

Usability Engineering

This page intentionally left blank

Usability Engineering

JAKOB NIELSEN

SunSoft
2550 Garcia Avenue
Mountain View, California

~ .
O F £ S S \ O ~

AP PROFESSIONAL

Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper. @

Copyright © 1993 by Academic Press, Inc.
All rights reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means, e lectronic
or mechanical , including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

All brand names and product names mentioned in this book
are trademarks or registered trademarks of their respective companies.

AP P R O F E S S I O N A L
9 5 5 Massachusetts Avenue, Cambridge, MA 0 2 1 3 9

An Imprint of ACADEMIC P R E S S , INC.
A Division of HARCOURT B R A C E & COMPANY

United Kingdom Edition published by
A C A D E M I C PRESS LIMITED
2 4 - 2 8 Oval Road, London NW1 7 D X

ISBN 0 - 1 2 - 5 1 8 4 0 6 - 9

Printed in the United States of America
9 4 9 5 9 6 9 7 B B 9 8 7 6 5 4 3 2 1

Table of Contents

Preface ix
Audience ix
Teaching Usability Engineering xi
Acknowledgments xiii

Chapter 1 Executive Summary 1
1.1 Cost Savings 2
1.2 Usability Now! 8
1.3 Usability Slogans 10
1.4 Discount Usability Engineering 17
1.5 Recipe For Action 21

Chapter 2 What Is Usability? 23
2.1 Usability and Other Considerations 24
2.2 Definition of Usability 26
2.3 Example: Measuring the Usability of

Icons 37
2.4 Usability Trade-Offs 41
2.5 Categories of Users and

Individual User Differences 43

ν

U s a b i l i t y E n g i n e e r i n g

C h a pt e r 3 Generations of User Interfaces 49
3.1 Batch Systems 51
3.2 Line-Oriented Interfaces 52
3.3 Full-Screen Interfaces 54
3.4 Graphical User Interfaces 57
3.5 Next-Generation Interfaces 62
3.6 Long-Term Trends in Usability 67

Chapter 4 The Usability Engineering Lifecycle 71
4.1 Know the User 73
4.2 Competitive Analysis 78
4.3 Goal Setting 79
4.4 Parallel Design 85
4.5 Participatory Design 88
4.6 Coordinating the Total Interface 90
4.7 Guidelines and Heuristic Evaluation 91
4.8 Prototyping 93
4.9 Interface Evaluation 102
4.10 Iterative Design 105
4.11 Follow-Up Studies of Installed Systems 109
4.12 Meta-Methods 111
4.13 Prioritizing Usability Activities 112
4.14 Be Prepared 113

C h a p t e r s Usability Heuristics 115
5.1 Simple and Natural Dialogue 115
5.2 Speak the Users' Language 123
5.3 Minimize User Memory Load 129
5.4 Consistency 132
5.5 Feedback 134
5.6 Clearly Marked Exits 138
5.7 Shortcuts 139
5.8 Good Error Messages 142
5.9 Prevent Errors 145
5.10 Help and Documentation 148
5.11 Heuristic Evaluation 155

vi

T a b l e o f C o n t e n t s

Chapter 6 Usability Testing 165
6.1 Test Goals and Test Plans 170
6.2 Getting Test Users 175
6.3 Choosing Experimenters 179
6.4 Ethical Aspects of Tests with Human

Subjects 181
6.5 Test Tasks 185
6.6 Stages of a Test 187
6.7 Performance Measurement 192
6.8 Thinking Aloud 195
6.9 Usability Laboratories 200

Chapter 7 Usability Assessment Methods beyond
Testing 207

7.1 Observation 207
7.2 Questionnaires and Interviews 209
7.3 Focus Groups 214
7.4 Logging Actual Use 217
7.5 User Feedback 221
7.6 Choosing Usability Methods 223

Chapter 8 Interface Standards 227
8.1 National, International and Vendor

Standards 231
8.2 Producing Usable In-House Standards 233

Chapter 9 International User Interfaces 237
9.1 International Graphical Interfaces 239
9.2 International Usability Engineering 242
9.3 Guidelines for Internationalization 247
9.4 Resource Separation 251
9.5 Multilocale Interfaces 253

vii

U s a b i l i t y E n g i n e e r i n g

Chapter 10 Future Developments 255
10.1 Theoretical Solutions 256
10.2 Technological Solutions 260
10.3 CAUSE Tools: Computer-Aided Usability

