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Preface

Nowadays substantial time of the analytical chemists is spent in front of their
computer comprehending the data their instruments produced. A continu-
ously broadening spectrum of mathematical and statistical methods is applied
for data evaluation in analytical chemistry.

Numerical analysis of chromatograms is in the focal point of this volume,
but most of the chemometric methods described here are not specific to chro-
matography and related separation techniques.

I have been guided by the goal of giving explanation of those problems
that are cardinal in the numerical treatment of chromatograms. Thus, most
emphasis is given to peak shape analysis, signal enhancement, and resolution
enhancement to strengthen both quantitative and qualitative analyses.

This book was typeset by the author with the public-domain KIgX2¢ type-
setting package. Most figures were produced by the also public-domain gnuplot
package. I appreciate that the developers of TgX and KEIEX 2¢ packages made
these outstanding pieces of software publicly accessible. It was a delight for
me that the anonymous TgX community out there offered solutions to all the
problems I struggled with when “setting the type.”

I thank FRANCESCO DONDI for his encouragement to launch the project of
writing this book; we started to establish the outline of this volume together,
and he always followed the development of this work.

Iam greatly indebted to GEORGES GUIOCHON for his valuable comments and
help; I appreciate that during my stayings in his laboratory at the University
of Tennessee, I could spend countless hours in the fabulous Hodges Library
collecting material for this book.

My endeavor to write a book on the signal processing techniques applied in
chromatography started as a two-year project—four years ago. On one hand,
my pace let me include some very fresh developments published in this field,
therefore the reader may even benefit from this. On the other hand, I couldn'’t
agree more with the following lines of A. A. Milne:



xii Preface

The fact is this is more difficuit
than I thought,

I ought—

(Very good indeed)

I ought

To begin again

But it is easier

To stop.

(The House at Paooh Corner)

Veszprém, March, 1998 Attila Felinger



Introduction

If we believe that The Purpose of Computing is Insight, Not
Numbers, then it follows that the man who is to get the
insight must understand the computing.

...Itis sometimes suggested that the motto be revised to,
The Purpose of Computing Numbers is Not Yet in Sight.
(R. W. Hamming, Numerical Methods for Scientists and
Engineers, Dover, 1973)

Signal processing and data analysis are of increasing importance in analyti-
cal chemistry. During the past decades, chemometric techniques encountered
an enormous development. The computer-connected modern analytical in-
struments available nowadays offer an enormous, easy-access possibility to
enhance the information available from the zillions of recorded data.

Although commercial software packages offer a variety of data manipula-
tion algorithms, users often regard these software packages as black boxes.
Because vendors do not feel like supplying detailed information on how the
software packages do whatever they do, the analyst has to trust that the ma-
nipulated data are reliable. Therefore, it is essential that one realize how in-
formation beyond conventional results can be deduced from chromatograms
and other instrumental signals.

The goal of this work is to summarize what types of data and signal analysis
techniques can be applied to chromatograms, and related instrumental signals.
In this respect, not the full specttrum of chemometrics is discussed in detail
here, while some other techniques that do not really fit into the definition of
chemometrics!, but are important in chromatographic data analysis are also
addressed.

! Note that there exist several definitions for chemometrics. At birth, the following
definition was given by Wold “The art of extracting chemically relevant information
from data produced in chemical experiments is given the name of chemometrics” [1].

According to Massart [2], chemometrics is the chemical discipline that uses math-
ematical, statistical and other methods employing formal logic (i) to design or select
optimal measurement procedures and experiments, and (ii) to provide maximum rel-



2 Introduction

The different topics of data analysis and signal processing are discussed in
this book according to the following structure.

In Chapter 2, some preliminary mathematics, necessary to conceive the
fundamentals of data analysis, is summarized.

The physical-chemical background of the chromatographic process is ex-
plained in Chapter 3, by means of different models of chromatography. It is
Important to understand what the most common peak shapes and the reasons
of peak asymmetry are in order to exploit information by peak shape analysis.

Chapter 4 discusses how the analog signal supplied by the detector can be
translated into a digital signal that can be stored and processed by a computer.

Besides the physical models of chromatography, a multitude of empirical
peak shape models are available; those models, peak shape analysis, and the
characterization of peak asymmetry are the subject of Chapter 5.

In Chapter 6, the origin and characteristics of the baseline noise, as well as
different definitions for signal-to-noise ratio are discussed.

