

Oracle® Performance
Tuning for 10gR2

Second Edition

Oracle Database Related Book Titles:

Oracle 9iR2 Data Warehousing, Hobbs, et al,
ISBN: 1-55558-287-7, 2004

Oracle 10g Data Warehousing, Hobbs, et al,
ISBN 1-55558-322-9, 2004

Oracle High Performance Tuning for 9i and 10g, Gavin Powell,
ISBN: 1-55558-305-9, 2004

Oracle SQL Jumpstart with Examples, Gavin Powell,
ISBN: 1-55558-323-7, 2005

Implementing Database Security and Auditing, Ben Natan,
ISBN 1-55558-334-2, 2005

Oracle Real Applications Clusters, Murali Vallath,
ISBN: 1-55558-288-5, 2004

Oracle 10g RAC Grid, Services & Clustering, Murali Vallath,
ISBN 1-55558-321-0, 2006

Oracle Database Programming Using Java and Web Services, Kuassi Mensah
ISBN 1-55558-329-6, 2006

For more information or to order these and other Digital Press
titles, please visit our website at www.books.elsevier.com/digitalpress!

At www.books.elsevier.com/digitalpress you can:
•Join the Digital Press Email Service and have news about

our books delivered right to your desktop
•Read the latest news on titles

•Sample chapters on featured titles for free
•Question our expert authors and editors

•Download free software to accompany select texts

Oracle® Performance
Tuning for 10gR2

Second Edition

Gavin Powell

Amsterdam • Boston • Heidelberg • London • New York • Oxford
Paris • San Diego• San Francisco • Singapore • Sydney • Tokyo

Elsevier Digital Press
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2007, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support”
and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Application Submitted.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN-13: 978-1-55558-345-3

ISBN-10: 1-55558-345-8

For information on all Elsevier Digital Press publications visit our Web site at
www.books.elsevier.com

06 07 08 09 10 9 8 7 6 5 4 3 2 1

v

Contents at a Glance

Preface xxiii
Introduction xxix

Part I: Data Model Tuning 1

1 The Relational Database Model 3
2 Tuning the Relational Database Model 27
3 Different Forms of the Relational Database Model 73
4 A Brief History of Data Modeling 81

Part II: SQL Code Tuning 89

5 What Is SQL? 91
6 The Basics of Efficient SQL 115
7 Advanced Concepts of Efficient SQL 167
8 Common-Sense Indexing 209
9 Oracle SQL Optimization and Statistics 255

10 How Oracle SQL Optimization Works 281
11 Overriding Optimizer Behavior Using Hints 347
12 How to Find Problem Queries 367
13 Automated SQL Tuning 409

Part III: Physical and Configuration Tuning 427

14 Tuning Oracle Database File Structures 429
15 Object Tuning 459
16 Low-Level Physical Tuning 475
17 Hardware Resource Usage Tuning 497
18 Tuning Network Usage 549
19 Oracle Partitioning and Parallelism 569

Part IV: Tuning Everything at Once 589

20 Ratios: Possible Symptoms of Problems 591
21 Wait Events 615
22 Latches 669
23 Tools and Utilities 685
24 The Wait Event Interface 739
25 Tuning with STATSPACK 771

vi Contents at a Glance

Appendices 589

A Sample Databases 799
B Sample Scripts 831
C Syntax Conventions 839
D Installing Oracle9i Database 841
E Sources of Information 879

vii

Contents

Preface xxiii

Introduction xxix

Part I: Data Model Tuning 1

1 The Relational Database Model 3

1.1 The Formal Definition of Normalization 3
1.1.1 Anomalies 4
1.1.2 Dependence and Determinance 5
1.1.3 First Normal Form (1NF) 6
1.1.4 Second Normal Form (2NF) 7
1.1.5 Third Normal Form (3NF) 7
1.1.6 Boyce-Codd Normal Form (BCNF) 8
1.1.7 Fourth Normal Form (4NF) 8
1.1.8 Fifth Normal Form (5NF) 8
1.1.9 Domain Key Normal Form (DKNF) 9

1.2 A Layperson’s Approach to Normalization 9
1.2.1 First Normal Form 13
1.2.2 Second Normal Form 14
1.2.3 Third Normal Form 17
1.2.4 Beyond Third Normal Form 19

1.2.4.1 One-To-One NULL Separation Relationships 20
1.2.4.2 Separating Object Collections in Entities 22
1.2.4.3 Multicolumn Composite Keys 22
1.2.4.4 Summarizing a Layperson’s Form of Normalization 24

1.3 Referential Integrity 25

viii Contents

2 Tuning the Relational Database Model 27

2.1 Normalization and Tuning 27
2.2 Referential Integrity and Tuning 28

2.2.1 Using Referential Integrity or Not 29
2.2.2 How to Implement Referential Integrity 31

2.2.2.1 Using Constraints (Primary and Foreign Keys) 33
2.2.2.1.1 Efficient Keys 34
2.2.2.1.2 Indexing Foreign Keys and Locking Issues 36
2.2.2.1.3 Sacrificing Referential Integrity for Performance 37
2.2.2.2 Coding Business Rules in the Database 39
2.2.2.2.1 Using Triggers for Referential Integrity 40
2.2.2.2.2 Using Triggers for Event Trapping 41
2.2.2.2.3 Using Stored Procedures and Functions 42

2.3 Optimizing with Alternate Indexes 44
2.4 Undoing Normalization 47

2.4.1 Denormalization 49
2.4.1.1 Reminding Ourselves about Normalization 49
2.4.1.2 Why Denormalize? 50
2.4.1.3 What to Look for to Denormalize 50
2.4.1.3.1 Mutable and Complex Joins 50
2.4.1.3.2 Mutable Joins to Find Few Columns 51
2.4.1.3.3 Adding Composite Keys 52
2.4.1.3.4 One-to-One Relationships 52
2.4.1.3.5 Many-to-Many Join Resolution Entities 53
2.4.1.3.6 Application Functions versus Entities 53
2.4.1.3.7 Static Data in Multiple Entities 53
2.4.1.3.8 Intermediary Entities Covering Summary Groupings

and Calculations 54
2.4.1.4 Denormalizing by Reversing Normal Forms 54
2.4.1.4.1 Denormalizing Beyond Third Normal Form 55
2.4.1.4.2 Denormalizing One-to-One NULL Separation

Relationships 55
2.4.1.4.3 Denormalizing Contained Object Collections 56
2.4.1.4.4 Denormalizing Multicolumn Composite Keys 57
2.4.1.4.5 Denormalizing Extra Entities for Common Columns 58
2.4.1.4.6 Denormalizing Formal Third Normal Form

Transitive Dependencies 59
2.4.1.4.7 Denormalizing Calculated Columns 60
2.4.1.4.8 Denormalizing Formal Boyce-Codd Normal Form 61
2.4.1.4.9 Denormalizing Third Normal Form Many-to-Many

Join Resolution Entities 61

Contents ix

Contents

2.4.1.4.10 Denormalizing Second Normal Form 63
2.4.2 Some Useful Tricks 64

2.4.2.1 Copying Columns between Entities 65
2.4.2.2 Placing Summary Columns into Parent Entities 66
2.4.2.3 Separating Active and Inactive Data 68
2.4.2.4 Mixing Heavily and Lightly Accessed Columns 68
2.4.2.5 Focus on Heavily Used Functionality 68
2.4.2.6 Using Views 69
2.4.2.7 Local Application Caching 70

2.4.3 Using Special-Purpose Oracle Database Objects 70

3 Different Forms of the Relational
Database Model 73

3.1 The Purist’s Relational Database Model 73
3.2 Object Applications and the Relational Database Model 75

3.2.1 The Object Database Model 75
3.2.2 The Object-Relational Database Model 78
3.2.3 The Benefits of Overlaying Objects onto Relations 78

