

SPECTRAL IMAGING OF THE ATMOSPHERE

Volume 82

Gordon G. Shepherd

Spectral Imaging of the Atmosphere

This is Volume 82 in the INTERNATIONAL GEOPHYSICS SERIES

A series of monographs and textbooks Edited by RENATA DMOWSKA, JAMES R. HOLTON and H. THOMAS ROSSBY

A complete list of books in this series appears at the end of this volume

Spectral Imaging of the Atmosphere

Gordon G. Shepherd

Centre for Research in Earth and Space Science, York University, Toronto, Canada

An Elsevier Science Imprint

Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo This book is printed on acid-free paper.

Copyright 2002, Elsevier Science Ltd. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Academic Press An Imprint of Elsevier Science 84 Theobald's Road, London WC1X 8RR, UK http://www.academicpress.com

Academic Press An Imprint of Elsevier Science 525 B Street, Suite 1900, San Diego, California 92101-4495, USA http://www.academicpress.com

ISBN 0-12-639481-4

Library of Congress Catalog Number: 2002107237

A catalogue record for this book is available from the British Library

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed and bound in Great Britain by MPG Books Limited, Bodmin, Cornwall

 $02\ 03\ 04\ 05\ 06\ 07\ MP\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$

DEDICATED TO IRENE AND GEORGE SHEPHERD

in memory of their unfailing love and encouragement

Who has seen the Wind? Neither you nor I: But when the trees bow down their heads, The wind is passing by.

Christina Rossetti (1830–1894)

"Here was the least common denominator of nature, the skeleton requirements simply, of land and sky – Saskatchewan prairie. It lay wide around the town, stretching tan to the far line of the sky, shimmering under the June sun and waiting for the unfailing visitation of wind, gentle at first, barely stroking the long grasses and giving them life; later, a long hot gusting that would lift the black topsoil and pile it in barrow pits along the roads, or in deep banks against the fences."

"High above the prairie, platter-flat, the wind wings on, bereft and wild its lonely song. It ridges drifts and licks their ripples off; it smoothens crests, piles snow against the fences. The tinting green of Northern Lights slowly shades and fades against the prairie nights, dying here, imperceptibly reborn over there."

Who Has Seen the Wind W.O. Mitchell (1914–1998)

CONTENTS

Preface			xiii	
1	Observing Atmospheric Radiation			
	1.1	Atmospheric Radiation	1	
	1.2	Measuring Atmospheric Radiation	8	
		1.2.1 The Integrated Emission Rate	8	
		1.2.2 Visible Atmospheric Radiation	10	
		1.2.3 Thermal Atmospheric Radiation	10	
		1.2.4 Ultraviolet Atmospheric Radiation	11	
	1.3	The Scope of Spectral Imaging	12	
	1.4	One-Dimensional (Vertical) Spatial Information	13	
	1.5	Two-Dimensional (Horizontal-Vertical) Information	16	
	1.6	Three-Dimensional Information	18	
	1.7	Spectral Information	20	
	1.8	Temporal Information	26	
	1.9	Preview	28	
	1.10	Problems	29	
2	Spe	30		
	2.1	Introduction	30	
	2.2	The Spectral Concept	31	
	2.3	Formal Statement of the Fourier Transform	33	
	2.4	Fundamental Properties of the Fourier Integral	35	
	2.5	Doing a Fourier Integral Without Integration	36	
	2.6	Building Up a Set of Fourier Transforms	37	
	2.7	Convolutions and Correlations	38	
	2.8	The Dirac Delta Function and the Dirac Comb	39	
		2.8.1 Dirac Delta Function	39	
		2.8.2 The Dirac Comb	40	
	2.9	The Discrete Fourier Transform	41	
	2.10 The Autocorrelation Function and Power Spectral Density 44			

