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Foreword

Especially during the past century, land use changes and agricul-
tural and industrial activitics have been growing so rapidly that
their effects on the environment, including the chemical composi-
tion of the global atmosphere have become clearly noticcable on
all scales. The first realization of the possibility of global effects
was connccted with the growth of the “greenhouse” gas carbon
dioxide measured by C. D. Keeling and R. Revelle, on the basis of
these measurements they stated that humanity had embarked on a
global geophysical experiment potentially leading to climate
warming. Other human-caused global disturbances in the atmos-
phere were discovered thereafter. In 1971 attention was called to
the possible loss of stratospheric ozone, caused by NO, catalysts in
the exhaust of supersonic aviation. The projected large fleets of
aircraft were never built. However, in 1974 an already existing, but
late recognized threat to the ozone layer by CIO, radicals pro-
duced in the stratosphere by the photochemical destruction of en-
tirely man-made chlorofluorocarbon (CFC) gases was hypothe-
sized and later confirmed by atmospheric observations. In fact, in
1985, scientists were caught totally by surprise when researchers of
the British Antarctic survey reported much larger springtime
ozone depletions, than originally estimated, on the order of 30%.
It was found that the ozonc loss was largest at altitudes between
about 12 and 22 km, exactly the height region in which, under
undisturbed conditions, maximum ozone concentrations had al-
ways been measured. At this location, it had always been thought
that ozone was chemically inert. Since then, the “ozone hole” has
grown in area and depth, so that by this year’s spring total ozone
had declined by more than 50% over a region three times the size
of the United States. A couple of years of intensive research efforts
showed that a chemical instability had developed, involving for-
mation of CIO, catalysts on ice particles under sunlit conditions,
followed by rapid ozone destruction. The combination of special
natural factors in early spring, cold temperatures, and availability
of sunlight, together with about six times larger than natural load-
ings of chlorine gases, had led to this chemical instability over the
Antarctic. Since 1996 the production of CFC gases on the indus-
trial world has been forbidden. I have dwelled in this issue in some
detail for two reasons. First, international political action would
not have been taken without convincing scientific evidence that
the CFC emissions were the cause of the heavy ozone loss. Second,
it will be particularly important to determine where the world’s
complex environmental system may be most vulnerable to human
perturbation. For this purpose, modeling alone will be far from
sufficient. Surprises arc not excluded, as the ozone hole story so
drastically has demonstrated.

In the 1970s the substantial impact of the bioshpere on atmos-
pheric chemistry was also realized. First, the main natural loss of
stratospheric ozone occurs through reactions involving NO, radi-

cals that derived photochemically from the oxidation of N;O, a
by-product of the biological nitrogen cycle in soils and waters.
Second, it was discovered that tropospheric ozone and its photo-
chemical by-product, hydroxyl, are much influenced by chemical
chain reactions involving CH, and other hydrocarbons, carbon
monoxide, and NO,. All these gases have both natural and anthro-
pogenic sources. This is of the greatest importance, as the hy-
droxy!l radicals, also called the “detergent of the atmosphere,” to a
large degree determine the chemical composition of the atmos-
phere by reacting with almost all gases that are emitted by natural
processes and human activities.

In addition to being chemically active in the stratosphere and
troposphere, several of the afore-mentioned and other gases serve
as “greenhouse gases,” thereby significantly adding to the climate
warming caused by CO,. On the other hand, aerosol particles, in
particular, sulfates derived by the oxidation of largely anthro-
pogenic SO, from oil and coal burning, have a cooling effect on
climate.

The estimation of the impact of various kinds of human activi-
ties on atmospheric chemistry and climate clearly requires a good
understanding of the natural and anthropogenic sources of large
number of trace gases, as well as particulate matter, and the bio-
logical processes creating them. This research not only deals with
the present and future, but also profits much from the vast
amount of information regarding climate parameters and chemi-
cal composition of the atmosphere cores that is deposited in sedi-
ments and in ice. The latter data clearly show that the biosphere
does not counteract climate change in some Gaian fashion. On the
contrary, during earlier glacial periods all greenhouse gases were
less abundant in the atmosphere than during the interglacials.
This research has received special international, political attention
in connection with the proposed Kyoto protocol to reduce the
emissions of CO, caused by fossil fuel burning and deforestation.
As was the case with the CFC regulations, effective CO, emission
control measures will rely also on a strong scientific base. It was
the realization of these strong needs, requiring improved knowl-
edge especially about the biogeochemical cycles of C, N, S, P, and
trace compounds such as iron, that led to the creation of a Max
Planck Institute for Biogeochemistry. During the initial discus-
sions, involving the cream of the international, biogeochemical,
and climate community, the proposal received enthusiastic en-
dorsement, emphasizing the uniqueness of the institute on the
global scence. The proposal was also well received by the scientific
members and the senate of the Max Planck Society. The search for
directors and key scientific personel of the institute proved highly
successful, with several key recruitments coming from overseas,
clearly showing the enthusiasm accompanying the creation of the
institute.
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The MPI for Biogeochemistry in Jena is one of several Max
Planck Institutes involved in global change research. This book,
based on the presentations given to celebrate the first anniversary
of the institute shows many important examples of the breadth
and excitement of Global Change research around the world, in-

Foreword

cluding legal/political aspects. I hope that the so successful creation
sets an example and promotes initiatives elsewhere to enhance bio-
geochemical research efforts, and its connections to ecology,
climate and atmospheric chemistry. Many Happy Returns.