4 A Brief History of Data Modeling 81

4.1 The History of Data Modeling 81
4.1.1 The Different Types of Data Models 82

4.2 The History of Relational Databases 85
4.3 The History of the Oracle Database 86
4.4 The Roots of SQL 87

Part II: SQL Code Tuning 89

5 What Is SQL? 91

5.1 DML and DDL 91
5.1.1 DML Statement Syntax 92

5.1.1.1 The SELECT Statement 93
5.1.1.1.1 Logical Operators 93
5.1.1.1.2 Comparison Conditions 94
5.1.1.1.3 Types of SELECT Statements 96
5.1.1.1.4 Simple Query 97
5.1.1.1.5 Filtering Queries Using the WHERE Clause 97
5.1.1.1.6 Sorting Queries Using the ORDER BY Clause 97
5.1.1.1.7 Joining Tables 97

x Contents

5.1.1.1.8 Types of Joins 98
5.1.1.1.9 Subqueries 100
5.1.1.1.10 Table and View Creation 102
5.1.1.1.11 Hierarchical Query 103
5.1.1.1.12 Set Operators and Composite Queries 103
5.1.1.1.13 Flashback 104
5.1.1.1.14 Flashback Versions Queries 104
5.1.1.1.15 Flashback Database 105
5.1.1.1.16 Using DISTINCT 105
5.1.1.1.17 The DUAL Table 105
5.1.1.1.18 NULLs 105
5.1.1.1.19 Pseudocolumns 106
5.1.1.1.20 Using Functions 107
5.1.1.2 The INSERT Statement 107
5.1.1.2.1 Multiple-Table INSERT Statements 107
5.1.1.3 The UPDATE Statement 108
5.1.1.4 The DELETE and TRUNCATE Statements 108
5.1.1.5 The MERGE Statement 109

5.2 Transaction Control 110
5.2.1 COMMIT versus ROLLBACK 111
5.2.2 Transaction Control between Multiple Sessions 113

5.3 Parallel Queries 113

6 The Basics of Efficient SQL 115

6.1 The SELECT Statement 117
6.1.1 A Count of Rows in the Accounts Schema 121
6.1.2 Filtering with the WHERE Clause 122
6.1.3 Sorting with the ORDER BY Clause 130

6.1.3.1 Overriding WHERE with ORDER BY 131
6.1.4 Grouping Result Sets 135

6.1.4.1 Sorting with the GROUP BY Clause 137
6.1.4.2 Using DISTINCT 138
6.1.4.3 The HAVING Clause 139
6.1.4.3.1 The MODEL Clause 141
6.1.4.4 ROLLUP, CUBE, and GROUPING SETS 141

6.1.5 The FOR UPDATE Clause 144
6.2 Using Functions 145

6.2.1 The COUNT Function 145
6.2.2 The DECODE Function 147
6.2.3 Datatype Conversions 149
6.2.4 Using Functions in Queries 152

Contents xi

Contents

6.2.4.1 Functions in the SELECT Statement 152
6.2.4.2 Functions in the WHERE Clause 153
6.2.4.3 Functions in the ORDER BY Clause 153
6.2.4.4 Functions in the GROUP BY Clause 155

6.3 Pseudocolumns 155
6.3.1 Sequences 155
6.3.2 ROWID Pointers 157
6.3.3 ROWNUM 157

6.4 Comparison Conditions 158
6.4.1 Equi-, Anti-, and Range 158
6.4.2 LIKE Pattern Matching 160
6.4.3 Set Membership 161
6.4.4 Groups 165

7 Advanced Concepts of Efficient SQL 167

7.1 Joins 167
7.1.1 Join Formats 167
7.1.2 Efficient Joins 172

7.1.2.1 Intersections 172
7.1.2.2 Self-Joins 175
7.1.2.3 Equi-Joins and Range Joins 175

7.1.3 Inefficient Joins 176
7.1.3.1 Cartesian Products 176
7.1.3.2 Outer Joins 177
7.1.3.3 Anti-Joins 178
7.1.3.4 Mutable and Complex Joins 178

7.1.4 How to Tune a Join 179
7.2 Using Subqueries for Efficiency 179

7.2.1 Correlated versus Noncorrelated Subqueries 179
7.2.2 IN versus EXISTS 180
7.2.3 Nested Subqueries 180
7.2.4 Replacing Joins with Subqueries 181

7.2.4.1 Remove Tables without Returned Columns
Using EXISTS 182

7.2.4.2 FROM Clause Subquery Nesting 187
7.3 Using Synonyms 191
7.4 Using Views 191
7.5 Temporary Tables 198
7.6 Resorting to PL/SQL 199

7.6.1 Tuning DML in PL/SQL 201
7.6.1.1 The RETURNING INTO Clause 202

xii Contents

7.6.2 When to Resort to PL/SQL and Cursors 203
7.6.3 Java or PL/SQL 204

7.7 Object and Relational Conflicts 206
7.7.1 Large Binary Objects in a Relational Database 206
7.7.2 Object-Relational Collections 207

7.8 Replacing DELETE with TRUNCATE 208

8 Common-Sense Indexing 209

8.1 What and How to Index 209
8.1.1 When Not to Use Indexes 210
8.1.2 Utilizing Referential Integrity Indexes 212

8.1.2.1 Alternate and Secondary Indexing 213
8.2 Types of Indexes 213
8.3 Types of Indexes in Oracle Database 214

8.3.1 The Syntax of Oracle Database Indexes 215
8.3.2 Oracle Database BTree Indexes 216
8.3.3 Read-Only Indexing 219

8.3.3.1 Bitmap Indexes 220
8.3.3.1.1 Are Bitmap Indexes Faster Than BTree Indexes? 222
8.3.3.1.2 Bitmap Index Locking 224
8.3.3.1.3 Using Composite Bitmap Indexes 224
8.3.3.1.4 Do Bitmap Indexes Overflow? 228
8.3.3.1.5 Bitmap Join Indexes 231
8.3.3.2 Clusters 231
8.3.3.2.1 Hash Clusters 232
8.3.3.2.2 Sorted Hash Clusters 232
8.3.3.2.3 Index-Organized Tables 232

8.4 Tuning BTree Indexes 237
8.4.1 Overflow and Rebuilding 238

8.4.1.1 Lost Index Space 239
8.4.2 Reverse Key Indexes 240
8.4.3 Compressed Composite Indexes 241

8.4.3.1 Compressed Indexes and DML Activity 245
8.4.4 Function-Based Indexes 247
8.4.5 NULLs and Indexes 251

8.5 Summarizing Indexes 253

9 Oracle SQL Optimization and Statistics 255

9.1 What Is the Parser? 256
9.2 What Is the Purpose of the Optimizer? 257

Contents xiii

Contents

9.2.1 What Does the Optimizer Do? 258
9.2.2 What Are Statistics? 259
9.2.3 Query Plan Access Paths 260

9.3 Rule-Based versus Cost-Based Optimization 261
9.3.1 Setting the Optimization Mode 261
9.3.2 What Was Rule-Based Optimization? 263

9.3.2.1 Outlines 264
9.3.2.2 Hints and Rule-Based Optimization 264

9.3.3 What Is Cost-Based Optimization? 266
9.3.3.1 Configuration Parameters and Cost-Based

Optimization 266
9.3.3.2 The Importance of Statistics and Realistic Statistics 267
9.3.3.2.1 Dynamic Sampling 267
9.3.3.3 Generating Statistics 269
9.3.3.3.1 What to Generate Statistics For 269
9.3.3.3.2 Tables 269
9.3.3.3.3 Indexes 270
9.3.3.3.4 Columns 270
9.3.3.3.5 The ANALYZE Command 271
9.3.3.3.6 The DBMS_STATS Package 271
9.3.3.3.7 Automated Statistics Gathering 272
9.3.3.3.8 Automatic Statistics Generation in Oracle

Database 9i 272
9.3.3.3.9 Automatic Statistics Generation in Oracle

Database 10g 272
9.3.3.3.10 The SAMPLE Clause 274
9.3.3.3.11 Timed Statistics 275
9.3.3.4 Histograms 275

