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Stéphane Berghmans, John P. Morris IV, John P. Kanki, and A. Thomas Look

I. Introduction: Benefits of Zebrafish Sperm Cryopreservation 645
II. Critical Variables Affecting Sperm Cryopreservation 646
III. Zebrafish Sperm Cryopreservation with N,N-Dimethylacetamide 650
IV. Future Directions 656

References 658

Index 661

Volumes in Series 679

xiv Contents



CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors’ contributions begin.

Violaine Alunni (505), Institut de Génétique et de Biologie Moléculaire et Cellulaire,
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UMR 7104 CNRS/INSERM/ULP, BP 10142, CU de Strasbourg, 67404 Illkirch
Cedex, France

Xiaobing Tian (137), Department of Biochemistry & Molecular Pharmacology,
Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Peter J. Tonellato (255), Human & Molecular Genetics Center, Medical College of
Wisconsin, Milwaukee, Wisconsin 53226

Nikolaus Trede (305), Division of Hematology/Oncology, Children’s Hospital,
Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts
02115

Bill Trevarrow (565, 599), Institute of Neuroscience, University of Oregon, Eugene,
Oregon 97403

Karen A. Urtishak (137), Department of Microbiology & Immunology and Kimmel
Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

xx Contributors



Eric Wickstrom (137), Department of Biochemistry & Molecular Pharmacology,
Department of Microbiology & Immunology, and Kimmel Cancer Center, Thomas
Jefferson University, Philadelphia, Pennsylvania 19107

Erno Wienholds (69), Hubrecht Laboratory, Center for Biomedical Genetics,
Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

L. C. Williams (521), Molecular Genetics and Development Group, School of
Biological Sciences, University of Auckland, 1001 Auckland, New Zealand

JoachimWittbrodt (173, 381), Developmental Biology Program, European Molecular
Biology Laboratory (EMBL), D-69012, Germany

Donald A. Yergeau (475), Department of Biology, Northeastern University, Boston,
Massachusetts 02115

Yi Zhou (273, 305, 459), Division of Hematology/Oncology, Children’s Hospital,
Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts
02115

Leonard I. Zon (305), Howard Hughes Medical Institute, Division of Hematology/
Oncology, Children’s Hospital, Dana-Farber Cancer Institute, and Harvard Medical
School, Boston, Massachusetts 02115

Contributors xxi



This Page Intentionally Left Blank



PREFACE

Monte, Len, and I welcome you to two new volumes ofMethods in Cell Biology

devoted to The Zebrafish: Cellular and Developmental Biology and Genetics,

Genomics, and Informatics. In the five years since publication of the first pair of

volumes, The Zebrafish: Biology (Vol. 59) and The Zebrafish: Genetics and

Genomics (Vol. 60), revolutionary advances in techniques have greatly increased

the versatility of this system. At the Fifth Conference on Zebrafish Development

and Genetics, held at the University of Wisconsin in 2003, it was clear that many

new and compelling methods were maturing and justified the creation of the

present volumes. The zebrafish community responded enthusiastically to our

request for contributions, and we thank them for their tremendous efforts.

The new volumes present the post-2000 advances in molecular, cellular, and

embryological techniques (Vol. 76) and in genetic, genomic, and bioinformatic

methods (Vol. 77) for the zebrafish, Danio rerio. The latter volume also contains a

section devoted to critical infrastructure issues. Overlap with the prior volumes

has been minimized intentionally.

The first volume, Cellular and Developmental Biology, is divided into three

sections: Cell Biology, Developmental and Neural Biology, and Disease Models.

The first section focuses on microscopy and cell culture methodologies. New

microscopic modalities and fluorescent reporters are described, the cell cycle and

lipid metabolism in embryos are discussed, apoptosis assays are outlined, and the

isolation and culture of stem cells are presented. The second section covers

development of the nervous system, techniques for analysis of behavior and for

screening for behavioral mutants, and methods applicable to the study of major

organ systems. The volume concludes with a section on use of the zebrafish as a

model for several diseases.