Engineering 264
10.4 Technology Transfer 265

Appendix A

Appendix Β

Exercises 269

Bibliography 283
B.l Conference Proceedings 284
B.2 Journals 286
B.3 Introductions and Textbooks 290
B.4 Handbook 291
B.5 Reprint Collections 292
B.6 Important Monographs and Collections of

Original Papers 294
B.7 Guidelines 300
B.8 Videotapes 302
B.9 Other Bibliographies 304
B.10 References 306

Author Index 341

Subject Index 351

viii

Preface

Software developed in recent years has been devoting an average
of 48% of the code to the user interface [Myers and Rosson 1992]. It
would thus seem justified to allocate a reasonable proportion of the
effort in software development projects to ensuring the usability of
these user interfaces. This book tells you what to do if you decide
to improve usability.

The main goal of the book is to provide concrete advice and
methods that can be systematically employed to ensure a high
degree of usability in the final user interface. To arrive at the perfect
user interface, one also needs genius, a stroke of inspiration, and
plain old luck. Even the most gifted designers, however, would be
pressing their luck too far if they were to ignore systematic usability
engineering methods.

Audience

The book has a very wide intended audience. First of all, it is natu-
rally intended for the people who actually design and develop
computer systems and user interfaces since these individuals have
the ultimate power to improve usability. The book is crammed
with practical advice for including usability considerations in the

ix

U s a b i l i t y E n g i n e e r i n g

software engineering process, and developers and project
managers should read through the entire book. The book is also
intended for people who design documentation, help systems, and
training courses, since these are elements of the "total user inter-
face" just as much as the screen designs. This book is not intended
to teach technical writing as such, but it can help writers produce
support materials that users will find easier to use.

Furthermore, large parts of the book should be helpful to the users
themselves and to computer support managers who need to deter-
mine which computer systems and software to recommend to their
users. Even though it is fairly rare for customer organizations to
perform their own usability testing, there is no reason why a large
organization should not use some of the techniques in Chapter 6,
Usability Testing, to compare software packages and whole
systems before deciding on what to buy. Smaller organizations and
individual users can use the definitions in Chapter 2, What Is
Usability?, and the usability principles in Chapter 5, Usability
Heuristics, as a checklist to consider whether an interface seems
usable before buying it. Multinational corporations and other inter-
national organizations should benefit from Chapter 9, International
User Interfaces, when planning the requirements for their informa-
tion systems. Finally, user organizations that contract out for soft-
ware development can use Chapter 4, The Usability Engineering
Lifecycle, and Chapter 8, Interface Standards, to help set require-
ments that will ensure the usability of the product they will eventu-
ally receive from their vendor.

The executive summary in Chapter 1 is intended to help those
readers who may not have time to read the entire book. It is espe-
cially intended for managers who are considering whether their
companies are devoting sufficient effort to usability and what
concrete steps they can request to ensure improved usability of
their systems. It should be read by all readers, however, as it is not
just a summary; it also addresses several topics that are not covered
in the rest of the book, such as the cost/benefit trade-offs of taking
human factors seriously

χ

P r e f a c e

Most of the examples in the book come from user interfaces to
computer systems. The methods can be used for the development
of interfaces to any kind of interactive system, including most
consumer electronics products, and they are even useful for the
development of certain information-intensive types of noninterac-
tive products such as computer printouts, time tables, and driving
directions. For example, van Nes and van Itegem [1990] describe
the use of a logging method (see also page 216 ff.) in a usability
study of an advanced car radio with 37 functions. For half a year,
four drivers had every use of practically all of these functions from
their new car radio automatically recorded. The results showed
that some of the novel features went unused and that others were
used differently than the designers had intended. A follow-up user
interview revealed that the users still had not understood some
features after half a year of use. One user complained that the auto-
search tuning mechanism skipped some radio stations, whereas in
fact it operated at three successive sensitivity levels and would
pick up the missing stations at the second or third scan.

