [12].

Our growing knowledge of adenovirus structure has already contributed to the field of vector design [13]. For example, initial attempts at modifying the C-terminal end of the fiber protein gave suboptimal results for gene delivery [14], while subsequent efforts utilizing knowledge of the fiber knob structure produced vectors with enhanced performance [15, 16]. Strategies for improving adenoviral vectors by making genetic modifications to capsid proteins and by designing hybrid vectors are discussed in later chapters. An understanding of adenovirus structure will be essential for these endeavors.

II. Molecular Composition

The approximately 50 known human adenovirus serotypes are classified into six subgroups, A–F, and all share a similar structure and genomic organization [17]. Adenovirus is an nonenveloped virus of ~150 MDa, composed of multiple copies of 11 different structural proteins, 7 of which form the icosahedral capsid (II, III, IIIa, IV, VI, VIII, IX) and 4 of which are packaged with the linear double-stranded DNA in the core of the particle (V, VII, mu, and terminal protein). For clarification of the nomenclature, note that most of the Ad polypeptides were named based on their position on a polyacrylamide gel. The highest molecular mass protein band turned out to be a complex of components, and consequently there is no polypeptide I in adenovirus. Also note that polypeptide IIIa was not originally resolved as a separate band; however, it is a distinct structural protein. In addition to the capsid and core components, approximately 10 copies of the adenovirus protease are incorporated into each virion [18].

For many icosahedral viruses, determination of a crystal structure has resolved outstanding molecular composition issues. In the case of adenovirus, there is as yet no atomic structure for the intact virion. In 1985, a preliminary X-ray crystallographic density map of the Ad2 hexon showed that the capsomer was a trimer of polypeptide II with a triangular top and a pseudohexagonal base [19]. Together with the early electron microscopy of the intact virion [1], the crystallographically observed hexon symmetry fixed the copy number of polypeptide II at 720 in the Ad virion. The stoichiometry of eight other structural proteins (III, IIIa, IV, V, VI, VII, VIII, and IX) was inferred by careful sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analyses of radiolabeled virions ([³⁵S] methionine) using hexon as the standard [20]. After adenovirus protease cleavage sites were found in the sequences of polypeptides IIIa, VI, and VIII [18], changing the number of methionines in the mature proteins, their predicted copy numbers were revised [21].

The molecular stoichiometry indicated that there is symmetry mismatch in the Ad penton [20]. Symmetry mismatches are not unheard of in icosahedral viruses. One example is SV40, which has pentamers of VP1 at sites of both local fivefold and sixfold symmetry in the crystal structure [22]. The conformationally flexible C-termini of VP1 are able to adapt to the position of the pentamer within the SV40 capsid. In the case of adenovirus, three copies of polypeptide IV form the fiber and five copies of polypeptide III form the penton base. The fiber and penton base together compose the penton, which sits at the fivefold symmetry axes of the icosahedral capsid. Microheterogeneity in the Ad penton base has been offered as an explanation for the symmetry mismatch [20]. More recently a reversed-phase high-performance liquid chromatographic (RP-HPLC) assay was developed in order to more fully characterize the Ad5 proteome [23]. N-terminal protein sequencing and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy were used to identify each component protein contributing at least 2% to the total protein mass of the virus. Peaks for the fiber protein, which contributes only 1.8% of the total protein mass, as well as the terminal protein and the protease, were not identified. The mass of the remaining structural proteins was determined to within ± 0.1 %. Their copy numbers were estimated using hexon as the standard and with the exception of the copy number for the core polypeptide VII, which was significantly reduced, the new copy numbers are in good agreement with the SDS-PAGE numbers [20, 21]. The precise mass measurements confirmed the proteolytic processing of polypeptides IIIa, VI, VII, VIII, and mu and interestingly cleaved precursor products of all but polypeptide IIIa were found to be present in the purified Ad5 virions.

III. Structure of the Intact Virion

In 1991 the first structure of an intact Ad particle was determined by cryoelectron microscopy (crvo-EM) and three-dimensional image reconstruction methods [24]. The technique of crvo-EM was developed in the mid-1980s by Dubochet and colleagues [25] for imaging viruses and other macromolecular assemblies in a native-like, frozen-hydrated state. Since then it has proven to be a powerful approach for studying icosahedral viruses and it has been applied to numerous members of over 20 different viral families [26]. The method involves placing a droplet of concentrated virus on an EM grid layered with a holey carbon film (carbon with holes $1-10 \,\mu\text{m}$ in diameter), blotting with a piece of filter paper to leave a thin (~ 1000 Å) layer of water and sample stretched across the holes of the grid, and then plunge freezing into a cryogen such as ethane slush chilled by liquid nitrogen. This rapid freezing causes formation of vitreous (amorphous) ice rather than crystalline ice. Formation of normal crystalline (hexagonal) ice would be harmful to the biological sample because of its expansion relative to liquid water. After cryo-freezing the sample grids are maintained at liquid nitrogen temperature to preserve the vitreous state. Transmission electron micrographs are collected using a low dose of electrons to avoid significant radiation damage to the frozen, unstained sample. The real power of the technique lies in the fact that many particle images can be computationally combined to generate a three-dimensional density map [26-28].