The second volume, Genetics, Genomics, and Informatics, contains five sections:

Forward and Reverse Genetics, The Zebrafish Genome and Mapping Technol-

ogies, Transgenesis, Informatics and Comparative Genomics, and Infrastructure.

In the first, forward-genetic (insertional mutagenesis, maternal-effects screening),

reverse-genetic (antisense morpholino oligonucleotide and peptide nucleic acid

gene knockdown strategies, photoactivation of caged mRNAs), and hybrid

(target-selected screening for ENU-induced point mutations) technologies are

described. Genetic applications of transposon-mediated transgenesis of zebrafish

are presented, and the status of the genetics and genomics of Medaka, the

honorary zebrafish, is updated. Section 2 covers the zebrafish genome project, the

cytogenetics of zebrafish chromosomes, several methods for mapping zebrafish

genes and mutations, and the recovery of mutated genes via positional cloning.
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The third section presents multiple methods for transgenesis in zebrafish and

describes the application of nuclear transfer for cloning of zebrafish. Section 4

describes bioinformatic analysis of the zebrafish genome and of microarray data,

and emphasizes the importance of comparative analysis of genomes in gene

discovery and in the elucidation of gene regulatory elements. The final section

provides important, but difficult to find, information on small- and large-scale

infrastructure available to the zebrafish biologist.

The attentive reader will have noticed that this Preface was drafted by the first

editor, Bill Detrich, while he (I) was at sea leading the sub-Antarctic ICEFISH

Cruise (International Collaborative Expedition to collect and study Fish

Indigenous to Sub-antarctic Habitats; visit www.icefish.neu.edu). Wearing my

second biological hat, I study the adaptational biology of Antarctic fish and use

them as a system for comparative discovery of erythropoietic genes. Antarctic

fish embryos generally hatch after six months of development, and they reach

sexual maturity only after several years. Imagine attempting genetic studies on

these organisms! My point is that the zebrafish system and its many advantages

greatly inform my research on Antarctic fish, while at the same time I can move

genes discovered by study of the naturally evolved, but very unusual, phenotypes

of Antarctic fish into the zebrafish for functional analysis. We the editors

emphasize that comparative strategies applied to multiple organisms, including

the diverse fish taxa, are destined to play an increasing role in our understanding

of vertebrate development.

We wish to express our gratitude to the series editors, Leslie Wilson and Paul

Matsudaira, and the staff of Elsevier/Academic Press, especially Kristi Savino, for

their diligent help, great patience, and strong encouragement as we developed

these volumes.

H. William Detrich, III

Monte Westerfield

Leonard I. Zon
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This volume is dedicated to Jose Campos-Ortega and Nigel Holder,
departed colleagues whose wisdom and friendship will be missed

by the zebra fish community
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I. Introduction

Large-scale chemical mutagenesis screens have resulted in the isolation of

thousands of mutations in hundreds of genes that aVect zebrafish embryonic

development (Driever et al., 1996; HaVter et al., 1996). These screens have used

an alkylating agent, ethyl nitrosourea (ENU), to induce mutations, primarily by

causing base pair substitutions. Approximately 100 of the genes disrupted by these

mutations have been isolated till March 2004, primarily through a candidate gene

approach and less frequently by pure positional cloning (Postlethwait and Talbot,

1997), and many other chapters in this volume are devoted to describing this.

However, positional cloning remains arduous.
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Insertional mutagenesis is an alternative to chemical mutagenesis in which

exogenous DNA is used as the mutagen. Although insertional mutagenesis is

usually less eYcient than ENU, insertions serve as a molecular tag to aid in the

isolation of the mutated genes. Several methods can be employed to insert DNA

into the zebrafish genome, including DNA microinjection (Culp et al., 1991;

Stuart et al., 1988), or microinjection of DNA aided by retroviral integrases (Ivics

et al., 1993) or a transposable element’s transposase (Davidson et al., 2003;

Kawakami et al., 2000; Raz et al., 1997); reviews and updates on these methods

can be found in other chapters in this volume. However, to date, by far the most

eYcient way to make a large number of insertions in the zebrafish genome is to use

a pseudotyped retrovirus.