10 How Oracle SQL Optimization Works 281

10.1 Data Access Methods 281
10.1.1 Accessing Tables and Indexes 282

10.1.1.1 Full Table Scans 282
10.1.1.1.1 Reading Many Blocks at Once 283
10.1.1.1.2 Small Static Tables 284
10.1.1.1.3 Reading Most of the Rows 289
10.1.1.1.4 Reading Deleted Rows 291
10.1.1.1.5 Parallel Full Table Scans 293
10.1.1.2 Sample Table Scans 296
10.1.1.3 ROWID Scans 297
10.1.1.4 Index Scans 297

xiv Contents

10.1.1.4.1 Index Unique Scan 298
10.1.1.4.2 Index Range Scan 299
10.1.1.4.3 Reverse-Order Index Range Scan 300
10.1.1.4.4 Index Skip Scan 301
10.1.1.4.5 Index Full Scan 303
10.1.1.4.6 Fast Full Index Scan 305
10.1.1.4.7 The DISTINCT Clause 307
10.1.1.4.8 The COUNT Function 308
10.1.1.4.9 Retrieving with NOT NULL 308
10.1.1.4.10 Parallel Index Scan 309
10.1.1.4.11 Index Join 311
10.1.1.4.12 Bitmap Join 312
10.1.1.5 Cluster and Hash Scans 313

10.1.2 Joining Tables 314
10.1.2.1 Join Order Execution 315
10.1.2.2 Types of Joins 315
10.1.2.2.1 Nested Loop Join 317
10.1.2.2.2 Hash Join 321
10.1.2.2.3 Sort-Merge Join 322
10.1.2.3 Mutable Join Nesting 325
10.1.2.4 Semi-Join 329
10.1.2.5 Joins to Avoid 330
10.1.2.5.1 Cartesian Join 330
10.1.2.5.2 Outer Join 331
10.1.2.5.3 Grouped Outer Join 333

10.2 Sorting 333
10.2.1 Unique Sort 334
10.2.2 ORDER BY Sort 335
10.2.3 GROUP BY Sort 336
10.2.4 Sort Merge Join Sort 336
10.2.5 Aggregate Sort 337

10.3 Special Cases 337
10.3.1 Concatenation 337
10.3.2 The IN LIST Operator 340
10.3.3 UNION, MINUS, and INTERSECT 342

11 Overriding Optimizer Behavior Using Hints 347

11.1 How to Use Hints 347
11.2 Hints: Suggestion or Force? 350
11.3 Classifying Hints 352
11.4 Influencing the Optimizer in General 353

Contents xv

Contents

11.4.1 Altering Table Scans 355
11.4.2 Altering Index Scans 356
11.4.3 Altering Joins 359
11.4.4 Cause Parallel SQL Execution 362
11.4.5 Altering Queries and Subqueries 362

11.5 Naming Query Blocks for Hints 363
11.5.1 Global Table Hints 363

12 How to Find Problem Queries 367

12.1 Tools to Detect Problems 367
12.2 EXPLAIN PLAN 368

12.2.1 What Does EXPLAIN PLAN Produce? 369
12.2.2 What to Look for in Query Plans 370
12.2.3 Problems Producing Query Plans 371
12.2.4 EXPLAIN PLAN Command Syntax 372
12.2.5 How to Create the PLAN_TABLE 376
12.2.6 What Is Not Provided in Query Plans? 376

12.3 SQL Trace and TKPROF 377
12.3.1 Setting up SQL Trace 377

12.3.1.1 Session-Level Tracing 379
12.3.1.2 Finding Trace Files 379

12.3.2 Using SQL Trace 380
12.3.3 TKPROF 383

12.3.3.1 Syntax of TKPROF 383
12.3.3.2 Using TKPROF 384
12.3.3.3 Interpretation of TKPROF Output 384

12.4 TRCSESS 392
12.4.1 End-to-End Tracing 393

12.5 Autotrace 394
12.6 Oracle Database Performance Views for Tuning SQL 396

12.6.1 Finding Cached SQL Code 396
12.6.1.1 Examining SQL Code 397
12.6.1.2 Hard-Hitting SQL Code 399
12.6.1.2.1 Using V$SQLAREA 399
12.6.1.2.2 Executions 399
12.6.1.2.3 Disk + Buffer Reads per Row 400
12.6.1.2.4 Rows per Sort 401
12.6.1.2.5 Rows per Fetch 401
12.6.1.2.6 Parses per Execution 402
12.6.1.2.7 Disk versus Logical Reads 403
12.6.1.2.8 Using V$SQL 404

xvi Contents

12.6.1.2.9 Optimizer Cost 404
12.6.1.2.10 CPU Time 404
12.6.1.2.11 Elapsed Time 405
12.6.1.3 Examining Cached Query Plans with V$SQL_PLAN 406

13 Automated SQL Tuning 409

13.1 Automatic Gathering of Statistics 410
13.2 The AWR and the ADDM 411

13.2.1 The AWR 411
13.2.2 The ADDM 413

13.3 Automating SQL Tuning 421

Part III: Physical and Configuration Tuning 427

14 Tuning Oracle Database File Structures 429

14.1 Oracle Database Architecture and the Physical Layer 429
14.1.1 The Oracle Instance 429

14.1.1.1 Buffers 430
14.1.1.2 Processes 430

14.1.2 The Oracle Database or File System Layer 432
14.1.2.1 How Oracle Database Files Fit Together 433
14.1.2.1.1 Special Types of Datafiles 434
14.1.2.2 Tuning Datafiles 435
14.1.2.3 Controlfiles 436
14.1.2.4 Tuning Redo Logs and Archive Logs 437

14.1.3 The Networking Layer 440
14.2 Tuning and the Logical Layer 440

14.2.1 Tablespaces 441
14.2.1.1 Dictionary-Managed Tablespaces 443
14.2.1.2 Locally Managed Tablespaces 443
14.2.1.2.1 Auto Extend 445
14.2.1.2.2 Minimum Extent Sizes 446
14.2.1.2.3 Block Size 446
14.2.1.2.4 Logging 446
14.2.1.2.5 Extent Management 447
14.2.1.2.6 Segment Space Management 448
14.2.1.2.7 BIGFILE Tablespaces 449
14.2.1.2.8 Avoiding Datafile Header Contention 449
14.2.1.3 Temporary Sort Space 450

Contents xvii

Contents

14.2.1.3.1 Temporary Tablespaces in Oracle
Database 9i Database 450

14.2.1.3.2 Temporary Tablespaces in Oracle Database 10g 451
14.2.1.3.3 Tablespace Groups 453
14.2.1.4 Manual Rollback and Automatic Undo 453
14.2.1.4.1 Automated Undo 454
14.2.1.4.2 Manual Rollback Segments 455

14.3 Automating Database File Structures 456
14.3.1 Oracle Managed Files 456
14.3.2 Automatic Storage Management 457

15 Object Tuning 459

15.1 Tables 459
15.1.1 Caching 460
15.1.2 Logging 460
15.1.3 Table Parallelism 461
15.1.4 Storing LOBs Separately 464
15.1.5 Dropping Columns 465
15.1.6 Deallocating Unused Space 466

15.2 Indexes 467
15.2.1 Monitoring 467
15.2.2 Index Parallelism 469
15.2.3 Fragmentation and Coalescing 470

15.3 Index-Organized Tables and Clusters 471
15.4 Sequences 472
15.5 Synonyms and Views 472
15.6 The Recycle Bin 473

16 Low-Level Physical Tuning 475

16.1 What Is the High-Water Mark? 475
16.2 Space Used in a Database 476
16.3 What Are Row Chaining and Row Migration? 477
16.4 Different Types of Objects 478
16.5 How Much Block and Extent Tuning? 479
16.6 Choosing Database Block Size 479
16.7 Physical Block Structure 481

16.7.1 What Is in a Block? 482
16.7.2 Block Space Management 484

16.7.2.1 Assessing PCTFREE Settings 489
16.7.3 Block Concurrency 490

xviii Contents

16.8 Extent Level Storage Parameters 493
16.8.1 Setting Extent Sizes 493
16.8.2 Minimum and Maximum Extents 494
16.8.3 Variable Extent Sizes 494
16.8.4 Managing Concurrency 495
16.8.5 Minimizing Rollback Resizing 495
16.8.6 Different Cache Recently Used Lists 496