Chapter 7 enlists the methods of signal enhancement: filtering in time and
in Fourier domains are both very significant. Different techniques are com-
pared for filtering high- and low-frequency noise.

Detection of chromatographic peaks, ie. the location of peaks; determina-
tion of the precise starting point and end point of each peak must be empha-
sized especially in the case of tailing peaks. This is the topic of Chapter 8.

The simple methods of peak area determination are based on graphical
means. The discussion of the different graphical and numerical integration
strategies gives hints on using the integrator software. The precision and ac-
curacy of quantitative analysis is also addressed in Chapter 9.

The recognition of overlapping peaks, the limit resolutions (shoulder and
detectability limits) are important in order to identify fused peaks. Resolution
techniques as curve fitting or deconvolution of band broadening effects are
described in Chapter 10. Those methods can simply be used to isolate the
contribution of different phenomena to peak broadening and distortion. De-
convolution of overlapping peaks are more advanced numerical techniques to
quantify overlapping peaks. Fourier domain deconvolution, constrained itera-
tive relaxation, curve fitting, Kalman filtering and other methods are explained.

Multivariate techniques of signal processing have been rapidly developing
since the availability of diode array detectors and other hyphenated techniques.
Software packages using them can be found in many commercial instruments.
Multivariate techniques are rather useful in detecting peak homogeneity or mi-
nor impurities. In Chapter 11, factor analysis and other multivariate methods
are addressed.

Chapter 12 reveals some numerical tricks for those who are interested in
numerical errantry with Fourier transforms. Transform techniques other than

evant chemical information by analyzing chemical data.

The International Chemometrics Society offers the following definition: “Chemomet-
rics is the science of relating measurements made on a chemical system or process to
the state of the system via application of mathematical or statistical methods.”
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Fourier are also discussed in that chapter.

The application of information theory and the concept of entropy are the
subject of Chapter 13.

Quality issues are addressed in Chapter 14, with the description of the
errors of analysis. Validation of the chromatographic instrument and method
is also summarized.

The last part of the book is devoted to multicomponent chromatograms.
By the help of the statistical theory of peak overlap, the probability of having
singlets, doublets, etc. can be judged, which is very important during method
development. On the other hand, from a single chromatogram, we can estimate
the number of detectable components. These novel techniques are the subject
of Chapter 15.

Further methods for the analysis of multicomponent chromatograms—by
Fourier analysis—are described in Chapter 16. Utilizing the power spectrum
of multicomponent chromatograms—besides the number of components—the
peak shape parameters, and also the retention pattern can be determined. This
latter is very useful in determining the amount of order and disorder in the
sample,

Bibliography
[1] WoLD, S., Chemometrics; What Do We Mean with It, and What Do We Want from

It?, Chemometr. Intell. Lab. Syst. 1995, 30, 109-115.

[2] MASSART, D. L.; VANDEGINSTE, B. G. M.; DEMING, S. N.; MICHOTTE, Y.; KAUFMAN, L.
Chemometrics: a Textbook, Elsevier: Amsterdam, 1988.
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Mathematical background

There is a famous formula—perhaps the most compact and
famous of all formulas—developed by Euler from a discovery
of De Moivre: ¢i™ + 1 =0, ...It appeals equally to the
mystic, the scientist, the philosopher, the mathematician.
(Edward Kasner and James Newman, Mathematics

and the Imagination, 1940)

In this chapter, the fundamental mathematics of signal and data analysis is
considered. It is beyond the scope of this volume to give an extensive expla-
nation of the complete mathematical background of signal and data analysis.
Detailed description of the mathematical treatment can be found in mathemat-
ical and statistical textbooks!. Only a summary of the necessary mathematical
principles is addressed here.

Most analytical signals are of transient type, or they can simply be trans-
formed into a transient signal by integration or differentiation. Therefore, var-
ious aspects of probability theory are widely applied to describe peak shapes,
statistical moments are used to characterize peak asymmetry. Accordingly,
the properties of random variables and random signals, as well as the funda-
mentals of Fourier analysis are the subject of this chapter.

2.1 Random variables

The value of a random variable cannot be predicted, only a probability of the
event can be given that the random variable takes a value. To characterize a
random variable, first we have to know what values the random variable can
take. Furthermore, we have to know how often a given value is taken by the

1See, for instance, references [1-5] for excellent introduction into probability theory.
Detailed explanation of the Fourier methods can be found in [6-9]. Random processes
and stochastic methods are addressed, for example, in [10-13].



6 Mathematical background

random variable. Distribution functions describe what the probability of a
given value is.