	2.11	Optica	al Devices as Linear Dynamical Systems	45	
	2.12	The D	Diffraction Grating as a Linear Dynamical System	47	
	2.13	The F	abry–Perot Etalon as a Linear Dynamical System	51	
	2.14	Proble	ems	52	
3	Instrument Responsivity and Superiority				
	3.1	Respo	onsivity of an Elementary Photometer	54	
	3.2	The M	Aeasurement of Irradiance	57	
	3.3	Respo	onsivity for Line and Continuum Sources	57	
	3.4	Photometer Calibration			
	3.5	Generalized Definition of Responsivity			
	3.6	Jacqu	inot's Definition of Étendue	62	
		3.6.1	Conservation of Étendue	62	
		3.6.2	Comparison of Astronomical and Atmospheric Sources	63	
	3.7	Resol	ving Power and the Superiority of Spectral Imagers	63	
		3.7.1	The Photometer Becomes a Spectrometer	63	
		3.7.2	Dispersion and Resolving Power for		
			a Diffraction Grating Spectrometer	64	
		3.7.3	Superiority of the Diffraction Grating Spectrometer	65	
		3.7.4	Comparison of Superiority for the Diffraction Grating and		
			Fabry–Perot Spectrometers	66	
	3.8	Dispe	rsion, Classification and Nomenclature	66	
	3.9	Proble	ems	68	
4	Imaging Concepts				
	4.1	4.1 Elementary Detectors and Noise			
	4.2	Scann	ning Satellite Imager	72	
		4.2.1	Overview	72	
		4.2.2	The ISIS-II Satellite Imagers	73	
		4.2.3	Dynamics Explorer-1 Imager	74	
	4.3	Weather Satellite Imagers			
	4.4	Introduction to Array Detectors			
	4.5	The C	Charge Coupled Device (CCD) Detector	81	
		4.5.1	Introduction to Semiconductors	81	
		4.5.2	Method of Operation	82	
		4.5.3	CCD Readout	84	
		4.5.4	CCD Characteristics	86	
		4.5.5	Signal-to-Noise Ratio	87	
	4.6	Spect	ral Response and Materials	87	
	4.7	Consi	derations Specific to Infrared Array Detectors	88	
		4.7.1	Background Radiation	88	
		4.7.2	Infrared Detector Readout	89	

	4.8	Other	Types of Array Detectors	89		
		4.8.1	Photodiode Arrays	89		
		4.8.2	Charge Injection Devices	90		
		4.8.3	Intensifiers	90		
		4.8.4	Position Sensitive Arrays	91		
	4.9	Early	Array Detector Imagers	92		
		4.9.1	Elementary Imagers	92		
		4.9.2	Spectral Imagers	93		
		4.9.3	The KYOKKO Auroral Imager	95		
	4.10	CCD	Satellite Imagers	95		
		4.10.1	The Viking Ultra Violet Imager (UVI)	95		
		4.10.2	The Polar VIS Imager and the IMAGE Satellite	98		
	4.11	Sumn	nary	99		
	4.12	Proble	ems	100		
5	The	Fabry	-Perot Spectrometer	102		
	5.1	Introd	luction	102		
	5.2	The Io	dealized Etalon	103		
	5.3	The R	leal Etalon	107		
	5.4	Eleme	entary Fabry–Perot Spectrometer Configuration	108		
	5.5	The S	pherical Fabry–Perot Spectrometer	109		
	5.6	Scanning Methods for Fabry–Perot Spectrometers				
	5.7	The A	application of Fabry–Perot Spectrometers	114		
		5.7.1	Multiple Ring Aperture Instruments	114		
		5.7.2	Axicon System	116		
		5.7.3	Low Light Level Applications	116		
		5.7.4	Tandem Fabry–Perot Spectrometers	117		
		5.7.5	Stabilized Fabry–Perot Spectrometers	119		
	5.8	Appli	cations of the Fabry–Perot Imager	121		
		5.8.1	Introduction	121		
		5.8.2	PRESTO – A Programmable Etalon Spectrometer for			
			Twilight Observations	121		
		5.8.3	MORTI and SATI: Hybrid Spatial and Spectral Instruments	122		
		5.8.4	Imaging Low Light Level Application	124		
		5.8.5	Imaging Winds with an FPS Imager	124		
		5.8.6	CLIO (Circle to Line Interferometer Optical System)	126		
	5.9	Proble	ems	127		
6	The	The Michelson Interferometer				
	6.1	Histor	rical Background	129		
	6.2	Basic Concept 1				
	6.3	Spect	ral Resolution	133		
	6.4	Field	of View	134		
	6.5	The R	eal Michelson Interferometer	135		
	6.6	Samp	ling the Interferogram	135		
		1				