17 Hardware Resource Usage Tuning 497

17.1 Tuning Oracle CPU Usage 497
17.1.1 Busy I/O and Intense CPU Activity 498

17.1.1.1 Swapping and Paging 498
17.1.2 Possible Causes of High CPU Activity 499

17.1.2.1 Poorly Tuned SQL Code 499
17.1.2.2 Poor Index Usage 500
17.1.2.3 Automated Undo and Manual Rollback 501
17.1.2.4 Temporary Sort Space 506
17.1.2.5 Row Locks and Latch Waits 507
17.1.2.6 High Network Activity 508

17.2 How Oracle Database Uses Memory 509
17.2.1 The System Global Area 514

17.2.1.1 Automated SGA Memory Management 514
17.2.1.1.1 Automated SGA Performance and Monitoring 514
17.2.1.2 Manual SGA Memory Management 516
17.2.1.2.1 The Database Buffer Cache 517
17.2.1.2.2 Database Buffer Cache Advice 518
17.2.1.2.3 The Shared Pool 522
17.2.1.2.4 The Library Cache 524
17.2.1.2.5 The Metadata or Dictionary Cache 527
17.2.1.2.6 Pinning Objects in the Shared Pool 529
17.2.1.2.7 Shared Pool Advice 529
17.2.1.2.8 The Large Pool 532
17.2.1.2.9 Shared Servers and Virtual Circuits in the

Large Pool 532
17.2.1.2.10 The Streams Pool 532
17.2.1.2.11 The Java Pool 532

17.2.2 The Program Global Area 532
17.2.2.1 Automated PGA Memory Management 533
17.2.2.1.1 Automated PGA Performance and Monitoring 535
17.2.2.2 Manual PGA Memory Management 537

17.2.3 Other Memory Buffers 538

Contents xix

Contents

17.2.3.1 The Redo Log Buffer 538
17.3 Tuning Oracle I/O Usage 540

17.3.1 RAID Arrays 545
17.3.2 Oracle Automatic Storage Management 546

17.3.2.1 ASM Performance 547
17.3.2.2 Administrative Pros and Cons of ASM 547
17.3.2.3 ASM High-Availability Features 548

18 Tuning Network Usage 549

18.1 The Listener 549
18.1.1 Listener Queue Size 550
18.1.2 Switching Off Listener Logging and Tracing 551
18.1.3 Multiple Listeners and Load Balancing 552

18.2 Network Naming Methods 553
18.2.1 Local Naming 555

18.2.1.1 Dedicated Versus Shared Servers 555
18.2.1.2 The Session Data Unit Buffer (SDU) 556

18.3 Connection Profiles 557
18.4 Shared Servers 560

18.4.1 Shared Server Configuration Parameters 560
18.4.1.1 Oracle Database 9i Shared Server Configuration 561

18.4.2 Network Performance Views 562
18.4.2.1 Shared Servers 563
18.4.2.2 Dispatchers 564
18.4.2.3 Virtual Circuits 565
18.4.2.4 Using Events 565

19 Oracle Partitioning and Parallelism 569

19.1 What Is Oracle Partitioning? 569
19.1.1 Why Is Oracle Partitioning Beneficial? 570
19.1.2 How Are Tables and Indexes Partitioned? 571
19.1.3 Oracle Partitioning Methods 573

19.1.3.1 Partitioning by Range 573
19.1.3.2 Partitioning by List 580
19.1.3.3 Hash Partitions 583
19.1.3.4 Composite Partitions 584

19.2 Tricks with Partitions 586

xx Contents

Part IV: Tuning Everything at Once 589

20 Ratios: Possible Symptoms of Problems 591

20.1 Database Buffer Cache Hit Ratio 592
20.1.0.1 Multiple Database Buffer Cache Pools 595
20.1.0.1.1 The Default, Keep, and Recycle Pools 595
20.1.0.1.2 Multiple Block-Sized Caches 599

20.2 Table Access Ratios 603
20.3 Index Use Ratio 606
20.4 Dictionary Cache Hit Ratio 607
20.5 Library Cache Hit Ratios 607
20.6 Disk Sort Ratio 608
20.7 Chained Rows Ratio 609
20.8 Parse Ratios 610
20.9 Latch Hit Ratio 611
20.10 Ratios in the Database Control 612

21 Wait Events 615

21.1 Idle Events 616
21.1.1 Idle Events in Oracle 9i Database 617
21.1.2 Idle Events in Oracle 10g Database 619

21.2 Significant Events 620
21.2.1 Buffer Busy Waits 628

21.2.1.1 Causes of Buffer Busy Waits 634
21.2.1.2 Decreasing Buffer Busy Waits 637

21.2.2 Datafile Scattered and Sequential Reads 645
21.2.3 Direct Path Reads and Writes 649
21.2.4 Free Buffer Waits 649
21.2.5 Row Cache Lock Waits 650
21.2.6 Library Cache Waits 650
21.2.7 Redo Log Waits 652
21.2.8 Undo and Rollback Waits 656
21.2.9 Enqueue Waits 658
21.2.10 Latch Free Waits 666

21.3 Wait Events in the Database Control 667

22 Latches 669

22.1 What Is a Latch? 669
22.1.1 Latch Misses, Spins, and Sleeps 670

Contents xxi

Contents

22.1.2 Latch Performance Views 673
22.1.3 Latches in Real Time 674

22.2 The Most Significant Latches 676
22.2.1 The Database Buffer Cache 677
22.2.2 The Shared Pool 680

22.2.2.1 Library Cache Latches 680
22.2.2.2 Metadata Cache Latches 683

22.2.3 The Redo Log Buffer 683
22.2.4 Network and Database Connection Latches 683

23 Tools and Utilities 685

23.1 Oracle Enterprise Manager 685
23.1.1 Diagnostics Pack 686

23.1.1.1 Event Monitoring 686
23.1.1.2 Lock Monitoring 686
23.1.1.3 TopSessions 687
23.1.1.4 TopSQL 687
23.1.1.5 Performance Manager 687

23.1.2 Tuning Pack 688
23.1.2.1 Tablespace Map and the Reorg Wizard 689
23.1.2.2 Tools Useful for Tuning SQL Code 693
23.1.2.2.1 Index Tuning Wizard 694
23.1.2.2.2 SQL Analyze 700
23.1.2.2.3 Oracle Expert 708

23.2 The Database Control 709
23.2.1 Proactive Maintenance 713
23.2.2 Performance Architecture of the Database Control 713

23.2.2.1 Statistics Automation 714
23.2.2.2 Performance Metrics 718
23.2.2.2.1 Baseline Metrics 719
23.2.2.2.2 Metric Thresholds 719

23.2.3 Advice Performance Tools 720
23.2.3.1 The Segment Advisor 721
23.2.3.2 Undo Management (Undo Advisor) 722
23.2.3.3 The Memory Advisor 723
23.2.3.4 The SQL Access Advisor 726
23.2.3.5 The SQL Tuning Advisor 727
23.2.3.6 The MTTR Advisor 728

23.2.4 Dealing with Locks 728
23.3 Spotlight 729
23.4 Operating System Tools 729

xxii Contents

23.4.1 Windows Performance Monitor 731
23.4.2 Unix Utilities 733

23.5 Other Utilities and Tools 733
23.5.1 Data Pump, Import, Export, and SQL*Loader 733

23.5.1.1 Data Pump Import and Export 734
23.5.2 Resource Management and Profiling 734
23.5.3 Recovery Manager (RMAN) 735
23.5.4 Transportable Tablespaces 735
23.5.5 Oracle Streams 735
23.5.6 Oracle RAC and Oracle Grid 735
23.5.7 STATSPACK 735

24 The Wait Event Interface 739

24.1 What Is a Bottleneck? 739
24.2 Detecting Potential Bottlenecks 740
24.3 What Is the Wait Event Interface? 741

24.3.1 The System Aggregation Layer 743
24.3.2 The Session Layer 750
24.3.3 The Third Layer and Beyond 758

24.4 Oracle Database Wait Event Interface Improvements 760
24.5 Oracle Enterprise Manager and the Wait Event Interface 762
24.6 The Database Control and the Wait Event Interface 765

25 Tuning with STATSPACK 771

25.1 Using STATSPACK 771
25.1.1 An Example STATSPACK Report 772

Appendices 589

A Sample Databases 799

B Sample Scripts 831

C Syntax Conventions 839

D Installing Oracle 9i Database 841

E Sources of Information 879

Index 881

xxiii

Preface

This book is about tuning Oracle databases. Three areas of Oracle Data-
base tuning are data model tuning, SQL code tuning, and physical and
configuration tuning. The author began his career as an applications devel-
oper, not as a systems or network administrator. As a result, this book is
written from an applications rather than an operating system perspective.