P(X = a) denotes the probability that the random variable X takes the
numerical value a. The probability distribution function of X describes the
following probability

F(x)=P(X < x) (2.1)

F(x) is also known as cumulative distribution function. In order to completely
describe a random variable, we have to know its probability distribution func-
tion.

The probability that a < X < b is calculated by

P(a <X <b)=F(b)-F(a) (2.2)

Since probabilities are nonnegative numbers, if a < b the following inequality
will hold

F(a) < F(b) (2.3)

Accordingly, the distribution function of a random variable is a nondecreasing
function. Furthermore, the following limits can be established for a distribu-
tion function

O0<F(x)=<1 (2.4)

being F(—«) = 0 and F(w) = 1.

If the random variable can only take a finite number of numerical values, it
is a discrete random variable, otherwise it is a continuous random variable. A
discrete random variable is for instance the number of detectable peaks in a
multicomponent separation. The area of a given peak in repeated analyses is
a continuous random variable.

2.1.1 Discrete variables

Let us assume that a discrete random variable X can take the xi,x2,...,Xn
values with the probability of p1, p2,..., pn, Le.

P(X=xi)=pi i=1,2,...,7’l (2.5)
The distribution function of a discrete variabie is defined as
Fix)=P(X<x)= > p; (2.6)
XisX

From the above equation follows that the total probability for all the »n discrete
values is unity

n
Spi=1 2.7)
i=1

The distribution function of a discrete random variable is a step function. It

is constant for any interval not containing an x;, and the height of the step at
x; is p;. Figure 2.1 shows the distribution function and the frequency function
of a discrete variable.
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FIGURE 2.1 Distribution function (upper) and frequency function (lower)
of a discrete variable.

2.1.2 Continuous variables

Arandom variable is continuous if the probability distribution can be described
by a function f(x) which is everywhere continuous. The probability of the
event that the random variable takes a value within the infinitesimal narrow
interval (x,x + dx) is f(x)dx. f(x) is the frequency function, or probability
density function of the random variable.

The probability that the random variable X takes a valuebetweena < X < b

is )
P(asXsb)=F(b)—F(a)=J flx)dx (2.8)

a

From the above equation it follows that
b
F(b) = I F(x)dx (2.9)

From which by differentiation we get

dF(x)
dx

f(x) (2.10)
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FIGURE 2.2 Distribution function (upper) and frequency function (lower)
of the normal distribution.

The probability density function is the derivative of the cumulative distribution

function. The probability P(—o < X < ), on the other hand, can be calculated
as

P(-o <X<oo)=F(oo)—F(—oc>)=J'°° flx)dx =1 (2.11)

Normal distribution

The normal distribution plays a central role in probability theory. Its proba-
bility density function is the Gaussian curve, which is the cardinal peak shape
model in chromatography. For these reasons we shall demonstrate the prop-
erties of the continuous random variables by the example of the normal dis-
tribution.

The distribution function of a normal random variable is

F(x)=%+lerfx_m

2 V2o (212



2.1 Random variables 9

By differentiating Equation 2.12, the probability density function is obtained

— )2
exp (_(x__m_)__) (2.13)

fx) =

202

1
V2o

2.1.3 Expectations

The mathematical expectation, or mean value of the random variable X is de-
noted by E{X}. For a discrete random variable X, which can take the values
X1,X2,..., Xy With the probability of p1, p2,..., pn, it is calculated as

n
E{X} = xnPn (2.14)
i=1

For a continuous random variable, the expectation is defined by the integral

o0

E{X} = J x f(x)dx (2.15)
where f(x) is the probability density function of the random variable X.

For the expected value of the normal distribution, Equation 2.15 yields
E{X}=m.

If X is arandom variable, g(X) is a random variable, too. The expectation of
g(X) is defined by the following equations for discrete and continuous random
variables, respectively

> pig(xi) (2.16)

i=1

J g9(x)f(x)dx (2.17)

E{g(X)}

I

E{g(X)}

A special expectation is the variance, for the calculation of which g(X) = (X -
E{X})? is used in Equation 2.17

D%(X) = Jw (x — E{X})? f(x)dx (2.18)

The variance can also be expressed as
D*(X) = E{X?} - (E{X})? (2.19)

The variance is often denoted by o2. The square root of the variance is D{X},
or o, which is known as standard deviation.

When a random variable X is the linear combination of several random
variables

X = ale + aZXZ + o0+ a,an (2-20)



