

Embedded Microcontroller
Interfacing for M CORE
Systems

Academic Press Series in Engineering
Series Editor
J. David Irwin
Auburn University

Designed to bring together interdependent topics in electrical engineering, mechanical
engineering, computer engineering, and manufacturing, the Academic Press Series
in Engineering provides state-of-the-art handbooks, textbooks, and professional
reference books for researchers, students, and engineers. This series provides readers
with a comprehensive group of books essential for success in modern industry. A
particular emphasis is given to the applications of cutting-edge research. Engineers,
researchers, and students alike will find the Academic Press Series in Engineering to
be an indispensable part of their design toolkit.

Published books in the series:
Industrial Controls and Manufacturing, 1999, E. Kamen
DSP Integrated Circuits, 1999, L. Wanhammar
Time Domain Electromagnetics, 1999, S. M. Rao
Single- and Multi-Chip Microcontroller Interfacing for the Motorola 68HCI2, 1999,

G. J. Lipovski
Control in Robotics and Automation, 1999, B. K. Ghosh, N. Xi, T. J. Tarn
Soft Computing and Intelligent Systems, 1999, N. K. Sinha, M. M. Gupta
Introduction to Microcontrollers, 1999, G. J. Lipovski
Control of Induction Motors, 2000, A. M. Trzynadlowski
Embedded Microcontroller Interfacing for MCORE Systems, 2000, G. J. Lipovski

Embedded Microcontroller
Interfacing for M CORE
Systems

G. Jack LipoYski
Department of Electrical and Computer Engineering
University of Texas
Austin, Texas

ACADEMIC PRESS
A Harcourt Science and Technology Company

San Diego San Francisco New York Boston
London Sydney Tokyo

This book is printed on acid-free paper. @

Copyright © 2000 by Academic Press

All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or
mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission
in writing from the publisher.

Requests for permission to make copies of any part of the
work should be mailed to the following address: Permissions
Department, Harcourt, Inc., 6277 Sea Harbor Drive,
Orlando, Florida, 32887-6777.

ACADEMIC PRESS
A Harcourt Science and Technology Company
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
http://www.academicpress.com

Academic Press
Harcourt Place, 32 Jamestown Road, London NWl 7BY, UK
http: //www. academicpress. com

Library of Congress Catalog Card Number: 00-102018
ISBN: 0-12-451832-X

Printed in the United States of America

00 01 02 03 04 05 IP 9 8 7 6 5 4 3 2 1

Dedicated to my wife
Isabelle Lipovski

This Page Intentionally Left Blank

Contents

Preface ix

List of Figures x

List of Tables xiii

Acknowledgments xiv

About the Author xv

1 Microcomputer Architecture 1

1.1 An Introduction to the Microcomputer 1
1.2 The M CORE Instruction Set 11
1.3 Assembly-Language Programming 27
1.4 Organization of MCORE Microcontrollers 27
1.5 Conclusions 29

Problems 31

2 Programming in C and C + + 37

2.1 Introduction to C 38
2.2 Data Structures 47
2.3 Writing Clear C Programs 58
2.4 Conclusions 76

Problems 78

3 Operating Systems 85

3.1 What Is an Operating System? 85
3.2 Functions and Features of Ariel 88
3.3 Object-oriented Operating Systems Functions 103
3.4 Conclusions 104

Problems 105

4 Bus Hardware and Signals 109

4.1 Digital Hardware 110
4.2 Address and Control Signals in MCORE Microcontrollers 121
4.3 Voltage Level Considerations 128
4.4 Conclusions 130

Problems 131

5 Parallel and Serial Input-Output 137

5.1 I/O Devices and Ports 138
5.2 Input/Output Software 167

vn

viii Contents

5.3 Input/Output Indirection 182
5.4 A Designer's Selection of I/O Ports and Software 205
5.5 Conclusions 208

Problems 209

6 Interrupts and Alternatives 217

6.1 Programmed Synchronization 220
6.2 Interrupt Synchronization 234
6.3 Fast Synchronization Mechanisms 267
6.4 A Designer's Selection of Synchronization Mechanisms 274
6.5 Conclusions 277

