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Preface 
The embedded microcontroller industry is moving towards inexpensive micro-
controllers with significant amounts of ROM and RAM, and some user-designed 
hardware that is put on a single microcontroller chip. In these microcontrollers, the 
majority of the design cost is incurred in the writing of software that will be used in 
them. The memory available in such microcontrollers permits the use of real-time 
operating systems. Further, C + + compilers permit the use of classes to encapsulate 
the function members, their data members, and their hardware, in an object. Both of 
these techniques reduce software design cost. This book aims to give the principles of 
and concrete examples of design, especially software design, of the Motorola 
MMC2001, a particular MCORE embedded microcontroller. 

The first four chapters of the book provide background. The first chapter is aimed 
at the high-level programmer who will need to acquire a reading knowledge of 
assembler language to be able to debug his or her high-level language programs. The 
second chapter is aimed at the hardware designer, who will need to know enough C 
and C + + programming to be able to write the programs in an embedded micro-
controller. The third chapter introduces the real-time operating system, including the 
use of device drivers. The fourth chapter provides information for programmers who 
need to understand the issues involved in hardware design, including the design of 
ASIC modules that are implemented in an MCORE chip. While many readers will 
be familiar with one or more of these topics, the designer of embedded micro-
controllers needs to be familiar with all of them. These chapters bring the reader to 
an adequate level of background needed for embedded microcontroller design. 

The next three chapters are the core of this book. The fifth chapter discusses the 
alternatives to the parallel port, and ways to program interfaces to control them. The 
sixth chapter describes alternatives to interrupts, and ways to program interrupt and 
other synchronization interfaces. The seventh chapter highlights the techniques for and 
problems with time slice operation of embedded microcontrollers. A simple multi-
threaded time sharing system is introduced, followed by an object-oriented time 
sharing system. The use of real-time operating systems multitasking is then discussed. 

Chapter 8 shows how to design additional hardware to be added into the MMC2001 
chip. It gives an ASIC design example, and describes a processor architecture that is 
suitable for special-purpose designs. The last two chapters provide some examples of 
system design. Chapter 9 discusses communication techniques and shows several 
programming approaches to the MMC2001 UART device. The tenth chapter shows 
the programming of display and storage systems. 

This book provides a concrete understanding of hardware-software tradeoffs, 
high-level languages, and embedded microcontroller operating systems. Because 
these very practical areas should be understood by many if not all computer en-
gineering graduate students, this book is written as a textbook for a graduate level 
course. However, it will also be very useful to practitioners, especially those who will 
work with the Motorola M-CORE embedded microcontroller. It is therefore also 
written for engineers who need to understand and use these microcontrollers. 

IX 
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1 

Microcomputer Architecture 

Microcomputers, microprocessors, and microprocessing are at once quite familiar 
and a bit fuzzy to most engineers and computer scientists. When we ask the question: 
"What is a microcomputer?" we get a wide range of answers. This chapter aims to 
clear up these terms. Also, the designer needs to be sufficiently famiUar with the 
microcomputer instruction set to be able to read the object code generated by a C 
compiler. Clearly, we have to understand these concepts to be able to discuss and 
design I/O interfaces. This chapter contains essential material on microcomputers 
and microprocessors needed as a basis for understanding the discussion of interfa-
cing in the rest of the book. 

We recognize that the designer must have a comprehensive knowledge about 
basic computer architecture and organization. But the goal of this book is to impart 
enough knowledge so the reader, on completing it, should be ready to design good 
hardware and software for microcomputer interfaces. We have to trade material 
devoted to basics for material needed to design interface systems. There is so much to 
cover and so little space, that we will simply offer a summary of the main ideas. If 
you have had this material in other courses or absorbed it from your work or from 
reading those fine trade journals and hobby magazines devoted to microcomputers, 
this chapter should bring it all together. Some of you can pick up the material just by 
reading this condensed version. Others should get an idea of the amount of back-
ground needed to read the rest of the book. 

For this chapter, we assume the reader is fairly familiar with some kind of 
Assembly Language on a large or small computer or is able to pick it up quickly. In 
this chapter, he or she should learn about the software view of microcomputers and 
embedded systems in general, and the MCORE embedded processor in particular. 