ix

	6.7	Superiority of the Michelson Interferometer	136
	6.8	Scanning Methods for the Ordinary Michelson Interferometer	137
		6.8.1 Overview	137
		6.8.2 Cube Corner Reflectors	138
		6.8.3 Cat's Eye Retro-Reflector	138
		6.8.4 The Dynamic Alignment System	139
	6.9	Some Atmospheric Applications of the Michelson Interferometer	139
	6.10	Field Widening	142
	6.11	Problems	149
7	Mul	tiplexers and Modulators	151
	7.1	Spectral Operating Modes	151
	7.2	Multiplexers	152
		7.2.1 Introduction	152
		7.2.2 The Hadamard Spectrometer	152
		7.2.3 Grating Spectrometers with Array Detectors	154
	7.3	Modulators	154
		7.3.1 The SISAM	154
		7.3.2 The Birefringent Photometer	156
		7.3.3 The Grille Spectrometer	158
		7.3.4 The Correlation Spectrometer	160
		7.3.5 The Pressure Modulator Radiometer (PMR)	160
		7.3.6 Instruments for Dayglow Observations	164
	7.4	Problems	166
8	Dop	pler Michelson Interferometry	168
	8.1	The Measurement of Doppler Temperature	168
	8.2	The Measurement of Doppler Wind	172
	8.3	Phase Stepping Interferometry	173
	8.4	The Wide-Angle Michelson Interferometer	175
	8.5	Cube Corner Doppler Michelson Interferometer	176
	8.6	Achromatizing a Field-Widened Michelson Interferometer	177
	8.7	Thermally Stabilizing a Solid Michelson Interferometer	178
	8.8	A Fully Compensated Solid Doppler Michelson Interferometer	179
	8.9	Defocusing a Wide-Angle Michelson Interferometer	180
	8.10	Polarizing Doppler Michelson Interferometers	181
		8.10.1 Introduction	181
		8.10.2 PAMI Polarization States	182
		8.10.3 The SOHO SOI (Solar Oscillations Investigation) and GONG	
	0.11	Instruments	183
	8.11	The Phase Quadrature Michelson Interferometer	185
		8.11.1 Concept	185
	0.1-	8.11.2 Phase-Shifting with Optical Thin Film Multilayers	185
	8.12	Optimized Reflective Wide-Angle Phase-Stepping MI	187
	- 8.13	Problems	189