Problems 278

7 Timer Devices and Time-Sharing 285

7.1 Timer Devices 285
7.2 Timesharing 292
7.3 Ariel Task Management 302
7.4 Conclusions 306

Problems 307

8 Embedded I/O Device Design 311

8.1 Verilog 312
8.2 MMC2001 Environment for Additional Hardware 318
8.3 A MOVE Architecture for I/O Devices 323
8.4 Examples 329
8.5 Conclusions 334

Problems 335

9 Communication Systems 339

9.1 Communications Principles 340
9.2 Signal Transmission 343
9.3 UART Link Protocols 350
9.4 Other Protocols 369
9.5 Conclusions 379

Problems 380

10 Display and Storage Systems 387

10.1 Display Systems 388
10.2 Storage Systems 397
10.3 Conclusions 421

Problems 422

Appendix 429

Index 433

Preface
The embedded microcontroller industry is moving towards inexpensive micro-
controllers with significant amounts of ROM and RAM, and some user-designed
hardware that is put on a single microcontroller chip. In these microcontrollers, the
majority of the design cost is incurred in the writing of software that will be used in
them. The memory available in such microcontrollers permits the use of real-time
operating systems. Further, C + + compilers permit the use of classes to encapsulate
the function members, their data members, and their hardware, in an object. Both of
these techniques reduce software design cost. This book aims to give the principles of
and concrete examples of design, especially software design, of the Motorola
MMC2001, a particular MCORE embedded microcontroller.

The first four chapters of the book provide background. The first chapter is aimed
at the high-level programmer who will need to acquire a reading knowledge of
assembler language to be able to debug his or her high-level language programs. The
second chapter is aimed at the hardware designer, who will need to know enough C
and C + + programming to be able to write the programs in an embedded micro-
controller. The third chapter introduces the real-time operating system, including the
use of device drivers. The fourth chapter provides information for programmers who
need to understand the issues involved in hardware design, including the design of
ASIC modules that are implemented in an MCORE chip. While many readers will
be familiar with one or more of these topics, the designer of embedded micro-
controllers needs to be familiar with all of them. These chapters bring the reader to
an adequate level of background needed for embedded microcontroller design.

The next three chapters are the core of this book. The fifth chapter discusses the
alternatives to the parallel port, and ways to program interfaces to control them. The
sixth chapter describes alternatives to interrupts, and ways to program interrupt and
other synchronization interfaces. The seventh chapter highlights the techniques for and
problems with time slice operation of embedded microcontrollers. A simple multi-
threaded time sharing system is introduced, followed by an object-oriented time
sharing system. The use of real-time operating systems multitasking is then discussed.

Chapter 8 shows how to design additional hardware to be added into the MMC2001
chip. It gives an ASIC design example, and describes a processor architecture that is
suitable for special-purpose designs. The last two chapters provide some examples of
system design. Chapter 9 discusses communication techniques and shows several
programming approaches to the MMC2001 UART device. The tenth chapter shows
the programming of display and storage systems.

This book provides a concrete understanding of hardware-software tradeoffs,
high-level languages, and embedded microcontroller operating systems. Because
these very practical areas should be understood by many if not all computer en-
gineering graduate students, this book is written as a textbook for a graduate level
course. However, it will also be very useful to practitioners, especially those who will
work with the Motorola M-CORE embedded microcontroller. It is therefore also
written for engineers who need to understand and use these microcontrollers.

IX

List of Figures

Figure Title Page
Figure 1.1 Analogy to the von Neumann computer 3
Figure 1.2 MCORE Registers 12
Figure 1.3 MCORE memory 13
Figure 1.4 Leaf and nonleaf subroutines 22
Figure 1.5 Block diagram showing the effect of an instruction 27
Figure 1.6 Photomicrograph of the MMC2001 chip 28
Figure 1.7 MMC2001 organization 29
Figure 1.8 Memory map of the MMC2001 30

Figure 2.1 Conditional statements 42
Figure 2.2 Case statements 43
Figure 2.3 Loop statements 43
Figure 2.4 A Huffman coding tree 55
Figure 2.5 An object and its pointers 71
Figure 2.6 Other Huffman codes 80