Dr. Paul Crutzen



Preface

Biogeochemistry: The Jena Perspective

In the late 20™ century, biogeochemistry emerged as a new discipline
in which the biological, physical, and human sciences collaborate
(CGCR, 1999; Schlesinger, 1997). Biological, because the chemical
cycles of the planet are mediated by life (Table 1). Physical, because
of the strong coupling between climate and atmospheric composi-
tion so evident in the glacial - interglacial record of the ice cores (Fig.
1). And, human, because of the massive human disruption of the
planet’s carbon and nitrogen cycles by fossil fuel burning (which
produces CO; and a range of volatile nitrogen compounds) (Fig. 2).

From the three figures, one gets an overview of the way in which
the field of biogeochemistry has emerged. The evidence for the im-
portance of biology in the composition of the atmosphere (Fig. 2)
was deduced from geochemical measurements of air enabled by
advances in analytical technology. The chemistry of the atmos-
phere and the discipline of atmospheric chemistry provided a view
of the biosphere not accessible from “within” the discipline. The at-
mosphere reflects biotic processes operating over “deep” time as
well as processes operating on rapid time scales (especially with re-
spect to the oxidized N species). Some compounds, especially the
hydrocarbons, may reflect plant—insect coevolution, and so to un-
derstand the atmosphere requires a deep understanding of biology.
When insights into atmospheric chemistry were combined with
emerging ecosystem studies of nitrogen and other elements (e.g.,
Vitousek and Reiners, 1977), a paradigm emerged that enriched
both ecology and geophysics (Andreae and Schimel, 1989).

The realization that ecosystem biogeochemistry and climate
were dynamically coupled was nascent for most of the 20" cen-
tury. The ice-core records showing the coordinated rhythm of
temperature, CO,, and methane provided conclusive evidence of
interactions (Fig. 2). The ice cores show coupled changes in trace
gases and climate. They preserve a tantalizing body of information
about leads, lags, and amplification that is not yet fully unravelled.
While variations in CO, are strongly governed by changes in
ocean circulation, mass balance considerations and isotopes sug-
gest land-ecosystem changes as well (Indermubhle et al,, 1999). Cli-
mate effects on terrestrial biogeochemistry are demonstrated by
the patterns in methane (produced in terrestrial wetlands and un-
gulate mammals) and nitrous oxide. High-resolution records
showing high-frequency changes in ice cores, and detailed records
of the Holocene provide information on timescales tractable, or
nearly so, in analysis using today’s biogeochemical models. Again,
the perspective from geophysical records provides a view of
ecosystem processes different from, and most strongly comple-
mentary to, the paradigms emerging from within the discipline.

The scientific community was galvanized by the Mauna Loa
curve of increasing carbon dioxide and the political ramifications of

this scientific result will echo for the foreseeable future (Benedick,
Chapter 26 of this volume). Geophysical measurements provide a
trans-disciplinary view of human processes. Since biogeochemistry
has a “basic science” character and remains concentrated in acade-
mia, the carbon and nitrogen cycles would be of far less interest
without the challenges of carbon and climate change, acid rain, and
tropospheric ozone increase. The Mauna Loa curve challenges both
the policy-relevant and intellectual sides of biogeochemistry. The
policy side is obvious—the rate of increase in atmospheric CO, is
the index of humanity’s export of carbon to the atmosphere.

Scientifically, the fraction of CO, released to the atmosphere that
remains as CO, in the air (about half) is not yet explained on the ba-
sis of incontrovertible measurements. While the holy grail of explain-
ing the “missing sink” grows asymptotically closer, the political stakes
and hence the standard of proof required are growing. The interan-
nual variability of the growth rate of CO, gives evidence of
climate—carbon interactions. Subtle year-to-year variations in the in-
crease in CO, reflect changes in land and ocean uptake. The measure-
ment and modeling tools to understand these changes are emerging
and provide a direct means of understanding how climate affects the
carbon system at large scales. Changes in the carbon system are re-
flected also in changes in the pole-to-pole gradient of CO,. That gra-
dient reflects the balance of sources and sinks on large scales. Because
the equilibration time (the interhemispheric transport time) is about
a year, changes in the gradient are another source of information
about interannual variability. The seasonal cycle of CO, provides in-
formation about the seasonal activity of the biosphere. Because the
phase and amplitude of the seasonal cycle vary spatially (Fig. 3), they
provide rich information about land ecosystems. To date, we cannot
fully separate changes in carbon uptake (photosynthesis) and release
(respiration) to provide unique explanations for the seasonal cycle
and its variation. This remains a research challenge.