9	Ope	rationa	al Atmospheric Spectral Imagers	191	
	9.1	Introd	uction	191	
	9.2	The W	Vind Imaging Interferometer (WINDII)	191	
		9.2.1	Fundamental Spaceflight Considerations	191	
		9.2.2	WINDII Optical System	194	
		9.2.3	The Michelson Interferometer	195	
		9.2.4	Interference Filters	196	
		9.2.5	Detector	197	
		9.2.6	The WINDII Baffle	197	
		9.2.7	Calibration	199	
		9.2.8	Wind Measurement Procedure	200	
		9.2.9	Examples of Results Obtained	201	
	9.3	ERWIN: An E-Region Wind Interferometer			
		9.3.1	Introduction	207	
		9.3.2	Instrument Description	207	
		9.3.3	The Michelson Interferometer	208	
		9.3.4	Examples of Measurements	209	
	9.4	MICADO – Michelson Interferometer for Coordinated Auroral Doppler			
		Observations			
	9.5	The H	igh-Resolution Doppler Imager (HRDI)	213	
		9.5.1	Introduction	213	
		9.5.2	Input Optics	213	
		9.5.3	The Etalons	215	
		9.5.4	The Detector	216	
		9.5.5	HRDI Results	216	
		9.5.6	Comparison of HRDI and WINDII	217	
	9.6	CLAE	S: The Cryogenic Limb Array Etalon Spectrometer on UARS	220	
		9.6.1	Introduction	220	
		9.6.2	Instrument Design	221	
		9.6.3	Sample CLAES results	223	
	9.7	MOPI	TT – Measurements Of Pollution In The Troposphere	223	
	9.8	B Problems			
10	Future Atmospheric Spectral Imagers				
	10.1	The T	IMED Doppler Imager (TIDI)	230	
		10.1.1	TIDI Overview	230	
		10.1.2	Instrument Description	230	
		10.1.3	TIDI Data Coverage	233	
		10.1.4	TIDI Science Measurement Summary	233	
	10.2	The M	lesospheric Imaging Michelson Interferometer (MIMI)	235	
		10.2.1	Introduction	235	
		10.2.2	General Description of the Instrument	235	
		10.2.3	Michelson Interferometer	237	
		10.2.4	Filter Selection	239	

10.2.5 Appearance of the O_2 Lines in the Field of View	239			
10.2.6 MIMI Status	239			
10.3 The Stratospheric Wind Interferometer for Transport Studies (SWIFT)	240			
10.3.1 Introduction and Motivation	240			
10.3.2 Concept	241			
10.3.3 Instrument Description	244			
10.4 The Atmospheric Chemistry Experiment (ACE)	248			
10.5 The Michelson Interferometer for Passive Atmospheric Sounding	251			
(MIPAS) 10.6. Problems	251			
10.0 Problems	234			
11 Grating Spectrometers as Spectral Imagers	255			
11.1 Introduction	255			
11.2 Fundamental Aspects of the Diffraction Grating Spectrometer	257			
11.3 Selected Airglow Missions Accomplished	258			
11.3.1 Mariner 10 Ultraviolet Airglow Experiment	258			
11.3.2 The Voyager Mission Ultraviolet Experiment	260			
11.3.3 Arizona Imager Spectrograph (AIS)	260			
11.3.4 Single-Element Imaging Spectrograph (SEIS)	262			
11.3.5 Ground-Based Instruments	264			
11.4 Selected Atmospheric Missions Accomplished	266			
11.4.1 Total Ozone Mapping Spectrometer (TOMS)	266			
11.4.2 Stratospheric Aerosol and Gas Experiment (SAGE)	267			
11.4.3 Optical Spectrograph and InfraRed Imaging System (OSIRIS)	267			
11.4.4 CRyogenic Infrared Spectrometers and Telescopes for the				
Atmosphere (CRISTA)	269			
11.5 Future Atmospheric Missions using Grating Spectrographs	271			
11.5.1 GOMOS and SCIAMACHY on Envisat	271			
11.5.2 Ozone Dynamics Ultraviolet Spectrometer (ODUS)	272			
11.5.3 Measurements of Aerosol Extinction in the Stratosphere and				
Troposphere Retrieved by Occultation (MAESTRO)	273			
11.6 Spatial Heterodyne Spectroscopy (SHS)	274			
11.7 Problems	277			
12 Postscript	279			
References List of Symbols List of Acronyms and Abbreviations				
		Author Index		
		Subject Index		

This book is the result of a career spent talking to fellow scientists about atmospheric instruments, and working with colleagues in my own laboratory to conceive, propose, design, build, launch and operate atmospheric spectral imagers. For large space projects this has also involved international collaborations, and working closely with colleagues in industry and in government. The period of data collection is followed by data analysis, validation, software revision and the final scientific analysis, all of which leads to further understanding of the instrument. To all of the individuals involved in these activities I am indebted for the ideas shared over the years. While not all can be named, many are identified in the text but for some I wish to describe their contributions more specifically. In particular I am grateful to my M.Sc. and Ph.D. research supervisors, Donald Hunten and the late Harry Welsh respectively for starting me off in a favourable direction.