The objective of this book is to cover all three areas of Oracle data-
base tuning. Currently, no title on the market completely covers all of these
areas. This book will cover all three by explaining both problem detection
and resolution.

The approach in this book is to present something that appears to be
immensely complex in a simplistic and easy-to-understand manner.
Both reference material and examples are utilized appropriately in order to
expedite understanding for the reader.

Reference material is not overused. Oracle software has been in general
use commercially for many years and is intended to provide for a very large
and diverse customer base. Features are often not removed from Oracle
software between versions, and new features are continuously being added.
The result is that Oracle software contains a plethora of available options
and features. Using only reference information to explain Oracle Database
tuning would therefore be difficult to read, contrary to the approach of this
book, and would not provide the reader with much practical advice. This
book contains a lot of examples, with realistic databases and data, some-
times even very large amounts of data. After all, if your production database
needs tuning, you probably have more data than you first expected.

A broad-based tutorial on the subject of tuning Oracle Database is
much needed. Most database administrators have operating system admin-
istration experience, and little SQL code or data modeling experience. On
the other hand, developers have the opposite. This book targets both devel-

xxiv Preface

opers and database administrators because it includes all three areas essen-
tial to tuning Oracle installations effectively. The important factor is that all
tuning skills—both administration and development skill sets—are
required for best performance.

Being a broad-based tutorial, this title is written to reach the widest pos-
sible audience, including data modelers, developers, database administra-
tors, and system administrators. Each of these audiences is very specialized,
but all are related and interdependent. No existing titles include tuning for
data models, tuning of SQL code, and physical and configuration tuning all
in one book.

People who would benefit from reading this book are database
administrators, developers, data modelers, systems or network adminis-
trators, and technical managers. Technical people with these different
skills are often ignorant of the skills of each other. This is a great pity
because all skill sets are very much dependent on each other for well-con-
structed databases and applications. Let’s take a common example situation.
Developers cannot simply hand off SQL code tuning to database adminis-
trators when application coding is complete. Database administrators, more
often than not, know absolutely nothing about SQL code tuning. The
result is that no SQL code tuning is ever done, and too much time is spent
squeezing out an extra 10% of performance, with the database administra-
tor doing physical and configuration tuning. Targeting a few hard-hitting
SQL statements will probably result in much more than a 10% perfor-
mance improvement, which is much more productive.

What is in this book?

Data Model Tuning

What is the data model?

The data model is the table structure and the relationships between those
tables. Tuning the data model for performance involves normalization and
denormalization. Different approaches are required depending on the type
of database installation, such as OLTP (the focus of this book) or data ware-
house–type databases. Inappropriate database design can make SQL code
impossible to tune. If the data model is poor, changing the data model can
have the most profound effect on database performance. All SQL code is
constructed from the underlying tables. The big problem is that altering the
data model after completion of development is expensive because applica-
tion code may require extensive rework.

Preface xxv

Preface

Note: OLTP refers to online transaction processing. OLTP generally implies
the Internet. Within the scope of this book, OLTP is used to represent both
OLTP architectures and perhaps client/server architectures as well.

What in the data model causes problems, and what is data model tuning?

Data model tuning is most effectively performed by a combination of both
database administrators and developers. It is seldom the case that both skill
sets are involved, however. The result is that table structures are often either
development-centric (top-down), or administration-centric (bottom-up) in
design. Java development is often top-down and attempts to impose an
object structure over a relational framework. Bottom-up design often
results in overnormalization and too much granularity. People with differ-
ent skills should be working together.

What are the benefits of data model tuning?

Tuning the data model can often provide performance improvements in
excess of 100%, but it is expensive because application code can be drasti-
cally affected.

SQL Code Tuning

What is SQL code?

SQL code is the code directly accessing the database, embedded either in
applications or in stored procedures. Sometimes generic SQL code is used,
which is SQL code generated by an application on an ad hoc basis. Generic
SQL code can cause serious performance issues.

What causes SQL code performance problems, and what is SQL code
tuning?

As with data modeling, it is often confusing to determine which personnel
skill sets are responsible for SQL code tuning. This is one of the causes of
poorly performing SQL code. Performance is served most effectively when
developers and database administrators work together to a certain extent.

Poorly written SQL code is often the biggest culprit of performance
problems, because it is expensive to rectify, but it is cheaper than changing
the data model. SQL code tends to be contained inside independent blocks
within applications or stored procedures. This containment is commonly
known as embedded SQL code. Tuning SQL code is in general a two-step
process, as follows:

xxvi Preface

1. Isolation and recoding of the worst-performing SQL statements,
perhaps the slowest-performing 10% of SQL code.

2. General tuning of SQL code involving changes to SQL state-
ments throughout applications and the database, plus adjust-
ments to alternate (secondary) indexing. Alternate indexing is not
specifically part of the steps of normalization and denormaliza-
tion but can be designated as data modeling or SQL code tuning.
It is important that database administrators have some involve-
ment with respect to alternate indexing, at the very least in an
advisory capacity. Too many or inappropriately constructed alter-
nate indexes can completely destroy performance.

What are the benefits of SQL code tuning?

SQL code tuning can increase performance between 25% and 100%,
sometimes much more. In rare situations, I have seen enormous perfor-
mance improvements when tuning SQL code. One or two projects I have
worked on in the past have been sped up 30 to 500 times, for both individ-
ual SQL code statements and sometimes even the applications in general.
Additionally, SQL code is often embedded in applications in such a way
that changing the SQL code does not affect application functionality.

Physical Database and Configuration Tuning

What is physical and configuration tuning?

Physical database tuning involves hardware resource usage, networking, and
various other administration tasks, such as configuration and file distribution.

What causes physical and configuration performance problems?

Physical configuration is usually a culprit of poor performance where Ora-
cle software is installed with defaults and never altered by an expert. Devel-
opers often build table structures and SQL code. In this case, physical
tuning is relied on to solve performance problems. This is usually a mistake
because physical configuration tuning usually only provides at most 10% to
20% performance improvement.

What are the benefits of physical and configuration tuning?

Physical and configuration tuning usually only results in at most a 25%
performance improvement—and usually a lot less. The relative cost of
using physical and configuration tuning only is usually not cost effective.
Hardware upgrades are common in these situations.

Preface xxvii

Preface

Hardware Upgrades

As a side issue, there are always potential hardware upgrades, which are
sometimes a short-term solution because this approach does not necessarily
tackle the real problems. Sometimes a combination of hardware upgrades
and Oracle installation tuning is the most cost-effective option. Hardware
upgrades can often be more expensive than tuning. Three months of SQL
code tuning by an expert may be much more cost effective than purchasing
new machines, RAID arrays, and all the other bits and pieces that go with
it. Additionally, an expert can teach developers and database administrators
to build properly tuned databases and applications in the first place.

Tuning with the Database Control

Oracle Enterprise Manager has now reached its maturity in Oracle Data-
base 10g, with the introduction of the Database Control. The Database
Control runs in a browser, across a network. The Database Control is a
magnificent tool that is useful for administration, maintenance, and perfor-
mance tuning.