Retroviruses have an RNA genome and, on infection of a cell, reverse tran-

scribe their genome to a DNA molecule, the provirus. The provirus integrates into

a host cell chromosome, where it remains stable and is thus inherited by all the

descendants of that cell. Replication-defective retroviral vectors, unlike nondefec-

tive retroviruses, are infectious agents that can integrate into host DNA, but

whose genetic material lacks the coding sequences for the proteins required to

make progeny virions. Retroviral vectors are made in split-genome packaging

cells, in which the genome of the retroviral vector is expressed from one integrated

set of viral sequences, whereas the retroviral genes required for packaging, infec-

tion, reverse transcription, and integration are expressed from another locus. The

most widely used retroviral vectors have been derived from a murine retrovirus,

the Moloney murine leukemia virus (MoMLV), resulting in replication-defective

viruses that can be produced at very high titers. Initially, these retroviruses were

only capable of infecting mammalian cells, but their host range can be expanded

as described later.

Retroviruses have a host range, or tropism, which is frequently determined

by their envelope protein, which recognizes and binds to some specific compo-

nent, usually a protein, on the surface of the cell to be infected. Cell types that

have an appropriate receptor can be infected by the retrovirus, whereas those

that do not are refractory to infection. The host range of a virus can be changed

by pseudotyping, a process in which virions acquire the genome and core proteins

of one virus but the envelope protein of another. One way to enable this

situation in split-genome packaging cells is to simply substitute the gene encoding

the alternative envelope protein for the usual one. Although there is some

specificity as to which envelope proteins can be pseudotyped with which viral

genomes, one such combination that is particularly useful allows the MoMLV

viral genomes and core proteins to be pseudotyped with the envelope glyco-

protein (G-protein) of the vesicular stomatitis virus (VSV; Weiss et al., 1974).

VSV is a rhabdovirus that is apparently pantropic; it can infect cells of species

as diverse as insects and mammals (Wagner, 1972). MoMLV vectors pseudotyped

with VSV-G possess two qualities essential for their use in high-frequency germ-

line transgenesis in zebrafish: the extended host range allows for the infection of
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fish cells, and the VSV-G-pseudotyped virions are unusually stable, allowing

viruses to be concentrated 1000-fold by centrifugation (Burns et al., 1993).

When pseudotyped retroviral vectors are injected into zebrafish blastulae, many

of the cells become independently infected, producing a mosaic organism in which

diVerent cells harbor proviral insertions at diVerent chromosomal sites. When cells

destined to give rise to the germ-line are infected, some proportion of the progeny

of the injected fish will contain one or more insertions (Lin et al., 1994). When a

suYciently high-titer virus is used, one can infect a very high proportion of the

germline of injected fish (Gaiano et al., 1996a). With very high-titer virus, on

average, about 25–30 independent insertions can be inherited from a single found-

er, though any given insertion will only be present in about 3–20% of the oVspring
(Chen et al., 2002; A. Amsterdam, unpublished data). However, the progeny are

nonmosaic for the insertions and transmits them in a Mendelian fashion to 50% of

then progeny. Furthermore, because more than one virus can infect a single cell,

some germ cells contain multiple insertions, and thus oVspring can be born with as

many as 10–15 independently segregating insertions (Amsterdam et al., 1999;

Chen et al., 2002; Gaiano et al., 1996a). This remarkable transgenesis rate has

made it possible to conduct an insertional mutagenesis screen, which has allowed

isolation of hundreds of insertional mutants and rapid cloning of the mutated

genes (Amsterdam et al., 1999, 2004a; Golling et al., 2002).