Figure 4.1 Voltage waveforms, signals, and variables 110
Figure 4.2 Some common gates 115
Figure 4.3 Logic diagrams for a popular driver and register 116
Figure 4.4 16R4 PAL used in microcomputer designs 120
Figure 4.5 Some timing relationships 121
Figure 4.6 Timing relationships for an MCORE microcontroller 122
Figure 4.7 MMC2001 address and data bus signals 123
Figure 4.8 Block diagram decoding for Table 4.1 126
Figure 4.9 Common integrated circuits used in decoders 127
Figure 4.10 Logic diagram of minimal complete decoder 128
Figure 4.11 Axiom MMC2001 evaluation board 129
Figure 4.12 A 74HC74 133
Figure 4.13 Some MSI I/O chips 133

Figure 5.1 Logic diagram for a completely decoded input device 140
Figure 5.2 Logic diagram for a completely decoded basic output device 141
Figure 5.3 Block diagram for a readable output device 142
Figure 5.4 An unusual I/O port 145
Figure 5.5 A set port 147
Figure 5.6 Address output techniques 149
Figure 5.7 MMC2001 parallel ports 150
Figure 5.8 MMC2001 EIM control ports 153
Figure 5.9 Driver arguments and associated structures 164
Figure 5.10 Traffic light 171
Figure 5.11 Mealy sequential machine 175
Figure 5.12 A linked-Hst structure 177

List of Figures XI

15
16
17
18

Figure 5.13
Figure 5.14
Figure
Figure
Figure
Figure
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7

MMC2001 port connections for a chip tester 179
The 74HC00 180
MC6818A time-of-day chip 183
An LCD display 185
Simple serial input/output ports 187
Configurations of simple serial input/output registers 188
Flow chart for series serial data output 190
Dallas Semiconductor 1620 digital thermometer 191
ISPI data, control, and status ports 192
Multicomputer communication system using the ISPI 194
Some ICs for I/O 210

Paper tape hardware 218
State diagram for I/O devices 219
Flow charts for programmed I/O 221
M C O R E edge ports 223
Infrared control 227
Magnetic card reader 228
BSR X-10 228
MMC2001 interrupt controller ports 237
INTO hardware 238
Simplified edge interrupt request path 239
Polled interrupt request path 249
General round-robin poUing process 250
Vector interrupt request path 252
Keyboard control and status ports 255
Keys and keyboards 256
ISPI network 257
Connections for context switching 269
Fast synchronization mechanisms using memory organizations 271
Indirect memory using a MCM6264D-45 273
Synchronization mechanisms summarized 275
74HC266 280

Pulsewidth modulator 286
Time-of-day module 288
Watchdog timer module 290
Programmable interval timer 292
"Centronics" parallel printer port 299

A two-bit decoder 313
Module regie built from module C74HC374 315
Parameterized xor.chain module 315
Array of instances in a module 316
Shift register 317
Counter 317
Cell library for MMC2001 hardware 321

xii List of Figures

Figure 8.8 Logic diagram for a completely decoded input device (revised) 322
Figure 8.9 Architecture for a MOVE processor 324
Figure 8.10 Architecture for a MOVE processor ALU 325
Figure 8.11 Adder module 326
Figure 8.12 Search module 330
Figure 8.13 Component modules 331
Figure 8.14 MOVE processor using search modules 332

Figure 9.1 Peer-to-peer communication at different levels 340
Figure 9.2 Drivers and receivers 345
Figure 9.3 Originating a call on a modem 349
Figure 9.4 Frame format for UART signals 351
Figure 9.5 Block diagram of a UART (IM6403) 354
Figure 9.6 Transmitter signals 355
Figure 9.7 MMC2001 UARTO 357
Figure 9.8 Synchronous formats 370
Figure 9.9 IEEE-488 bus handshaking cycle 374
Figure 9.10 SCSI timing 376
Figure 9.11 An SCSI interface 379

Figure 10.1 The raster scan display used in television 388
Figure 10.2 Character display 389
Figure 10.3 The composite video signal 389
Figure 10.4 Screen display 391
Figure 10.5 Circuit used for TV generation 391
Figure 10.6 Hardware for a more reahstic display 393
Figure 10.7 Bit and byte storage for FM and MFM encoding 398
Figure 10.8 Organization of sectors and tracks on a disk surface 399
Figure 10.9 A special byte (data = OxAl, clock pulse missing between bits 4,5)401
Figure 10.10 The Western Digital WD37C65C 403
Figure 10.11 File dump 408
Figure 10.12 SCSI commands for a ZIP-100 drive 409
Figure 10.13 PC disk organization 410
Figure 10.14 Dump of a boot sector 410
Figure 10.15 PC file organization 411
Figure 10.16 Dump of a directory 412
Figure 10.17 Dump of an initial FAT sector 414