1. Research Challenges

The discipline of biogeochemistry confronts a wide array of scien-
tific and methodological challenges, as is evident in the balance of
this book. These are not limited to the cycles of carbon and nitro-
gen, but include the role of phosphorus, iron, calcium, aluminum,
and acidity, to name just a few. In this section, I will identify four
cross-cutting challenges that illustrate aspects of the science.

1.1 Large-Scale Carbon Sinks: Detection and
Attribution

The problem of the terrestrial missing sink remains. Where and
why is there net uptake in terrestrial systems? The two questions,
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TABLE1 Chemical Composition of the Atmosphere

Preface

Constituent Chemical tormula Volume mixing ratio in dry air Major sources and remarks
Nitrogen N 78.084% Biological

Oxygen o, 20.948% Biological

Argon Ar 0.934% Inert

Carbon dioxide CO, 360 ppmv Combustion, ocean, biosphere
Neon Ne 18.18 ppmv Inert

Helium He 5.24 ppmv Inert

Methane CH; 1.7 ppmv Biogenic and anthropogenic
Hydrogen H. 0.55 ppmv Biogenic, anthropogenic, and photochemical
Nitrous oxide N;O 0.31 ppmv Biogenic and anthropogenic
Carbon monoxide CO 50-200 ppbv Photochemical and anthropogenic
Ovone (troposphere) Os 10-500 ppbv Photochemical

Ozone (stratosphere) QO 0.5-10 ppm Photochemical

Nommethane hydrocarbons 5-20 ppbv Biogenic and anthropogenic
Halocarbons (as chlorine) 3.8 ppbv 85% anthropogenic

Nitrogen species NO, 10 ppt—1 ppm Soils, lightning, anthropogenic
Ammonia NH, 10 ppt—1 ppb Biogenic

Particulate nitrate NO,” L ppt—10 ppb Photochemical, anthropogenic
Particulate ammonium NH,* 10 ppt—10 ppb Photochemical, anthropogenic
Hydroxyl OH 0.1-10 ppt Photochemical

Peroxyl HO, 0.1=10 ppt Photochemical

Hydrogen peroxide H,0, 0.1-10 ppb Photochemical

Formaldehyde CH.O 0.1-1 ppb Photochemical

Sulfur dioxide SO- 10 ppt—1 ppb Photochemical, volcanic, anthropogenic
Dimethyl sulfide CILSCIL, 10—100 ppt Biogenic

Carbon disulfide CS, 1-300 ppt Biogenic, anthropogenic

Carbonyl sulfide OCS 500 pptv Biogenic, volcanic, anthropogenic
Hydrogen sulfide H.S 5-500 ppt Biogenic, volcanic

Particulate sulfate SO, 10 ppt—=10 ppb Photochemical, anthropogenic

where and why, cannot be separated. Different parts of the world
and differing ecosystem types are influenced by differing nitrogen
additions, disturbance, and pollution. Answering the question “why
is there a sink” requires explaining the differences between climate
zones, management, and disturbance regimes and chemical climate.
This is a practical problem because, in the future, there will be in-
creasing pressure to manage carbon sinks. How can sinks best be in-
duced and sustained? How can the effects of intentional measures be
quantified and verified? What impacts does managing ecosystems
for carbon storage have on other ecosystem goods and services, in-
cluding diversity? Without scientific understanding, no intelligent
design of management systems can emerge. Equally important is the
fact that without scientific consensus there can be no political will to
implement expensive management systems. Carbon science must in-
tegrate a basic understanding of process with power{ul measurement
techniques. Models are also required that have the credibility to be
used In what-if exercises to aid in designing new management sys-
tems. Local models are crucial because sinks must be long lasting
and management systems Lo store carbon must aim at a decadal to
centennial timescale. The agronomic paradigm of “test plots” is
needed but limited in utility because of timescale. Large-scale mod-
els are needed to test the global effect of an international regime, in-
cluding the stability of induced ecosystem sinks to potential changes
in the chemical, physical, and human environment.

1.2 New Methods for Measurement

Measurement capability has been a continual challenge to the car-
bon research community in accomplishing the ambitious goals.
The foundation of carbon cycle research lies in stable absolute cali-
bration, an initial priority of the Keeling Mauna Loa effort and a
persistent feature of the community. New measurements, such as of
stable and radio-isotopes, the O,/N, ratio, and remote sensing have
been developed and adopted by the community. Techniques for
dealing with spatial heterogeneity are also in rapid evolution: these
include ecosystems studies, local eddy covariance flux measures,
mesoscale aircraft and tall-tower techniques, and continental to
global inverse modeling techniques (Valentini ef al., 2000). As the
scope of large-scale biogeochemical research expands beyond a car-
bon cycle and greenhouse gas focus, techniques will need to be de-
veloped for the spatial-temporal integration of a range of processes.
It is likely that new techniques will be needed for the study of air-
borne and waterborne nutrient transport as in gas, suspended and
dissolved water-borne and aerosol phases. Techniques for spatial in-
tegration of belowground processes are crucial—there still exist
only rudimentary measures for root growth and soil C and N
turnover at or above the plot scale (Valentini et al., 2000). Continu-
ing adoption and endogenous development of measurement and
data analytical techniques is a priority for biogeochemistry.