In the early 35-Å-resolution reconstruction of Ad2, the features of the icosahedral protein capsid were clear and its dimensions without the fiber were measured as 914, 884, and 870 Å along the five-, two-, and threefold symmetry

axes, respectively [24]. The reconstruction showed the trimeric shape of the hexon, the pentameric shape of the penton base, and a short portion (~88 Å) of the fiber shaft. The full-length fiber, ~300 Å long including the knob at the distal end, was occasionally visible in crvo-electron micrographs. Comparison of these particle images with projections of modeled full-length fibers indicated that the knobs were not positioned as would be expected if the fibers were straight. This suggested that the Ad fibers in the intact Ad2 particle are bent or flexible. Electron micrographs of negatively stained Ad2 fibers show a bend close to the N-terminal end, which binds the penton base [29]. A pseudo repeat of 15 residues was noted in the central section of the Ad2 fiber sequence [30] and later analysis of the fiber sequences from a variety of Ad serotypes revealed a range of 6-23 pseudorepeats in the shaft [31]. A long, nonconsensus repeat at motif 3 was proposed to induce a bend in the shaft of many Ad serotypes [31]. The idea that the fiber is bent for many Ad serotypes is consistent with both negative-stain electron micrographs [29] and the fact that only a short rigid portion of the Ad2 fiber shaft was reconstructed [24].

A more recent cryo-EM reconstruction of Ad2 [3] is shown in Fig. 1 (see color insert) with modeled full-length fibers. Reconstructions have now been published of Ad2 at 17-Å resolution [32], Ad5 [33], Ad12 [3], Ad2 complexed with a Fab fragment from a monoclonal antibody directed against the integrin-binding region of the penton base [34], both Ad2 and Ad12 complexed with a soluble form of $\alpha\nu\beta$ 5 integrin, the internalization receptor for many Ad serotypes [3], and a fiberless Ad5 vector [33]. The capsids of these Ad serotypes appear quite similar, with only subtle differences observed in the size and flexibility of the surface protrusions of the hexon and penton base [3].

IV. Structure of the Capsid Components

A. Hexon, Polypeptide II

Crystal structures have been published for hexon of serotype Ad2 [5] and Ad5 [6], two members of subgroup C. The sequences of these hexons (967 amino acids for Ad2, 951 for Ad5) are closely related with 86% amino acid identity. Both structures show that the monomer has two eight-stranded β -barrels at the base and long loops that intertwine in the trimer to form a triangularly shaped top (Fig. 2). The high degree of interlocking observed between the monomers might explain why an adenovirus-encoded 100-kDa protein is required for trimer assembly [35]. In the trimer the six β -barrels, two from each monomer, form a ring with pseudohexagonal symmetry that allows for close packing with six neighboring capsomers in the icosahedral capsid. Regions of the electron density for the Ad2 hexon, refined to 2.9-Å resolution,

Figure 2 The crystallographic structure of the Ad5 hexon trimer [6] with one monomer shown in black (PDB ID: 1RUX [90]). (A) A side view showing the two β -barrels near the bottom of the black monomer. Note that there are several gaps in the atomic model at the top of the molecule. (B) A top view revealing the pseudohexagonal shape of the bottom of the trimer. This figure was generated with the program MOLSCRIPT [91].

were unclear and gaps were left in the atomic model. During refinement of the Ad5 hexon to 2.5-Å resolution, significant changes were made in the atomic model involving reassignment of greater than 25% of the sequence. In light of this result and the high homology between the two hexons, it has been suggested that the Ad2 atomic model should be revised [6]. The most significant change was a shift of the first 130 amino acids leaving a gap of just four residues at the N-terminus of the Ad5 structure vs an N-terminal gap of 43 residues in the initial Ad2 model. Revision of the hexon structure has cleared up several mysteries in the literature. First, a comprehensive comparison of hexon sequences from serotypes in all six human subgroups as well as bovine and mouse serotypes found seven hypervariable regions [36]. Alignment with the Ad2 hexon structure indicated that five regions were in exposed loops as expected, while two regions were buried. The Ad5 hexon structure now shows all seven hypervariable loops exposed on the top of the molecule [6]. Second, trypsin cleavage sites were identified at Arg-142 and Arg-165 in Ad2 [37] and these are now located in the exposed top of the hexon molecule [6]. Similarly a pH-dependent cleavage site for the proteolytic enzyme dispase was found somewhere between residues 135 and 150 of the Ad2 hexon [38]. In the original Ad2 hexon structure this stretch was buried and far from the top of the molecule. In the Ad5 hexon structure this region is likely exposed on the molecule, although it is in an unmodeled region of the structure [6].

The Ad5 structure places a previously buried highly acidic stretch of residues, 133–161 for Ad2, at the top of the molecule and accessible to solvent [6]. The acidic region is also found in the Ad5 hexon sequence, but not in those of Ad9, Ad12, or Ad37. In the Ad8 hexon sequence there is a longer, slightly basic insertion at this position [36]. It has been suggested that the acidic stretch may create an electrostatic repulsion between the exterior of the Ad2 or Ad5 virion and acidic cell surface proteins [39]. Others have proposed that perhaps the acidic region plays a role in tissue tropism for the subgroup C viruses [40].

B. Penton Base, Polypeptide III

In the absence of a crystal structure for the penton base, structural information on this protein comes mainly from cryo-EM reconstructions of the dodecahedron formed by Ad3 pentons [41] and intact Ad virions of various serotypes [3, 32–34]. Alignment of the known penton base sequences from subgroups A, B, C, and E shows high homology throughout the protein except for a central variable length region that contains the nearly always conserved Arg-Gly-Asp (RGD) sequence, residues 340-342 for Ad2 [4,42]. The Ad2 and Ad5 penton bases (571 residues each) have among the longest variable RGD regions [4,43,44]. The RGD sequence, utilized for interaction with cellular αv integrins [4,45], is lacking from the enteric Ad40 and Ad41 serotypes of subgroup F [46]. Presumably these two serotypes don't interact with αv integrins during viral cell entry.

Site-directed mutagenesis of the Ad2 penton base has indicated particular residues that are important for various functions including pentamerization and stable fiber-penton base interaction [47]. While recombinantly expressed Ad2 penton base is known to self-assemble into homo-pentamers, two mutations in the N-terminal portion of penton base, R254E and W119 H, and several