List of Tables

Table Title
Table 1.1 MCORE Processor's move instructions
Table 1.2 MCORE arithmetic instructions
Table 1.3 MCORE logic instructions
Table 1.4 MCORE edit instructions
Table 1.5 MCORE control instructions
Table 1.6 Alias instructions for the MCORE architecture

Table 2.1 Conventional C operators used in expressions
Table 2.2 Special C operators
Table 2.3 Condition expression operators
Table 2.4 ASCII codes

Table 3.1 Task control services
Table 3.2 Shared memory control services
Table 3.3 Synchronization services
Table 3.4 Communication services
Table 3.5 Signal usage
Table 3.6 I/O device services

Table 4.1 Address map for a microcomputer
Table 4.2 Outputs of a gate
Table 4.3 Another address map for a microcomputer

Table 5.1 Traffic light sequence
Table 5.2 LCD commands

Table 6.1 MCORE interrupt vectors
Table 6.2 Ariel exception service routines
Table 6.3 Ariel internal service routines

Table 7.1 PWM Prescale Values
Table 7.2 Time and time-of-day services
Table 7.3 Service calls with a wait limit

Table 8.1 PLA pin definitions

Table 9.1 RS232 pin connections for D25P and D25S connectors

Page
13
16
18
19
20
25

39
42
42
52

91
93
94
97

100
102

124
133
134

173
185

253
263
264

287
302
305

319

347

xm

Acknowledgments

The author would Hke to express his deepest gratitude to everyone who contributed
to the development of this book. Special thanks are due to Jim Thomas, who
initiated the development of this book, and Greg Watkins, who coordinated its
development with MCORE personnel. I also acknowledge extensive and helpful
proofreading from several of these personnel, especially Steve Sobel, Kirby Kyle,
and Howard Owens at Motorola, and Phil Walsh and Alan Anderson at Micro ware.

XIV

About the Author

G. Jack Lipovski has taught electrical engineering and computer science at The
University of Texas since 1976. He is a computer architect internationally recognized
for his design of the pioneering data-base computer, CASSM, and the parallel
computer, TRAC. His expertise in microcomputers has brought international
recognition—he has served as a director of Euromicro and an editor of IEEE Micro.
Dr. Lipovski has published more than 70 papers, largely in the proceedings of the
International Symposium on Computer Architecture (ISCA), the IEEE Transactions
on Computers and the National Computer Conference. At the 25th ISCA, Dr.
Lipovski was noted as having written more papers at this prestigious symposium
than any other author. He holds 12 patents, generally in the design of logic-in-
memory integrated circuits for database and graphics geometry processing. He has
authored nine books and edited three. He has served as chairman of the IEEE
Computer Society Technical Committee on Computer Architecture, member of
the Computer Society Governing Board, and chairman of the Special Interest Group
on Computer Architecture of the Association for Computer Machinery. He has been
elected Fellow of the IEEE and a Golden Core Member of the IEEE Computer
Society. He received his Ph.D. degree from the University of Illinois, 1969, and has
taught at the University of Florida, and at the Naval Postgraduate School, where he
held the Grace Hopper chair in Computer Science. He has consulted for Harris
Semiconductor, designing a microcomputer, and for the Microelectronics and
Computer Corporation, studying parallel computers. He founded Linden Tech-
nology Ltd., and is the chairman of its board. His current interests include
parallel computing, data-base computer architectures, artificial intelligence computer
architectures, and microcomputers.

This Page Intentionally Left Blank

1

Microcomputer Architecture

Microcomputers, microprocessors, and microprocessing are at once quite familiar
and a bit fuzzy to most engineers and computer scientists. When we ask the question:
"What is a microcomputer?" we get a wide range of answers. This chapter aims to
clear up these terms. Also, the designer needs to be sufficiently famiUar with the
microcomputer instruction set to be able to read the object code generated by a C
compiler. Clearly, we have to understand these concepts to be able to discuss and
design I/O interfaces. This chapter contains essential material on microcomputers
and microprocessors needed as a basis for understanding the discussion of interfa-
cing in the rest of the book.

