EMBEDDED TECHNOLOGY "

Embedded Controller Hardware Design

and a full, searchable version of the book!

by Ken Arnold

Embedded Controller Hardware Design

by Ken Arnold

This Page Intentionally Left Blank

A Volume in the **Embedded Technology**™ Series

Embedded Controller Hardware Design

by Ken Arnold

Newnes is an imprint of Elsevier Science.

Copyright © 2004, Elsevier Science (USA). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Elsevier Science prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

ISBN: 1-878707-52-3

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book. For information, please contact:

Manager of Special Sales Elsevier Science 200 Wheeler Road Burlington, MA 01803 Tel: 781-313-4700

Fax: 781-313-4880

For information on all Newnes publications available, contact our World Wide Web home page at: http://www.newnespress.com

10987654321

Printed in the United States of America

Dedication

This book is dedicated in memory of my father, Kenneth Owen Arnold, who always encouraged me to follow my dreams. When other adults discouraged me from entering the engineering field, he told me, "If you really like what you're doing and you're good at it, you will be successful." Nowadays I get paid to have fun doing things I'd do for free anyway, so that meets my definition of success! Thanks, Dad.

Acknowledgment

This book is a direct result of contributions from many of the students I have been fortunate enough to have in my embedded computer engineering courses at the University of California—San Diego extension. They have provided a valuable form of feedback by sharing their notes and pointing out weaknesses in the text and in-class presentations. Some sections of this text were also provided by David Fern and Steven Tietsworth.

I would also like to thank my family for supporting me and, Mary, Nikki, Kenny, Daniel, Amy, and Annie for being patient and helping out when I needed it!

Table of Contents

	Preface	x
Chapter One	Review of Electronics Fundamentals	1
	Objectives	2
	Embedded Microcomputer Applications	2
	Microcomputer and Microcontroller Architectures	4
	Digital Hardware Concepts	6
	Logic Symbols	17
	Timing Diagrams	19
	Multiplexed Bus	20
	Loading and Noise Margin Analysis	21
	The Design and Development Process	21
	Chapter One Problems	22
Chapter Two	Microcontroller Concepts	23
	Organization: von Neumann vs. Harvard	24
	Microprocessor/Microcontroller Basics	24
	The 8051 Family Microcontroller	
	Processor Architecture	27
	The 8051 Family Microcontroller	
	Instruction Set Summary	42
	Chapter Two Problems	56
Chapter Three	Worst-Case Timing, Loading,	
	Analysis, and Design	57
	Timing Diagram Notation Conventions	58
	Fan-Out and Loading Analysis—DC and AC	63
	Logic Family IC Characteristics and Interfacing	75
	Design Example: Noise Margin Analysis Spreadsheet	82
	Worst-Case Timing Analysis Example	90
	Chapter Three Review Problems	92

Chapter Four	Memory Technologies and Interfacing	95
	Memory Taxonomy	96
	Read/Write Memories	100
	Read-Only Memory	101
	Other Memory Types	104
	JEDEC Memory Pin-Outs	105
	Device Programmers	106
	Memory Organization Considerations	107
	Parametric Considerations	109
	Asynchronous vs. Synchronous Memory	110
	Error Detection and Correction	111
	Memory Management	113
	Chapter Four Problems	115
Chapter Five	CPU Bus Interface and Timing	117
	Read and Write Operations	117
	Address, Data, and Control Buses	118
	Address Spaces and Decoding	120
	Chapter Five Problems	124
Chapter Six	A Detailed Design Example	125
	The Central Processing Unit (CPU)	125
	External Data Memory Cycles	134
	Design Problem 1	138
	Design Problem 2	139
	Design Problem 3	140
	Chapter Six Problems	143
Chapter Seven	Programmable Logic Devices	145
	Introduction to Programmable Logic	147
	Design Examples	153
	Simple I/O Decoding and Interfacing Using PLDs	157
	IC Design Using PCs	157
	Chapter Seven Problems	159

Chapter Eight	Basic I/O Interfaces	161
	Direct CPU I/O Interfacing	161
	Simple Input/Output Devices	169
	Program-Controlled I/O Bus Interfacing	173
	Direct Memory Access (DMA)	175
	Elementary I/O Devices and Applications	178
	Chapter Eight Problems	181
Chapter Nine	Other Interfaces and Bus Cycles	183
	Interrupt Cycles	184
	Software Interrupts	184
	Hardware Interrupts	184
Chapter Ten	Other Useful Stuff	197
	Construction Methods	197
	Electromagnetic Compatibility	199
	Electrostatic Discharge Effects	199
	Fault Tolerance	200
	Hardware Development Tools	201
	Software Development Tools	203
	Other Specialized Design Considerations	203
	Processor Performance Metrics	206
	Device Selection Process	207
Chapter Eleven	Other Interfaces	209
	Analog Signal Conversion	210
	Special Proprietary Synchronous Serial Interfaces	211
	Unconventional Use of DRAM for Low Cost	
	Data Storage	211
	Digital Signal Processing/Digital Audio Recording	212
Appendix A	Hardware Design Checklist	215
Appendix B	References, Web Links, and Other Sources	225
	Index	229