Herbert Gush and I worked in the same laboratories on our B.Sc., M.Sc. and Ph.D. degrees. We then went separate ways, he to a PDF in Pierre Jacquinot's Laboratorie Aimé Cotton, and I back to the University of Saskatchewan. Herb made me aware of what was happening in France, and made the contact that led to the visit of Robert Chabbal to Saskatcon in 1958. That visit led to the first Fabry–Perot spectrometers built there, but it was my own visit to this laboratory in 1961 where I met Ové Harang and Pierre Connes working on a field-widened Michelson interferometer that expanded my horizons much further. All of this contributed to the conceptual approach which I still follow.

In the early years at the University of Saskatchewan it was the students who built the instruments, John Nilson, Ted Turgeon, Alan Bens, Leroy Cogger, Steve Peteherych, Ken Paulson, Bill Lake, Ronald Hilliard and Harold Zwick. It was also the students there who led to the first course that I taught on this subject.

Later, at York University, where this volume had its origins, I initially elicited the help of various individuals in writing the original chapters. Rick Gerson wrote the original array detector section of Chapter 4, later extended by Stoyan Sargoytchev, with a contribution from Erik Griffioen. Rudy Wiens wrote the beginning of Chapter 5, with contributions from Bob Peterson and Fadia Bahsoun-Hamade. Bill Gault wrote the original version of Chapter 6, little changed from its original form. Bill is the individual with whom I have had the longest association, and with whom I have shared more ideas than any other individual named. Recent course students, Jeffrey Czapla-Myers, David Babcock, Jacob Petersen

and Gina Infante contributed to a revised Chapter 7 while former students John Bird and Susan McCall contributed to Chapter 8. Charlie Hersom wrote the first WINDII description with additions by Brian Solheim in Chapter 9, while Stephen Brown contributed to the ERWIN description in the same chapter. The descriptions of the new instruments, MIMI and SWIFT, in Chapter 10 were taken from material by Bill Gault and Reza Mani of York University, William Ward of the University of New Brunswick, Yves Rochon of the Meteorological Service of Canada and Neil Rowlands, Alan Scott and Gary Buttner of EMS Technologies. However, I have made many revisions in the material provided to me and take full responsibility for any misconceptions or errors that may have been introduced in the process.

My latest course students tested all of the problems; Bernard Firanski, Itamar Gabor, Craig Haley, Young-Sook Lee, Guiping Liu, Peyman Rahnama and Peter Ryan. Individual chapters, or parts of chapters, were tested on several colleagues; Ian McDade, Christian von Savigny, John Miller, Neil Rowlands, Leroy Cogger, Gonzalo Hernandez, Bill Gault, Fred Taylor, Brian Solheim, Aidan Roche, Peter Bernath, Herbert Fisher and Abas Sivjee. Again, I am responsible for the remaining deficiencies. Two others to whom I am greatly indebted for many hours of helpful discussion are Paul Hays and Raymond Roble.

Most of all, I am deeply grateful to Marianna Shepherd for her patience, encouragement and support during the many years the work was in progress.

Many of my conversations have been with graduate students, so that is the level to which this work is primarily directed; however, it is planned to be accessible to upper year undergraduates with some knowledge of optics, and the problems are designed with them in mind. It also may be used as a reference work, as the chapters need not be read in sequence, and I hope that the long accumulation of references will prove generally valuable to researchers.