Any object, product, system, or service that will be used by
humans has the potential for usability problems and should be
subjected to some form of usability engineering. Human-computer
interaction serves as the main focus of this book because it is the
author's special area of expertise and because the potential for
usability problems seems to be especially severe in computers, due
to their ability to implement complex features and intricate interac-
tions. For other kinds of interfaces, slight modifications may have
to be made, but the main principles in this book should still hold.
For example, questionnaires and user testing have been applied to
improve the usability of railroad cars [McCrobie 1989].

Teaching Usability Engineering

Several universities have developed both traditional courses and
continuing education efforts in various aspects of human-
computer interaction [Baecker 1989; Carey 1989; John et al. 1992;
Mantei 1989; Mantei et al 1991; Preece and Keller 1990,1991; Strong

xi

U s a b i l i t y E n g i n e e r i n g

1989; van der Veer and White 1990]. The Association for
Computing Machinery's Special Interest Group on Computer-
Human Interaction (ACM SIGCHI) has even developed a recom-
mended curriculum for the teaching of human-computer interac-
tion [ACM SIGCHI 1992]. Typical topics covered in such courses
include theoretical approaches to human-computer interaction, the
implementation of user interfaces, and the actual design of user
interfaces. The latter is often taught through exercises [Nielsen et al.
1992; Winograd 1990]. In a survey of skills needed by usability
practitioners [Dayton et al. 1993], the four skills rated as having an
importance of more than 9.0 on a 1-10 scale were oral presentation,
dialogue design, task analysis, and usability evaluation. The pres-
ence of presentation skills at the top of the list indicates that no
usability project is conducted in isolation: to be successful, it needs
to impact a larger development team.

Usability engineering as such also seems to be taught more these
days, either as part of a general HCl (human-computer interaction)
course or as a course in its own right [Nielsen and Molich 1989;
Perlman 1988, 1990]. This is especially true of courses taught by
corporate training departments or offered as continuing education
for software engineers.

My main advice for the teaching of usability engineering would be
to base the course firmly in the laboratory. Even though there is a
substantial amount of theory and principles that can be taught in
the auditorium, the most important aspects of design and evalua-
tion require a hands-on approach. Certainly, a required part of any
usability engineering course should be to have the students
conduct a user test with a small number of real users. Not only is
this a good way to teach proper evaluation methodology, but more
important, it is the only way to achieve the required revolutionary
change in student attitudes. Most professional programmers and
computer science students gain profound insights the first time
they actually sit down with test users and observe them struggle
with supposedly "easy" software. This is especially true if the soft-
ware was designed by the programmers or students themselves!

xii

P r e f a c e

Appendix A lists several practical exercises touching upon impor-
tant aspects of usability engineering. The way these exercises are
described is mostly intended for self-study readers, but they can
easily be expanded into more elaborate assignments for class use.

Acknowledgments

Many colleagues graciously answered questions about specific
issues, provided comments on the treatment of their special inter-
ests, or even read through the entire manuscript. For this help, I
would like to thank Jeff Abbott (Tivoli Systems), David Ackley
(Bellcore), Alfred V. Aho (Bellcore), Gregory H. Anderson
(Anderson Financial Systems), Mary M. Anthony (Tivoli Systems),
Sonia D. Bot (Bell-Northern Research, Canada), Andreas Buja
(Bellcore), Mike Coble (TRIPOS Associates), Bill Curtis (Software
Engineering Institute), Tom Dayton (Bellcore), Susan T. Dumais
(Bellcore), Lawson J. Dumbeck (Western Washington University),
Tom Emerson (Symantec Corporation), Peter W. Foltz (University
of Colorado), Ellen Francik (Pacific Bell), George Furnas (Bellcore),
Marc Fusco (Bellcore), Thorn Gillespie (University of California,
Berkeley), Michael Good (Digital Equipment Corporation), Peter
Henriksen (Microsoft), Hiroshi Ishii (NTT Human Interface Labo-
ratories, Japan), Robert E. Jackson (Space Telescope Science Insti-
tute), Janice James (American Airlines), Jeff Johnson (Hewlett-
Packard Laboratories), Peter R. Jones (Symantec Corporation),
Anker Helms j0rgensen (Copenhagen University, Denmark),
Hannah Kain (Citibag), Alistair Kilgour (Heriot-Watt University,
U.K.), Thomas K. Landauer (Bellcore), Jonathan Levy (Bellcore),
Robert L. Mack (IBM T. J. Watson Research Center), Miles Macleod
(Hatfield Polytechnic, U.K.), Deborah J. Mayhew (Deborah J.
Mayhew & Associates), Rolf Molich (Baltica Insurance, Denmark),
Michael Muller (U S WEST), Robert M. Mulligan (AT&T Bell Labo-
ratories), Gerhard Nielsen (Denmark's Radio), Randy Pausch
(University of Virginia), Gary Perlman (Ohio State University),
Steven Poltrock (Boeing Computer Services), Dan Rosenberg
(Borland International), Kjeld Schmidt (Riso National Laboratory,
Denmark), David Schnepper (Borland International), Tom Semple