II. Mutagenesis

To establish the frequency of mutagenesis with retroviral vectors in the zeb-

rafish, we carried out a pilot screen in which we inbred more than 500 individual

proviral insertions, one at a time, and screened for recessive phenotypes that could

be visually scored in the first 5 days of embryonic development. We found six

recessive embryonic lethal mutations, a frequency of about one mutation per

80–100 insertions (Allende et al., 1996; Becker et al., 1998; Gaiano et al., 1996b;

Young et al., 2002). We also found one viable dominant insertional mutation

(Kawakami et al., 2000). Although this rate was too ineYcient to conduct a large-

scale screen by breeding one insertion at a time, by using the ability of founders to

transmit multiple insertions to individual F1 progeny an average of about 12

inserts can be screened per family, allowing the recovery of about one insertional

mutation per seven families screened (Amsterdam et al., 1999; Amsterdam, un-

published data). This is only 7- to 10-fold lower than the frequency observed in

analogously performed (three-generation diploid) ENU screens (Driever et al.,

1996; HaVter et al., 1996; Mullins et al., 1994; Solnica-Krezel et al., 1994). The

strategy to produce, select, and breed the fish for such an insertional mutagenesis

screen is outlined in this section.

1. Retroviral-Mediated Insertional Mutagenesis in Zebrafish 5



A. Making Founder Fish That Transmit Proviral Inserts at
High Frequency to Their F1 Progeny

Founders are produced by injecting late-blastula-stage (512–2000 cells) embry-

os. Virus must be injected into the space between the cells, and blastula-stage

embryos ideally accommodate the injected fluid. At this time, there are four

primordial germ cells, and these cells divide two or three times over the course of

the infection (Yoon et al., 1997). Thus, the injected embryos grow up to be founder

fish (F0) with mosaic germ lines. With very good viral stocks, individual founders

can contain 25–30 diVerent insertions in their germ lines, with any given insertion

present in 3–20% of the gametes (Amsterdam, unpublished data; Chen et al., 2002).

Individual F1 fish can inherit up to 10 diVerent insertions, and when founders are

bred to each other F1 fish can be found with up to 20 diVerent insertions. F1 fish

are not mosaic and transmit all their insertions in a Mendelian fashion.

Because the eYciency of the screen relies on the generation of F1 fish with a high

number of inserts, it is essential to perform quality control assays on the viral

stocks and founder injections before raising and breeding the founders. For every

batch of injected embryos, several embryos are sacrificed for DNA preparation at

48 h postinjection and subjected to quantitative Southern analysis or real-time

polymerase chain reaction (PCR) to determine the average number of insertions

per cell in the entire infected embryo. This number is called the embryo assay value

(EAV; Amsterdam et al., 1999). In our experience, if the average EAV is above 15

and does not vary much among the individual analyzed embryos, the rest of the

founders from that injection session transmit inserts at the rates mentioned

previously. Batches with average EAV below 15 transmit somewhat fewer inserts,

and usually have greater founder-to-founder variation, and those with average

EAV below 5 are quite inconsistent in transmitting multiple inserts to their

progeny.

B. Breeding and Screening for Mutations

The breeding scheme for a diploid F3 insertional mutagenesis screen is outlined

in Fig. 1. In essence, the goal is to create families with a large number of indepen-

dent insertions that can be screened simultaneously. This is achieved by selecting

and breeding F1 fish that inherit the most inserts from the mosaic founders.

Founder fish can be bred to each other or outcrossed to nontransgenic fish. For

reasons that remain unclear, a majority of injected fish grow up to be males; thus, it

is most eYcient to outcross the best male F0 fish (those from batches with the

highest EAV) and inbreed the rest. F1 families of 30 fish are raised, and at 6 weeks

of age the fish are fin clipped for DNA preparation and analysis by quantitative

Southern or real-time PCR to determine which fish harbor the most insertions.

Keeping up to the three top fish per family with at least five inserts strikes a balance

between throwing away too many inserts (if fewer fish were kept) and keeping too

many ‘repeat inserts’ (i.e., the same insert inherited by sibling F1 fish). The repeat

insert rate is quite low if only three fish are kept, as the average mosaicism
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(i.e., proportion of F1 inheriting a given insert) is about 8%. In our screen, only 3%

of the recovered mutations have been caused by reisolating such repeat inserts.