1.1 An Introduction to the Microcomputer 

Just what is a microcomputer and a microprocessor, and what is the meaning of 
microprogramming — which is often confused with microcomputers? This section 
will survey these concepts and other commonly misunderstood terms in digital sys-
tems design. It describes the architecture of digital computers and gives a definition of 
architecture. Note that all italicized words are in the index and are Usted at the end of 
each chapter; these serve as a glossary to help you find terms that you may need later. 
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Because the microcomputer is much Hke other computers except that it is smaller 
and less expensive, these concepts apply to large computers as well as micro-
computers. The concept of the computer is presented first, and the idea of an in-
struction is scrutinized next. The special characteristics of microcomputers will be 
delineated last. 

1.1.1 Computer Architecture 

Actually, the first and perhaps the best paper on computer architecture, "Preliminary 
discussion of the logical design of an electronic computing instrument," by A. W. 
Burks, H. H. Goldstein, and J. von Neumann, was written 15 years before the term 
was coined. We find it fascinating to compare the design therein with all computers 
produced to date. It is a tribute to von Neumann's genius that this design, originally 
intended to solve nonHnear differential equations, has been successfully used in 
business data processing, information handling, and industrial control, as well as in 
numeric problems. His design is so well defined that most computers — from large 
computers to microcomputers — are based on it, and they are called von Neumann 
computers. 

In the early 1960s a group of computer designers at IBM — including Fred 
Brooks — coined the term "architecture" to describe the "blueprint" of the IBM 360 
family of computers, from which several computers with different costs and speeds 
(for example, the IBM 360/50) would be designed. The architecture of a computer is, 
strictly speaking, its instruction set and the input/output (I/O) connection cap-
abilities. More generally, the architecture is the view of the hardware as seen by the 
programmer. Computers with the same architecture can execute the same programs 
and have the same I/O devices connected to them. Designing a collection of com-
puters with the same "blueprint" or architecture has been done by several manu-
facturers. This definition of the term "computer architecture" applies to this 
fundamental level of design, as used in this book. However, outside of this book the 
term "computer architecture" has become very popular and is also rather loosely 
used to describe the computer system in general, including the implementation 
techniques and organization discussed next. 

The organization of a digital system Hke a computer is usually shown by a block 
diagram which shows the registers, busses, and data operators in the computer. Two 
computers have the same organization if they have the same block diagram. For 
instance. Motorola manufactures several computers having the same architecture 
but different organizations to suit different appHcations. Incidentally, the organi-
zation of a computer is also called its implementation. Finally, the realization of the 
computer is its actual hardware interconnection and construction. It is entirely 
reasonable for a company to change the reahzation of one of its computers by 
replacing the hardware in a block of its block diagram with a newer type of hard-
ware, which might be faster or cheaper. In this case the implementation or organi-
zation remains the same while the reahzation is different. In this book we will name 
the component by its full part number, Hke PMC2001HDCPU34 when we want to 
discuss an actual reahzation. However, we are usually interested only in the orga-
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nization or the architecture only. In these cases, we will refer to an organization as a 
partial name without the suffix, such as MMC2001 without HDCPU34, and refer to 
the architecture as an M C O R E architecture or a number 6812. This should clear up 
any ambiguity, while also being a natural, easy-to-read shorthand. 

The architecture of von Neumann computers is disarmingly simple, and the 
following analogy shows just how simple. (For an illustration of the following terms, 
see Figure 1.1) Imagine a person in front of a mailbox, with an adding machine and 
window to the outside world. The mailbox, with numbered boxes or slots, is ana-
logous to the primary memory; the adding machine, to the data operator (arithmetic-
logic unit); the person, to the controller, and the window, to input/output (I/O). The 
person's hands access the memory. Each slot in the mailbox has a paper that has a 
string of, say, 8 1s and Os (bits) on it. A string of 8 bits is a byte, and four bits is a 
nibble. A string of 16 bits is called a halfword, and 32 bits is called a word. 