Preface

During the early years of microprocessors, there were few engineers with education and experience in the applications of microprocessor technology. Now that microprocessors and microcontrollers have become pervasive in so many devices, the ability to use them has become almost a requirement for many technical people.

Today the microprocessor and the microcontroller have become two of the most powerful tools available to the scientist and engineer. Microcontrollers have been embedded in so many products that it is easy to overlook the fact that they greatly outnumber personal computers. Millions of PCs are shipped each year, but billions of microcontrollers ship annually. While a great deal of attention is given to personal computers, the vast majority of new designs are for embedded applications. For every PC designer, there are thousands of designers using microcontrollers in embedded applications. The number of embedded designs is growing quickly. The purpose of this book is to give the reader the basic design and analysis skills to design reliable microcontroller or microprocessor based systems. The emphasis in this book is on the practical aspects of interfacing the processor to memory and I/O devices, and the basics of interfacing such a device to the outside world.

A major goal of this book is to show how to make devices that are inherently reliable by design. While a lot of attention has been given to "quality improvement," the majority of the emphasis has been placed on the processes that occur *after* the design of a product is complete. Design deficiencies are a significant problem, and can be exceedingly difficult to identify in the field. These types of quality problems can be addressed in the design phase with relatively little effort, and with far less expense than will be incurred later in the process. Unfortunately, there are many hardware designers and organizations that, for various reasons, do not understand the significance and expense of an unreliable design. The design methodology presented in this text is intended to address this problem.

Learning to design and develop a microcontroller system without any practical hands-on experience is a bit like trying to learn to ride a bike from reading book. Thus, another goal is to provide a practical example of a complete working product. What appears easy on paper may prove extremely difficult without some real world experience and some potentially painful crashes. In order to do it right, it's best to examine and use a real design. On the other hand, the current state of the technology (surface mounted packaging, etc.) can make the practical side problematic. In order to address this problem, a special educational System Development Kit is available to accompany this book (8031SDK). All the documentation to construct an SDK is available on the companion CD-ROM. This info, along with updated information and application examples, is also available on the web site for this book: http://www.hte.com/echdbook. All the information needed to build the SDK is available there, as well as information on how to order the SDK assembled and tested.

While searching for an appropriate text for one of the courses I teach in embedded computer engineering, I was unable to locate a book that covered the topic adequately. An earlier version of this book was written to accompany that course and has since evolved into what you see here. The course is offered at the University of California, San Diego Extended Studies, and is titled "Embedded Controller Hardware Design." The same courses may also be taken in an on-line format using the Internet, and can be found at http://www.hte.com/uconline/ecd The goals of the course and the book are very much the same: to describe the *right way* to design embedded systems.

While no prior knowledge of microcontrollers or microprocessors is required, the reader should already be familiar with basic electronics, logic, and basic computer organization. Chapter one is intended as a review of those basic concepts. Next there is a general overview of microcontroller architecture, and a specific microcontroller chip architecture, the 8051 family, is intro-

duced and detailed. The 8051 was chosen because it can be interfaced to external memory, has simple timing specs, is widely used and available from a number of manufacturers. The concepts of worst-case design and analysis are described, along with techniques for hardware interfacing. A good embedded design requires familiarity with the underlying memory technology, including ROM, SRAM, EPROM, Flash EPROM, EEPROM storage mechanisms and devices. The processor bus interface is then covered in general form, along with an introduction to the 8051's bus interface. Most embedded designs can also benefit from the use of user programmable logic devices (PLD). This subject is too complex for in-depth coverage here, so PLD technology is covered from a relatively high level. The central theme of designing an embedded system that can be proven to be reliable is illustrated with a simple embedded controller. The iterative nature of the design process is shown by example, and several design alternatives are evaluated. With the central part of the design completed, the remaining chapters cover the various types of I/O interfaces, bus operations, and a collection of information that is seldom included in the usual sources, but is often handed down from one engineer to another.

I hope that you will find this book to be useful, and welcome any observations and contributions you may have. If you should find any errors in the text, or if you know of some good embedded design resources, please feel free to contact me directly by e-mail: ken.arnold@ieee.org