xiii

U s a b i l i t y E n g i n e e r i n g

(Symantec Corporation), Brian Shackel (Loughborough University
of Technology, U.K.), Ben Shneiderman (University of Maryland),
Scott Stornetta (Bellcore), Kurt Sussman (Symantec Corporation),
Désirée Sy (Information Design Solutions), Michael Tauber
(University of Paderborn, Germany), Bruce Tognazzini (SunSoft),
Hirotada Ueda (Hitachi Central Research Laboratory and
FRIEND21 Research Center, Japan), Gerrit van der Veer (Free
University of Amsterdam, The Netherlands), Floris L. van Nes
(Institute for Perception Research/Philips Research Laboratories,
The Netherlands), Robert Virzi (GTE Laboratories), Christopher A.
White (GTech Corporation), Richard Wolf (Lotus Development
Corporation), and Peter Wright (University of York, U.K.).

The resulting book is solely the responsibility of the author, and the
people mentioned above should not be held responsible for the
way I have interpreted their comments and advice. Most of this
book was written while I was on the applied research staff of
Bellcore but it should not be taken as necessarily representing any
official views or policies of Bellcore.

This printing of the book has been updated with a number of liter-
ature references and comments on developments since the book
was first published. Among other things, I added the new synergy
review method, which I invented just a few weeks after sending in
the final copy for the first printing. Mostly, the book is unchanged,
though, since the basics of usability engineering remain fairly
constant and do not vary from year to year.

Jakob Nielsen
Mountain View, California

April 1994

xiv

Chapter 1 Executive Summary

Have you ever seen one of the people who will be users of your
current project?1 Have you talked to such a user? Have you visited
the users' work environment and observed what their tasks are,
how they approach these tasks, and what pragmatic circumstances
they have to cope with? Such simple user-centered activities form
the basis of usability engineering. More advanced methods exist
and are covered later in this book, but just a simple field trip to
observe users in their own environment working on real-world
tasks can often provide a wealth of usability insights.

In one example, three one-day visits to branch offices of a medium-
sized insurance company produced a list of 130 usability problems
[Nielsen 1990b]. The system design was sound, and most of the
problems were simple enough to fix once they were known (but, of
course, they would not have been known if it had not been for the
field study). Many of the 130 items were serious problems only for
novice users. However, even very experienced users were esti-
mated to waste at least 10 minutes every day because of usability

1. Note that you have to talk to the individuals who will be using the system.
Talking to the users' manager or vice president for data processing does not
count since these people are likely to have a completely different under-
standing of the job than the actual users.

1

U s a b i l i t y E n g i n e e r i n g

problems, costing the company large amounts of money in both
labor costs and lost sales opportunities.

The staff was often interrupted by telephone calls or walk-in
clients. Unfortunately, several subsystems were not designed for
interruptions—users lost all of their work if a transaction was not
carried to completion. At one small branch, an agent stated that she
never used the damage-claims subsystem during periods where
she was the only person in the office and had to answer all calls. In
some cases, agents were observed using other agents' terminals
(and "borrowing" their passwords) to deal with interruptions
rather than quit one of the unforgiving subsystems in the middle of
a transaction.

In another case, the system allowed only one line for error
messages, so it had to give an obscure, truncated version of a long
message. The full message was available by pressing the help key,
PF1, an action the developers in the central data-processing office
felt was very natural. But users in the branch office had not made
the conceptual leap that told them the help key was doubling as an
extended-error-message key. Instead, they wasted a lot of time
trying to understand the truncated message. A better design would
have used the one line on the screen for a brief indication of the
error, followed by "PF1 for more information" or a similar
instruction.