The primary memory may be in part a random access memory (RAM) (so-called 
because the person is free to access its data in any order at random, without having 
to wait any longer for data because it is in a different location). RAM may be static 
ram — SRAM — if bits are stored in flip-flops, or dynamic ram — DRAM — if bits 
are stored as charges in capacitors. Memory that is normally written at the factory, 
never to be rewritten by the user, is called read-only memory — ROM. A program-
mable read-only memory — PROM — can be written once by a user, by blowing 
fuses to store bits in it. An erasable programmable read-only memory — EPROM — 
can be erased by ultraviolet Hght, and then written electrically by a user. An elec-
trically erasable programmable read-only memory — EEPROM — can be erased and 
then written by a user, but erasing and writing words in EEPROM takes several 
miUiseconds. A variation of this memory, C?MQA flash, is less expensive but can not be 
erased one word at a time. 

With the left hand the person takes out a word from slot or box n, reads it as an 
instruction, and replaces it. Bringing a word from the mailbox (primary memory) to 
the person (controller) is callQd fetching. The hand that fetches a word from box n is 

f Controller j 

Input/output 

Program 
counter 

Effective 
address 

PrImaryJ 
mefttory I 

N 
Data operator 

^ I 

Figure 1.1. Analogy to the von Neumann Computer 
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analogous to ihQ program counter. It is ready to take the word from the next box, box 
« + 1, when the next instruction is to be fetched. 

An instruction in the MCORE processor is a binary code such as 01001100. 
Consistent with the notation used by Motorola, binary codes are denoted in this 
book by a Ob (zero bee), followed by Is or Os. (Decimal numbers, by comparison, will 
not use any special symbols.) Since all those Is and Os are hard to remember, a 
convenient format is often used, called hexadecimal notation. In this notation, a Ox 
(zero ex) is written (to designate that the number is in hexadecimal notation), and the 
bits, in groups of 4, are represented as if they were "binary coded" digits 0 to 9 or 
letters A, B, C, D, E, and F to represent values 10, 11, 12, 13, 14, and 15, respec-
tively. For example, %0100 is the binary code for 4, and %1100 is the binary code 
for 12, which, in hexadecimal notation, is represented as OxC. The binary code 
01001100, mentioned previously, is represented as 0x4C in hexadecimal notation. 
Whether the binary code or the simplified hexadecimal code is used, instructions 
written this way are called machine-coded instructions because that is the actual code 
fetched from the primary memory of the machine, or computer. 

However, this is too cumbersome. So a mnemonic (which means a memory aid) is 
used to represent the instruction. All instructions in the M-CORE are entirely de-
scribed by one 16-bit halfword. The M C O R E instruction 0x6001 actually puts a one 
into register r l , so it is written as 

movi r l , #1 

(The MCORE registers such as r l are described in §1.2^ The mnemonic movi is 
described in §1.2.1. Strictly speaking, M C O R E mnemonics should be written in 
lower case to conform with Motorola's Applications Binary Interface Standards 
Manual MCOREABISM/AD.) 

As better technology becomes available, and as experience with an architecture 
reveals its weaknesses, a new architecture may be crafted that includes most of the 
old instruction set and some new instructions. Programs written for the old com-
puter should also run, with Httle or no change, on the new one, and more efficient 
programs can perhaps be written using new features of the new architectures. Such a 
new architecture is upward compatible from the old one if this property is preserved. 
If an architecture executes the same machine code the same way, it is fully upward 
compatible, but more generally, if it executes the same mnemonic instructions, even 
though they may be coded as different machine codes, then the architecture is source 
code upward compatible. The 6812 architecture is source code upward compatible 
from the 6811. 

An assembler is a program that converts mnemonics into machine code so the 
programmer can write in convenient mnemonics and the output machine code is 
ready to be put in primary memory to be fetched as an instruction. The mnemonics 
are therefore called assembly-language instructions. A compiler is a program that 
converts statements in a high-level language either to assembly language, to be input 

^ § means "Section." 
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to an assembler, or to machine code, to be stored in memory and fetched by the 
controller. 