Sample Databases Used in This Book

Several sample databases are utilized in this publication. Some are simple and
some are highly complex, depending on their use when explaining aspects of
tuning. All details and diagrams are included in full in Appendix A.

Please note that this book does not cover operating system tuning or
data warehouse tuning, even though they may be mentioned or alluded to
in many places. I do not claim to know everything about Oracle Database
performance tuning. However, I do have 18 years of custom applications
development and database administration experience. What I do know is
shared in this book.

Note: Multiple versions of Oracle Database are covered in this book, up to
and including Oracle Database 10g, Release 2.

I received a few complaints from the first edition of this book with
respect to it not being up to date with Oracle Database 10g. This second
edition is written with the most recent production release of Oracle Data-
base 10g Release 2.

xxviii Preface

Note: The statements and opinions expressed in this book are often my
own and do not necessarily represent the opinion of any corporation, com-
pany, or anyone else. And don’t run anything without testing it first!

Let’s get started.

xxix

Introduction

Let’s begin by looking at what we need to examine in order to tune Oracle
installations:

� A tuning environment

� When to tune

� What to tune

� When to stop tuning

� Tuning from development through to production

Finally, we will briefly describe how this book is organized.

A Tuning Environment

What is a tuning environment? A tuning environment is an environment in
which your tuning efforts can be productive.

What Is Required When Tuning Oracle Database?

� Good software tools

� Skilled personnel

� Staging (testing) environments

� A realistic duplication of the production environment:

� Actual and expected production environments. These can often be
different if growth is rapid or requirements change.

xxx Introduction

� If possible, databases should be of the same size and content. If this is
impractical, then at least development and testing databases
should be proportionate to production.

� Are the statistics the same? Statistics can be copied or executed using
the same time intervals as production.

What Tools Are Available?

Excellent software tools for tuning and monitoring Oracle databases are
numerous. Oracle Enterprise Manager has many very useful bells and whis-
tles. Spotlight is excellent for visual and informative real-time monitoring of
busy production systems. Both Oracle Enterprise Manager and Spotlight are
very useful as tuning aids for physical and SQL code performance analysis.

Many other tools are available. The most important tools in the tuning
process are the developers and the administrators. That is why you are read-
ing this book. The best software tools are usually the most expensive, but
that does not mean that the less expensive tools are useless. In general, the
more expensive tools tend to do more for you. However, when something is
being done for you automatically and you do not understand the internals,
it is unlikely that your tool set can do better than well-trained, experienced
database administrators and developers.

Skilled Personnel

Good skills have their correct places. Database administrators tend to have
roots as either system administrators or developers. Each skill set has its
pros and cons. Developers tend to know a lot more about coding SQL and
building data models. System administrators have extensive knowledge of
operating systems such as UNIX and tend to concentrate tuning efforts on
the physical aspects of Oracle Database. Developers tend to concentrate on
tuning the data model and building efficiently performing SQL code.
Unfortunately, this is not always the case, because there is sometimes a ten-
dency for developers to place the burden of tuning SQL code and the data
model into the database administrators’ responsibility. Confusion can
result, and perhaps nothing gets done.

Staging (Testing) Environments

You need as many testing and staging environments as you can get. As the
resident DBA, you should not be expected to perform database tuning on
an active production database that is required to be up and usable
24x7x365. Tuning on a production database in this situation will limit your
scope and could cost you your job! Insist on at least one extra machine and

Introduction xxxi

Introduction

always test anything you do, no matter how trivial. This is the most impor-
tant difference between production and development. Developers do every-
thing quickly because they have to. Production database administrators are
expected to get their tasks done just as fast, but additionally, everything
must be perfect all the time. So make sure you insist on extra hardware and
extra time.

Duplicating Production Databases for Effective Tuning

It is absolutely essential to have the most recent and most realistic copy of a
production database for tuning purposes. Tuning on a production database
is risky, and using a development database for tuning can be completely
useless. It is extremely rare that development and production databases are
alike. Testing databases can be useful when development and production
databases cannot be made the same.

Statistics are also important. In a production environment such as an
online transactional database, the data in that production database could be
changing constantly. Even if your database is not changing too much, statis-
tics could change or rapidly become out of date. The more dynamic the
data is, the more often statistics should be updated. The SQL code opti-
mizer utilizes statistics to compile the most efficient methods of executing
SQL statements. Statistics are measurements of the data itself, such as how
large a table is and how useful an index is. When a SQL statement accesses
a table, both the table and index states are important. States of database
objects such as tables and indexes are contained within statistics. If statistics
are out of date, the optimizer is not functioning realistically. Out-of-date
statistics would have the same effect on all types of databases. It is very
important to duplicate statistics from production to tuning environments,
either by copying or by executing statistics gathering on a tuning database,
consistent with the production database.

Making a copy of a production database to a development database is
not an issue when the production database is small. When the production
database is large, however, continuous copying to a development database
could be very time consuming. Be aware that using the database import
utility for even single-schema imports on even a small database can take a
lot longer than the production database export.

Note: The DBMS_STATS package can be used to copy statistics between
databases.

xxxii Introduction

When to Tune

When should you tune? Constantly and throughout the life cycle of your
product, perhaps only when performance is a problem. On the other hand,
the database should be configured and organized properly in the first place
to avoid having to continuously put out fires. If you are always putting out
fires, the chances are you will make little progress with anything else. It is
much better to be proactive and preempt potential problems rather than to
react when they occur. It is preferable to tune your database during devel-
opment rather than after development in production.

Tuning during development will lengthen the life cycle of any system.
Why is this the case? If different tasks can be compartmentalized during dis-
tinctly separate phases of a project, such that those phases do not overlap
each other, then a better product will result. For instance, any developer
knows that changing code in order to tune SQL code, after completion of
development, could change the integrity and neatness of that code. This may
not seem too important, but the more times a piece of code is altered, the
more it will deteriorate, not only because the code is changing but also
because different coders may be changing that code. Every coder has a differ-
ent style and approach, and subsequent coding is often confused by code
written by other people and vice versa. Errors can be introduced into appli-
cation code when it is changed. The more changes, the more potential
errors.

We do not live in a perfect world. Distinct lines cannot be drawn
between development and production. Changing requirements often cause
changes in different project phases, making gray areas. There is often over-
lap between development and production.

It is best to tune during development, particularly data models and SQL
code. When tuning after development in a postdevelopment requirements
change phase, or in production, tuning should be done carefully, especially
when it comes to changing application code. If tuning cannot be done fully
in the development cycle, which it probably cannot, take the following
approach when tuning in production:

� Set performance targets.

� Use test environments.

� Use test environments that match production as closely as possible.

� Tune with care.

Introduction xxxiii

Introduction

What to Tune in Production

There are five general stages in tuning an Oracle production database:

1. Resolve obvious bottlenecks.

2. Examine basic configuration. Configuration is often inappropri-
ate as a result of initial Oracle installation and database creation.

3. Physical space can be wasted. Often a database can be better orga-
nized and become much smaller, even as much as one-tenth of
current size, and sometimes more.

Note: Oracle Database is becoming more automated with respect to
physical configuration.

4. Poorly written SQL code in both applications and in the data-
base can only be counteracted partially by physical and configu-
ration tuning. SQL code tuning can help performance
immensely but should be performed in development and testing
environments first.

5. Data model tuning may be required if SQL code tuning does not
resolve production performance problems. As with SQL code
tuning, data model tuning should be done in development and
testing environments first.

The easiest approach to tuning during production is Oracle Database
physical and configuration tuning. In general, tuning the data model is the
most expensive because it will require changes to SQL code, application
code, and the production database. If SQL code is not tunable, then your
data model may be too granular or not properly normalized. Physical and
configuration tuning on your database server will not require SQL code and
data model tuning changes. However, the purely database-oriented tuning
approach may eventually lead to expensive hardware upgrades, which can
often be the best tuning option. However, costs can sometimes be greater
when the hardware becomes so complex that highly skilled, expensive
administrators are required. Hardware upgrades are often a short-term solu-
tion, and their cost effectiveness can be appropriate if the software life cycle
is short or money is tight, assuming the hardware is reusable or sellable.

xxxiv Introduction

When to Stop Tuning During Production

When do you stop tuning? This is always debatable. You could stop tuning
when performance targets are met, depending on what needs to be tuned.
The resolution of obvious bottlenecks is a clear indicator that no more
tuning is required. Physical tuning (i.e., configuration, physical database
structure, networking, and hardware bottleneck issues) can often only
amount to as little as 10% of total effective tuning activity, both in devel-
opment and production.