1.1 Cost Savings

There are several well-documented examples of cost savings from
the use of usability engineering methods. For example:

• When a certain rotary dial telephone was first tested, users were
found to dial fairly slowly. A human factors expert spent one

2. There are more examples of cost savings that are less well documented. As
noted by Chapanis [1991], most case studies fail to meet the rigorous method-
ological requirements that are necessary to be absolutely sure what cost
savings can be attributed to user interface improvements since there are often
several other changes made simultaneously (e.g., [Thompson et al. 1986]).

2

E x e c u t i v e S u m m a r y

hour to come up with a simple graphical interface element which
speeded up users' dialing behavior by about 0.15 seconds per
digit, for a total annual saving of about $1,000,000 in reduced
demands on the central switches [Karlin and Klemmer 1989].

• An Australian insurance company had annual savings of
A$536,023 from redesigning its application forms to make
customer errors less likely [Fisher and Sless 1990]. The cost of the
usability project was less than A$100,000. The old forms were so
difficult to fill in that they contained an average of 7.8 errors per
form, making it necessary for company staff to spend more than
one hour per form repairing the errors.

• A major computer company saved $41,700 the first day the
system was in use by making sign-on attempts faster for a secu-
rity application. This increased usability was achieved through
iterative design at a cost of only $20,700 [Karat 1990].

• The 25 "human factors success stories" discussed by Harris
[1984] include the improvement of the Boeing 757 flight deck
interface to allow operation by two instead of three pilots, the
35% increase in alignment speed in a production line for inte-
grated circuits, the reduction from 3,000 words to 150 words of
instructions needed to operate a paging device, and even an
improvement in a drunk-driver detection system that increased
the arrest rate per police officer patrol-hour by 12%.

Unfortunately, the cost savings from increased usability are not
always directly visible to the development organization since they
may not show up until after the release of the product. As an
extreme example, Fisher and Sless [1990] report that the Australian
government can process a tax return for A$2.25 on the average. At
the same time, the average Australian resident spends 11 hours
filling in the form, and 62% of Australians have to use agents to
help do the job. If the complexity of the tax forms were reduced,
these "customers" might therefore realize huge savings in time and
advisor fees, but the government might only save a few cents in
processing costs. In the same way, making a spreadsheet easier to
learn might only save the vendor a small amount in reduced
hotline staffing levels, even though each customer might save
several hours of unnecessary work.

3

U s a b i l i t y E n g i n e e r i n g

Distributed benefits of a few hours per user are hard to measure
and do not immediately add up to hard cash [Sassone 1987]. For
example, redesigning the interface to an oscilloscope increased
user productivity by 77% during the time they were using the
scope [Bailey et al 1988], but the productivity impact on the total
workday of an engineer was much less dramatic and therefore had
less impact. The customers do save with better interfaces, though,
and these savings presumably translate into a better reputation for
the product and therefore eventually increase sales. Unfortunately,
the effect of having increased usability lead to increased sales has
mostly been documented only anecdotally.3 In several cases, the
relative usability of competing products is well known in the
industry, and computer salespersons often recommend certain soft-
ware packages on the basis of their usability.

Because much of the financial payoff from usability methods
shows up after the release of the product, some usability specialists
[Grudin et al. 1987] have advocated shifting parts of the responsi-
bility for usability engineering toward middle and upper manage-
ment levels instead of the development managers. Even the
development manager may see some immediate benefits from
usability engineering, however, in the frequent case when early
usability studies reveal that there is no need for certain contem-
plated features. If users' needs are not known, considerable devel-
opment efforts may be wasted on such features in the mistaken
belief that some users may want them. Users rarely complain that a
system can do too much (they just don't use the superfluous
features), so such over-design normally does not become suffi-
ciently visible to make the potential development savings explicitly
known. They are there nevertheless.

3. In one of the few documented cases, a usability study of the first version of
a fourth-generation database system revealed 75 usability problems. Twenty
of the most serious problems were fixed in the second release, which gener-
ated 80% higher product revenues than the first release [Wixon and Jones
1994]. This revenue increase was 66% higher than sales projections and so is
probably due to the improvements in usability since field test customers were
reported to point to the user interface as the most significant improvement in
the product.

4