While a lot of interface software is written in assembly language and many 
examples in this book are discussed using this language, most will be written in the 
high-level language C. However, quick fixes to programs are occasionally even 
written in machine code. Moreover, an engineer should want to know exactly how an 
instruction is stored and how the controller understands it. Therefore, in this chapter 
we will show the assembly language and machine code for some assembly-language 
instructions. 

Now that we have some ideas about instructions, we resume the analogy to 
illustrate some things an instruction might do. For example, an instruction may 
direct the controller to clear register r l and write this word from r l to a box, where 
the address is the sum of a register r 2 plus 20. In the M C O R E architecture an 
instruction to store a word from r l into the word at the location indicated by r 2 
plus twenty, is fetched as: 

0x9152 

where each byte essentially represents one of the instruction's parameters, and is 
represented by mnemonics as 

s t . w r l , ( r 2 , 20) 

in assembly language. The main operation — writing a word into the mailbox 
(primary memory) from the adding machine (data operator) — is called memorizing 
data. The right hand is used to get the word; it is analogous to the effective address. 

As with instructions, assembly language uses a shorthand to represent locations 
in memory. A symbolic address, which is actually some address in memory, is a name 
that means something to the programmer. For example, ALPHA might be the twenty. 
Then the assembly-language instruction above can be written as follows: 

s t . w r l , ( r 2 , ALPHA) 

Other symbolic addresses and other locations can be substituted, of course. A 
symboUc address is just a representation of a number, which usually happens to be 
the numerical address in primary memory, or an offset of the word in primary 
memory relative to a register pointer. As a number, it can be added to other num-
bers, doubled, and so on. In particular, the instruction 

s t . w r l , ( r 2 , ALPHA+4) 

will store the word from register r l into the 24th location below that pointed to 
by r 2 . 

Before going on, we point out a feature of the von Neumann computer that is 
easy to overlook, but is at once von Neumann's greatest contribution to computer 
architecture and yet a major problem in computing. Because instructions and data 
are stored in the primary memory, there is no way to distinguish one from the other 
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except by which hand (program counter or effective address) is used to get the data. 
We can conveniently use memory not needed to store instructions — if few are to be 
stored — to store more data, and vice versa. It is possible to modify an instruction as 
if it were data, just before it is fetched, although a good computer scientist would 
shudder at the thought. However, through an error (bug) in the program, it is 
possible to start fetching data words as if they were instructions, which produces 
strange results fast. 

Generally, after such an instruction has been executed, the left hand (program 
counter) is in position to fetch the next instruction in box « + 1. For instance, if the 
pair of words shown below are in consecutive locations, they are executed sequen-
tially: 

0x6001 

0x9152 

These instructions are indicated in assembly-language source code in successive Hnes: 

movi r l , 0 

s t . w r l , ( r 2 , 20) 

A program sequence is a sequence of instructions fetched from consecutive lo-
cations one after another. The program sequence given here cleared the word that is 
five words below the word whose address is in r 2 . Unless something is done to 
change the left hand (program counter), a sequence of words in contiguously 
numbered boxes will be fetched and executed as a program sequence. For example, a 
sequence of load and store instructions can be fetched and executed to copy a 
collection of words from one place in the mailbox into another place. However, 
when the controller reads the instruction, it may direct the left hand to move to a 
new location (load a new number in the program counter). Such an instruction is 
called Si jump, which is an example of a control instruction. Such instructions will be 
discussed further in §1.2.3, where concrete examples using the M C O R E instruction 
set are described. To facilitate the memory access functions, the effective address can 
be computed in a number of ways, called addressing modes. M C O R E addressing 
modes will be explained in §1.2.1. 

1.1.2 The Instruction 

In this section the concept of an instruction is described from different points of 
view. The instruction is discussed first with respect to fetching, decoding, and ex-
ecuting them. Then the instruction is discussed in relation to hardware-software 
trade-offs. Some concepts used in choosing the best instruction set are also discussed. 

The controller fetches a word or a couple of words from primary memory and 
sends commands to all the modules to execute the instruction. An instruction, then, 
is essentially a complex command carried out under the direction of a single word or 
a couple of words fetched as an inseparable group from memory. 