The simple approach to when to stop tuning is to teach your developers
to build properly tuned SQL code from the outset, and make sure that the
data model is sound before you do even that. This is probably impossible,
but the more SQL code tuning that is done during the development pro-
cess, the fewer problems you will have later on. Many software projects are
discarded because they take too long to develop. However, many other soft-
ware projects are thrown out or rewritten because they do not meet accept-
able performance standards, rendering them useless. Tuning data models
and SQL code after completion of development can sometimes simply be
too expensive.

When to stop tuning depends on your situation and the skills you have.
If the company and your database size and activity grow, you will have per-
formance problems anyway, but you can be better prepared. Let us examine
the steps in tuning production databases in order to decide when to stop
tuning the different areas.

Bottlenecks

Solving performance bottlenecks is usually reactive rather than proactive.
The term bottleneck is technical computer jargon that usually deals with a
particular facet of your environment, which is overloaded, be it within or
outside of your database.

Note: Stop tuning when the bottleneck is removed.

Configuration

If there are immense configuration and physical problems, some downtime
may be required. Configuration issues are easier to resolve than physical
problems, and both are easier than tuning data models and SQL code.

Introduction xxxv

Introduction

Configuration can be as simple as setting parameters correctly in the
Oracle Database configuration parameters file and Oracle networking soft-
ware configuration files. Make absolutely sure that configuration parame-
ters are completely understood before changing them. First, incorrectly
formed configuration can prevent the database from starting and perhaps
cause a crash. Second, some parameters have very specific functions; incor-
rect settings can cause a totally different and probably undesired effect.

Stop tuning when configuration parameters are correct. Experiment-
ing with changing configuration parameters on a production database is
risky, so test, test, test!

Physical Space Usage

Physical space usage and growth tuning for performance includes tuning of
datafiles, redo logs, archive logs, and rollback segments.

Note: Manual rollback is deprecated. Use automated undo.

Resolving physical problems with space usage and growth can cause a lot
of downtime but may be the only solution. Small databases have small ini-
tial configuration parameter settings. If those small databases suddenly start
to get very busy, then immense problems can occur. The sooner the physical
issues are resolved for a rapidly growing database, the better. If the database
continues growing, the temptation is often to spend enormous amounts of
money on hardware. Organizing a database physically can essentially save a
lot of disk space.

Note: The current trend in Oracle Database is veering toward auto-
mated management of physical space. As a result, physical space manage-
ment to save disk space is becoming less important.

The smaller a database is, the less disk space is needed to search through
when finding data, thus the faster your data searches will be. Additionally,
highly fragmented data can cause a lot of “bouncing around” when retriev-
ing data.

Stop tuning when performance is acceptable, as long as requirements
for uptime are not compromised. Only extreme situations of database
growth cause problems with use of physical space.

xxxvi Introduction

SQL Code Tuning

Poorly constructed SQL code usually causes most database performance
problems. When SQL code is poorly tuned, database administrators can do
little to improve performance using physical and configuration tuning
alone. Database administrators can tune SQL code contained in PL/SQL
stored procedures. The most ideal approach to SQL code tuning is to teach
your developers to tune SQL code as they build applications.

Sometimes developers will build applications rapidly without much
consideration for building efficient SQL code. Developers do not really
have extra time to make sure the SQL code is as efficient as possible. Most
production database administrators tend to have roots as either operating
system or network administrators. These skills are essential for production
database administration, and there’s the rub! The administrators sometimes
do not know how to tune SQL code, and they cannot change the applica-
tion code because the code belongs to the developers. The developers do
not have the time or the skills to produce efficient SQL code. Most Oracle
Database tuning experts perform physical tuning on the database and the
operating system, not SQL code tuning. The result is often only a 10% per-
formance improvement. I have seen SQL code tuned for an application in
its entirety and performance increases of 30 to 500 times. That is 500 times
faster. One hundred percent is twice as fast. This is an extreme from a con-
sulting job I worked on a few years ago. There were other projects in the
past with similar performance issues.

Stop tuning SQL code when development stops, if you can. Teach and
encourage your developers to write efficient SQL code during development.
It is much more difficult and expensive to tune SQL in production, espe-
cially when SQL is embedded in applications.

Data Model Tuning

SQL code performance depends largely on the data model, especially if the
data model is poorly structured. Beware of copying older, previously
invented data models or using a data model because it is the accepted stan-
dard for a particular application. Relational databases, normalization, and
denormalization have existed for many years. However, the structure of the
applications overlaying those relational databases has changed recently and
is still changing. What in the past was COBOL and C is now C++, Java,
Perl, and even object Perl.

Introduction xxxvii

Introduction

Object-oriented design application development languages such as Java
tend to confuse what used to be accepted relational database design. Object
applications tend to impose an unwilling structure on top of a relational
database. The result is a data model that is a hybrid between relational and
object database methodologies. This hybrid structure can be an advantage
for OLTP and client/server transactional applications but a performance
hog for any type of reporting or data warehouse applications.

I have seen many OLTP applications with Java object structures
imposed onto relational databases. Sometimes this top-down application to
data model approach works extremely well, sometimes very poorly. Object
methodology promotes breaking things down into their smallest manage-
able parts. This approach can be a complete disaster for efficiency in a rela-
tional database. Imposing an object structure onto a relational database in
its purest form is relational database normalization in its extreme. In these
situations, third, fourth, and fifth normal forms are common. A partial
solution is often two databases—one OLTP and the other a data ware-
house—doubling costs. The second database is a denormalized data ware-
house database. Denormalizing a database can enhance performance from a
reporting perspective.

Tuning the data model is the most difficult and most expensive option
because SQL code depends on the structure of the data model; extensive
application code changes can result. Tuning the data model is more effec-
tive than physical and configuration tuning but can easily escalate into a
full rewrite.

If further data model tuning is required after production release, you
may want to look at data warehouse–type options. Tuning the data model
for an OLTP database after production release will generally involve a
partial or complete rewrite. A data warehouse–type approach generally
involves duplicating a database and restructuring that duplicate for out-
put performance in terms of processing many rows at once. Transactional
databases in OLTP and client/server environments are often required to
be tuned for small-response reaction time to keep your customers
happy—very few rows retrieved at a time. If a Web page takes more than
seven seconds to load, then your customers may lose interest and go else-
where, straight to the competition. Data warehouse databases, however,
are designed for rapid throughput of large amounts of information for
analytical and reporting purposes.

Stop tuning your data model, preferably before development starts
or before the first production release. Do not build your relational
database to mimic the object structure of a Java application because

xxxviii Introduction

relational and object methodologies are completely opposed to each
other with respect to methodology. Object structures break down for
simplicity, and relational structures are efficient when summarizing infor-
mation into groupings. These structural types are completely contrary to
each other.

So when should you stop tuning in general? As long as there are prob-
lems or if users are not satisfied—never! Tune whenever something
changes if there are problems or when you have not reached a perfor-
mance target. There is no harm in going past a target level of perfor-
mance. Then again, time might be better utilized doing other tasks. You
should stop tuning the data model before SQL code development starts.
You should stop tuning SQL code when development finishes and the
code goes into production.