I would like to thank the initial and final Senior Editors, Gioia Ghezzi and Frank Cynar, and the Production Project Manager Sutapas Bhattacharya for their consistent encouragement and support.

OBSERVING ATMOSPHERIC RADIATION

I.I ATMOSPHERIC RADIATION

Winter or summer, day or night, above the Earth or on the ground, one is bathed in atmospheric radiation, comprising ultraviolet, visible and infrared light in the region of the electromagnetic spectrum, lying roughly between 30 nm and 100 μ m in wavelength. The sources and processes involved in producing this radiation environment are illustrated in Figure 1.1; in this chapter they are briefly reviewed along with the framework within which this radiation is observed. The ultimate source of the observed radiation is the sun, so it is the logical place to begin. It is the brightest object in the sky, so much so that it cannot be viewed directly by eye. From its effective temperature T of 5780 K the Stefan–Boltzmann law, $E = \sigma_{SB}T^4(\sigma_{SB} = 5.67 \times 10^{-8} \,\mathrm{W \, m^{-2} \, K^{-4}})$, yields an irradiance $E = 6.33 \times 10^7 \,\mathrm{W \, m^{-2}}$. This is the total power radiated from each square metre on the solar surface. The monochromatic solar irradiance E_{λ} , the irradiance as a function of wavelength λ as approximated by a black body with T = 5780 K is shown in Figure 1.2; this is called a spectrum. The integrated irradiance E, just introduced, is the integral over this spectrum. The spectrum of a 300 K blackbody representing the outgoing radiation from the Earth (multiplied by 10^{6}) is shown in the same figure; this is discussed later. For the wavelength range shown, the solar spectrum is sharply peaked, with the wavelength λ_{max} of the peak given by Wien's displacement law, $T\lambda_{max} = 2897 \,\mu\text{m}\,\text{K}$, or for $T = 5780 \,\text{K}$, $\lambda_{max} = 0.501 \,\mu\text{m}$, just as shown in the figure.

The spectra of Figure 1.2 are misleading in terms of the energy distribution because λ is inversely proportional to the photon energy; for this reason it is often preferable to present the spectrum as a function of $(1/\lambda)$, which is the number of waves per unit length, called the wavenumber, σ . In fact it is more complicated than this because wavelengths are normally what is measured, in air, while spectroscopists prefer a universal standard, and so define wavenumbers as in vacuum. The correct conversion thus involves the index of refraction of air, but this minor complication is ignored throughout this work. The spectra of Figure 1.2 are shown as a function of wavenumber in cm⁻¹ in Figure 1.3.

Figure 1.1. Illustrating sky radiation observable through spectral imaging.

Figure 1.2. The monochromatic irradiance of a 5780 K black body, representative of the sun, and a 300 K black body, representative of the Earth, with the latter multiplied by 10^6 . The vertical lines are separated by 1 μ m; the interval is centred at 11.37 μ m.

spectrum becomes narrow and the solar spectrum is broad which, as noted, reflects more correctly the energy distributions involved.

The monochromatic irradiances shown in Figure 1.2 and Figure 1.3 must specify the spectral interval over which the irradiance corresponds. In Figure 1.2 the interval used is 1 μ m, so that the irradiance units are W m⁻² μ m⁻¹. For illustration, a spectral interval of 1 μ m centred at 11.37 μ m is shown in Figure 1.2, which means that the corresponding value of 7.8 × 10⁷ W m⁻² is radiated over this wavelength interval. For Figure 1.3 the spectral interval used is 1 cm⁻¹, and for clarity the units are shown as W m⁻²(cm⁻¹)⁻¹. While the author's objective is to use SI (System International) units, based on MKS, throughout, the use of cm⁻¹ for spectroscopy is so deeply rooted it cannot normally be avoided, even in this work. Because most spectral imaging instruments use photon detectors it is often