The selected multiinsert F1 fish are pooled together and eventually bred to make

F2 families that harbor at least 10 diVerent independently segregating inserts, and

in which each insert is present in half the fish. Multiple sibcrosses are then

conducted between the F2 fish; because half the fish have any given insert,

including one causing a mutation, should be homozygosed in one quarter of the

Fig. 1 Insertional mutagenesis breeding scheme.
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crosses. On average, six crosses will homozygose 83% of the inserts in the family

and ten crosses will screen 95% of them. Every F3 clutch from each F2 family is

screened for a phenotype in one quarter of the embryos. In our screen, embryos

were scored for any morphological defect visible in a dissecting microscope at 1, 2,

and 5 days post fertilization (dpf ), as well as for defects in motility and touch

response. One aid to screening is that more than 98% of these mutants fail to

inflate their swim bladders by 5 dpf; because this is such a highly visible structure,

a quick screen for clutches in which one quarter of the embryos fail to inflate their

swim bladder often signals the presence of a mutation.

III. Cloning the Mutated Genes

A. Identifying the Mutagenic Insert

The great advantage to using insertional mutagenesis over chemical mutagene-

sis is that the mutagenic insertion provides a molecular tag that can be used to

identify the disrupted gene. However, because the mutagenesis screen described

uses multiple insertions to increase the rate of recovery of mutations, the first step

after identifying a mutation is to determine which (if any) insertion appears to be

responsible for the mutation. DNA is prepared from the tails of the parents of all

of the crosses from the F2 family, and, using Southern analysis to distinguish the

diVerent insertions, one looks for an insertion that segregates with the phenotype

(Fig. 2A). A linked insert (represented by a band of a specific size) will be shared

by both parents of every cross that had the phenotype and be in only one or

neither of the parents of every cross that lacked the phenotype. In addition, DNA

prepared from the mutant embryos is subjected to the same analysis; an unlinked

insert would be in only three quarters of the mutant embryos, but a linked insert

must be present in all of them (Fig. 2B).

It is possible that no insert appears linked to the phenotype; in our screen, we

found that about one quarter of the mutants recovered were not linked to a

detectable insertion. In addition, it is important to note that the identification of

an insertion initially linked to the phenotype is not proof that the identified insert

is tightly linked to the mutation; it is merely a way to either identify the insertion

that is a candidate for causing the mutation or to conclude that the mutation is not

linked to any insert if no insert meets the criteria. This is because recombination

rates in the male germline are much lower than in the female germline (Johnson,

personal communication; Amsterdam, unpublished data); thus, an insert inherited

from an F1 male that is merely on the same chromosome as a noninsertional

mutation will often meet the previously mentioned criteria. The mutation and the

insert will not have segregated in the F2 generation, and because the mutant

F3 embryos must inherit the mutant locus from both parents, even if there is

recombination in the female germ line all the mutant embryos will receive the

insert from their father. Thus, additional linkage experiments that can distinguish
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heterozygosity from homozygosity for the insert are required, but it is not possible

to perform these until genomic DNA flanking the candidate insert is cloned.

Sometimes more than one insert meets the previously mentioned criteria, and

thus more than one are candidates to have caused the mutant phenotype. This can

be for one of several reasons. First, if more than one insert in the family is on the

same chromosome, for the reasons described previously they might fail to segre-

gate from each other. Often this can be resolved by outcrossing a female carrier

and repeating the analysis in the next generation, either by further random sib

crosses followed by molecular analysis or by using Southern analysis first to

identify fish with one or the other insertion and then performing test crosses.

Another possibility is that multiple copies of the virus have integrated in tandem,

which happens about 3–4% of the time. Usually when this happens, there is a

higher-intensity provirus-sized band (if the enzyme used cuts the insert only once)

in addition to the true junction fragment band. Finally, there might be too many

inserts in the family to accurately distinguish all the inserts (more than 15–20), and

Fig. 2 Identification of the mutagenic insert. (A) Southern analysis of DNA prepared from tail fins of

F2 fish: the arrow indicates an insert that is homozygosed in phenotypic pairs but not any of the wild-type

pairs. (B) Southern analysis ofDNA from individualmutant embryos from the second phenotypic pair in

(A) the arrow indicates that the same insert is also present in all the mutant embryos.
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