We recognize that the designer must have a comprehensive knowledge about
basic computer architecture and organization. But the goal of this book is to impart
enough knowledge so the reader, on completing it, should be ready to design good
hardware and software for microcomputer interfaces. We have to trade material
devoted to basics for material needed to design interface systems. There is so much to
cover and so little space, that we will simply offer a summary of the main ideas. If
you have had this material in other courses or absorbed it from your work or from
reading those fine trade journals and hobby magazines devoted to microcomputers,
this chapter should bring it all together. Some of you can pick up the material just by
reading this condensed version. Others should get an idea of the amount of back-
ground needed to read the rest of the book.

For this chapter, we assume the reader is fairly familiar with some kind of
Assembly Language on a large or small computer or is able to pick it up quickly. In
this chapter, he or she should learn about the software view of microcomputers and
embedded systems in general, and the MCORE embedded processor in particular.

1.1 An Introduction to the Microcomputer

Just what is a microcomputer and a microprocessor, and what is the meaning of
microprogramming — which is often confused with microcomputers? This section
will survey these concepts and other commonly misunderstood terms in digital sys-
tems design. It describes the architecture of digital computers and gives a definition of
architecture. Note that all italicized words are in the index and are Usted at the end of
each chapter; these serve as a glossary to help you find terms that you may need later.

2 Chapter 1 Microcomputer Architecture

Because the microcomputer is much Hke other computers except that it is smaller
and less expensive, these concepts apply to large computers as well as micro-
computers. The concept of the computer is presented first, and the idea of an in-
struction is scrutinized next. The special characteristics of microcomputers will be
delineated last.

1.1.1 Computer Architecture

Actually, the first and perhaps the best paper on computer architecture, "Preliminary
discussion of the logical design of an electronic computing instrument," by A. W.
Burks, H. H. Goldstein, and J. von Neumann, was written 15 years before the term
was coined. We find it fascinating to compare the design therein with all computers
produced to date. It is a tribute to von Neumann's genius that this design, originally
intended to solve nonHnear differential equations, has been successfully used in
business data processing, information handling, and industrial control, as well as in
numeric problems. His design is so well defined that most computers — from large
computers to microcomputers — are based on it, and they are called von Neumann
computers.

In the early 1960s a group of computer designers at IBM — including Fred
Brooks — coined the term "architecture" to describe the "blueprint" of the IBM 360
family of computers, from which several computers with different costs and speeds
(for example, the IBM 360/50) would be designed. The architecture of a computer is,
strictly speaking, its instruction set and the input/output (I/O) connection cap-
abilities. More generally, the architecture is the view of the hardware as seen by the
programmer. Computers with the same architecture can execute the same programs
and have the same I/O devices connected to them. Designing a collection of com-
puters with the same "blueprint" or architecture has been done by several manu-
facturers. This definition of the term "computer architecture" applies to this
fundamental level of design, as used in this book. However, outside of this book the
term "computer architecture" has become very popular and is also rather loosely
used to describe the computer system in general, including the implementation
techniques and organization discussed next.

The organization of a digital system Hke a computer is usually shown by a block
diagram which shows the registers, busses, and data operators in the computer. Two
computers have the same organization if they have the same block diagram. For
instance. Motorola manufactures several computers having the same architecture
but different organizations to suit different appHcations. Incidentally, the organi-
zation of a computer is also called its implementation. Finally, the realization of the
computer is its actual hardware interconnection and construction. It is entirely
reasonable for a company to change the reahzation of one of its computers by
replacing the hardware in a block of its block diagram with a newer type of hard-
ware, which might be faster or cheaper. In this case the implementation or organi-
zation remains the same while the reahzation is different. In this book we will name
the component by its full part number, Hke PMC2001HDCPU34 when we want to
discuss an actual reahzation. However, we are usually interested only in the orga-

1.1 An Introduction to the Microcomputer 3

nization or the architecture only. In these cases, we will refer to an organization as a
partial name without the suffix, such as MMC2001 without HDCPU34, and refer to
the architecture as an M C O R E architecture or a number 6812. This should clear up
any ambiguity, while also being a natural, easy-to-read shorthand.

The architecture of von Neumann computers is disarmingly simple, and the
following analogy shows just how simple. (For an illustration of the following terms,
see Figure 1.1) Imagine a person in front of a mailbox, with an adding machine and
window to the outside world. The mailbox, with numbered boxes or slots, is ana-
logous to the primary memory; the adding machine, to the data operator (arithmetic-
logic unit); the person, to the controller, and the window, to input/output (I/O). The
person's hands access the memory. Each slot in the mailbox has a paper that has a
string of, say, 8 1s and Os (bits) on it. A string of 8 bits is a byte, and four bits is a
nibble. A string of 16 bits is called a halfword, and 32 bits is called a word.

The primary memory may be in part a random access memory (RAM) (so-called
because the person is free to access its data in any order at random, without having
to wait any longer for data because it is in a different location). RAM may be static
ram — SRAM — if bits are stored in flip-flops, or dynamic ram — DRAM — if bits
are stored as charges in capacitors. Memory that is normally written at the factory,
never to be rewritten by the user, is called read-only memory — ROM. A program-
mable read-only memory — PROM — can be written once by a user, by blowing
fuses to store bits in it. An erasable programmable read-only memory — EPROM —
can be erased by ultraviolet Hght, and then written electrically by a user. An elec-
trically erasable programmable read-only memory — EEPROM — can be erased and
then written by a user, but erasing and writing words in EEPROM takes several
miUiseconds. A variation of this memory, C?MQA flash, is less expensive but can not be
erased one word at a time.

With the left hand the person takes out a word from slot or box n, reads it as an
instruction, and replaces it. Bringing a word from the mailbox (primary memory) to
the person (controller) is callQd fetching. The hand that fetches a word from box n is

f Controller j

Input/output

Program
counter

Effective
address

PrImaryJ
mefttory I

N
Data operator

^ I

Figure 1.1. Analogy to the von Neumann Computer

4 Chapter 1 Microcomputer Architecture

analogous to ihQ program counter. It is ready to take the word from the next box, box
« + 1, when the next instruction is to be fetched.

An instruction in the MCORE processor is a binary code such as 01001100.
Consistent with the notation used by Motorola, binary codes are denoted in this
book by a Ob (zero bee), followed by Is or Os. (Decimal numbers, by comparison, will
not use any special symbols.) Since all those Is and Os are hard to remember, a
convenient format is often used, called hexadecimal notation. In this notation, a Ox
(zero ex) is written (to designate that the number is in hexadecimal notation), and the
bits, in groups of 4, are represented as if they were "binary coded" digits 0 to 9 or
letters A, B, C, D, E, and F to represent values 10, 11, 12, 13, 14, and 15, respec-
tively. For example, %0100 is the binary code for 4, and %1100 is the binary code
for 12, which, in hexadecimal notation, is represented as OxC. The binary code
01001100, mentioned previously, is represented as 0x4C in hexadecimal notation.
Whether the binary code or the simplified hexadecimal code is used, instructions
written this way are called machine-coded instructions because that is the actual code
fetched from the primary memory of the machine, or computer.

However, this is too cumbersome. So a mnemonic (which means a memory aid) is
used to represent the instruction. All instructions in the M-CORE are entirely de-
scribed by one 16-bit halfword. The M C O R E instruction 0x6001 actually puts a one
into register r l , so it is written as

movi r l , #1

(The MCORE registers such as r l are described in §1.2^ The mnemonic movi is
described in §1.2.1. Strictly speaking, M C O R E mnemonics should be written in
lower case to conform with Motorola's Applications Binary Interface Standards
Manual MCOREABISM/AD.)

As better technology becomes available, and as experience with an architecture
reveals its weaknesses, a new architecture may be crafted that includes most of the
old instruction set and some new instructions. Programs written for the old com-
puter should also run, with Httle or no change, on the new one, and more efficient
programs can perhaps be written using new features of the new architectures. Such a
new architecture is upward compatible from the old one if this property is preserved.
If an architecture executes the same machine code the same way, it is fully upward
compatible, but more generally, if it executes the same mnemonic instructions, even
though they may be coded as different machine codes, then the architecture is source
code upward compatible. The 6812 architecture is source code upward compatible
from the 6811.

An assembler is a program that converts mnemonics into machine code so the
programmer can write in convenient mnemonics and the output machine code is
ready to be put in primary memory to be fetched as an instruction. The mnemonics
are therefore called assembly-language instructions. A compiler is a program that
converts statements in a high-level language either to assembly language, to be input

^ § means "Section."

1.1 An Introduction to the Microcomputer 5

to an assembler, or to machine code, to be stored in memory and fetched by the
controller.

While a lot of interface software is written in assembly language and many
examples in this book are discussed using this language, most will be written in the
high-level language C. However, quick fixes to programs are occasionally even
written in machine code. Moreover, an engineer should want to know exactly how an
instruction is stored and how the controller understands it. Therefore, in this chapter
we will show the assembly language and machine code for some assembly-language
instructions.

Now that we have some ideas about instructions, we resume the analogy to
illustrate some things an instruction might do. For example, an instruction may
direct the controller to clear register r l and write this word from r l to a box, where
the address is the sum of a register r 2 plus 20. In the M C O R E architecture an
instruction to store a word from r l into the word at the location indicated by r 2
plus twenty, is fetched as:

0x9152

where each byte essentially represents one of the instruction's parameters, and is
represented by mnemonics as

s t . w r l , (r 2 , 20)

in assembly language. The main operation — writing a word into the mailbox
(primary memory) from the adding machine (data operator) — is called memorizing
data. The right hand is used to get the word; it is analogous to the effective address.

As with instructions, assembly language uses a shorthand to represent locations
in memory. A symbolic address, which is actually some address in memory, is a name
that means something to the programmer. For example, ALPHA might be the twenty.
Then the assembly-language instruction above can be written as follows:

s t . w r l , (r 2 , ALPHA)

Other symbolic addresses and other locations can be substituted, of course. A
symboUc address is just a representation of a number, which usually happens to be
the numerical address in primary memory, or an offset of the word in primary
memory relative to a register pointer. As a number, it can be added to other num-
bers, doubled, and so on. In particular, the instruction

s t . w r l , (r 2 , ALPHA+4)

will store the word from register r l into the 24th location below that pointed to
by r 2 .

Before going on, we point out a feature of the von Neumann computer that is
easy to overlook, but is at once von Neumann's greatest contribution to computer
architecture and yet a major problem in computing. Because instructions and data
are stored in the primary memory, there is no way to distinguish one from the other

6 Chapter 1 Microcomputer Architecture

except by which hand (program counter or effective address) is used to get the data.
We can conveniently use memory not needed to store instructions — if few are to be
stored — to store more data, and vice versa. It is possible to modify an instruction as
if it were data, just before it is fetched, although a good computer scientist would
shudder at the thought. However, through an error (bug) in the program, it is
possible to start fetching data words as if they were instructions, which produces
strange results fast.

Generally, after such an instruction has been executed, the left hand (program
counter) is in position to fetch the next instruction in box « + 1. For instance, if the
pair of words shown below are in consecutive locations, they are executed sequen-
tially:

0x6001

0x9152

These instructions are indicated in assembly-language source code in successive Hnes:

movi r l , 0

s t . w r l , (r 2 , 20)

A program sequence is a sequence of instructions fetched from consecutive lo-
cations one after another. The program sequence given here cleared the word that is
five words below the word whose address is in r 2 . Unless something is done to
change the left hand (program counter), a sequence of words in contiguously
numbered boxes will be fetched and executed as a program sequence. For example, a
sequence of load and store instructions can be fetched and executed to copy a
collection of words from one place in the mailbox into another place. However,
when the controller reads the instruction, it may direct the left hand to move to a
new location (load a new number in the program counter). Such an instruction is
called Si jump, which is an example of a control instruction. Such instructions will be
discussed further in §1.2.3, where concrete examples using the M C O R E instruction
set are described. To facilitate the memory access functions, the effective address can
be computed in a number of ways, called addressing modes. M C O R E addressing
modes will be explained in §1.2.1.

1.1.2 The Instruction

In this section the concept of an instruction is described from different points of
view. The instruction is discussed first with respect to fetching, decoding, and ex-
ecuting them. Then the instruction is discussed in relation to hardware-software
trade-offs. Some concepts used in choosing the best instruction set are also discussed.

The controller fetches a word or a couple of words from primary memory and
sends commands to all the modules to execute the instruction. An instruction, then,
is essentially a complex command carried out under the direction of a single word or
a couple of words fetched as an inseparable group from memory.