Tuning from Development to Production

Remember this: Probably most Oracle client installations are very small
databases, even for some large companies. For instance, many databases for
a lot of the Silicon Valley–based dot-com companies of the late 1990s were
well under 10 gigabytes, sometimes even as small as being less than a single
gigabyte. They expected growth. The point is this: Many databases are
small. A lot of Oracle clients are small companies. The result is that Oracle
installation software and database creation tools tend to cater to those small
companies. Oracle Corporation’s strategy in this respect is perfectly sensible
because the smaller companies lack the funds for highly skilled staff. The
smaller companies need more done for them. Large end-user software ven-
dor companies often take this approach. The result is that in the Oracle
installation software, most of the configuration parameters and physical set-
tings for files are much too small for any database that experiences a reason-
able amount of growth. If a database is over 10 Gb, is highly active, or is
growing rapidly, then configuration created by Oracle installation software
and database creation tools is probably inappropriate.

Tuning an Oracle database is not just tuning the database. As we can see
from the stages of tuning already discussed, tuning the database also
includes tuning the data model, SQL code, and thus applications. Tuning
Oracle Database is a combination of tuning both the Oracle database server
and the applications accessing that database. There is a process of tuning an
Oracle Database environment including a large number of separate steps or
phases. These phases are repetitive but should be performed as closely as
possible to the sequential order as shown in Figure I.1.

Introduction xxxix

Introduction

The Steps in Tuning

Tuning is a set of distinct steps, which can be repeated in any order but are
preferably completed in the order shown in Figure I.1. The order and exist-
ence of these steps could vary depending on the application type, skills
resources, time for development, and capacity of available hardware.

The steps in tuning an Oracle installation should more or less follow the
same path as in the development cycle of software development, namely
analyze, design, build, test, implement, and verify.

Data Model Tuning

� A data model is used to represent a set of business rules. Business
rules are implemented using entities (tables) and the enforcement of
relationships between those entities. Additionally, business rules can
be implemented using database-encapsulated stored procedures plus
event or state change triggers.

Note: Using triggers can cause serious performance problems.

Figure I.1
The steps in tuning

an Oracle
installation

xl Introduction

� Business rules can be tuned into a more mathematically correct
design using normalization and referential integrity. Referential integ-
rity ensures that relationships between data items are conformed to.

� Denormalization is the removal of the more granular results of nor-
malization. Granularity causes complex mutable multiple table joins.
Multiple table joins can be difficult to tune effectively.

� Alternate or secondary indexing to cater for SQL code not complying
directly with a normalized structure can cause problems. This is com-
mon for object applications. This step is part of both the data model-
ing and the applications coding stages, not either. Alternate indexing
is generally enhanced in the applications development stage but
should be strictly controlled. Creating too many indexes can cause as
many problems as it resolves.

� Constraints, PL/SQL stored procedures, functions, and event or state
change triggers should be tuned for performance in accordance with
entities, relationships, and alternate indexing structures. Triggers are
best avoided. Database-level coded PL/SQL will perform better in
some situations than others. PL/SQL can be compiled into binary,
stored in the database as BLOB objects, possibly increasing PL/SQL
execution performance. PL/SQL should only cover business rule
functionality and database access code, not applications functionality.
Business rules sometimes match relational database structure, whereas
applications functionality often does not.

� Implementing referential integrity:

� Should referential integrity be implemented? Not necessarily. Refer-
ential integrity can ensure the correctness of data, but it will slow
down data changes somewhat because of verification.

� How should referential integrity be implemented? It can be imple-
mented using constraints or triggers. Constraints are the faster
and much more reliable method. All sorts of things can go wrong
with triggers, and their performance is highly questionable.

� Can referential integrity be partially implemented? Yes, it can. Very
small tables containing static, referential data can often have their
foreign keys removed. Additionally, noncritical tables or highly
used tables can avoid referential integrity to help performance.
Generic static tables, when used, probably should avoid referential
integrity as well. An example of a generic static table is shown in
Figure I.2. These types of tables, in the interests of performance at
the database level, are best avoided.

Introduction xli

Introduction

� Where should referential integrity be implemented? Referential integ-
rity can be enforced in the database or at the application level. The
benefit of implementing referential integrity at the database level
is simple implementation in one place and one place to change in
the future. Developers may not necessarily agree with this philoso-
phy, but database administrators generally would.

SQL Code Tuning

SQL coding requirements should fit the specifications of the data model
based on entities, relationships, and alternate indexing. SQL code can be in
both database-based PL/SQL coding and applications-embedded SQL
code. What are the steps in tuning SQL code?

� Identify the worst-performing SQL code and tune only those SQL
statements.

� When the worst-performing code is tuned, SQL code can be tuned in
general if there is still a problem.

� Create, remove, and tune alternate indexing to suit SQL code perfor-
mance requirements without jeopardizing the data model. When

Figure I.2
Using static generic

entities

xlii Introduction

matching SQL code to indexing, it is best to attempt to map SQL
code filtering, sorting, and joining to primary and foreign index
structures (referential integrity). Using already existing referential
integrity keys will reduce the number of alternate indexes. More
indexes on tables will speed up data selection but will slow down data
updates, sometimes drastically. The fact is that if SQL code is not uti-
lizing referential integrity indexing, there may be a mismatch
between the data model and application requirements, or the data
model is simply inappropriate.

� How are individual SQL code statements tuned in Oracle Database?

� Often the most effective method is to examine the SQL code by
hand and make sure that the SQL statements conform to indexing
in the database, namely in selecting, filtering, sorting, and group-
ing clauses. The more complex SQL code is, the more difficult it
will be to tune in this manner. In fact, complex SQL code is
sometimes beyond the capabilities of the optimizer.

� Use the Oracle Database EXPLAIN PLAN command to examine
the optimizer’s best execution path for SQL code. EXPLAIN
PLAN will show where potential improvement can be made. A
simple query plan is shown in Figure I.3.

� Trace files and TKPROF can be used to tune SQL code, but tracing
produces excessive amounts of information. Tracing should be a last-
resort method of tuning SQL code.

Figure I.3
A simple query

plan using
EXPLAIN PLAN

Introduction xliii

Introduction

� Make sure coders use bind variables in both PL/SQL and applica-
tions-embedded SQL code. Bind variables are not as significant after
Oracle Database 8i Release 1 (8.1.6) because of the cursor-sharing
configuration parameter, but forcing cursor sharing lowers statistical
accuracy and deteriorates optimizer performance.

� Beware of generic or generated SQL code, which is common at the
applications level. This type of embedded SQL code can be very diffi-
cult to tune.

Configuration and Physical Tuning

Configuration Tuning
Possibly one of the most effective tuning practices, especially as far as con-
figuration tuning is concerned, is proper initial Oracle installation and con-
figuration of your databases. Do not leave your Oracle installation as Oracle
installation software and database creation tools create it. It might be expe-
dient to use the Oracle Database creation tool for a first experimental data-
base creation only.

Note: The database creation tool (Database Configuration Assistant)
has become more sophisticated over time. However, most database admin-
istrators still prefer to use scripting because it can be modified at will and
executed in parts. This approach is no longer necessary except for highly
complex installations.

The database creation tool creates a fairly well-organized physical and
configured structure, but its default settings are geared toward very small
databases. Take the time to properly organize the database and its configu-
ration initially, and you will be less likely to have large amounts of down-
time later on.

Physical Tuning
Physical tuning involves the removal of competition for resources. Physical
tuning covers the following areas:

� Physical space usage and proper storage structure usage in terms of
how blocks are used and reused. Tuning at the block level depends on
the application type.

� Growth management of the database and capacity planning must be
monitored.

xliv Introduction

� Setting files such as log files and rollback segments to sizes and fre-
quencies as appropriate to database usage.

Note: Manual rollback is deprecated. Use automated undo.

� There can be contention between processes, memory usage, and data.
Some of this type of tuning falls within the scope of both configura-
tion and physical tuning.

� I/O contention can be dealt with in the file system by spreading the
I/O load using multiple disks or RAID arrays. RAID arrays are most
efficiently used with random access on data spaces and sequential
access on index spaces. In non-RAID systems, it is sensible to sepa-
rate data and index spaces because both are read more or less concur-
rently. Oracle partitioning is a classic example of this type of tuning.

How Is This Book Organized?

This book is broken into four parts: relational data model tuning in Part I,
SQL code tuning in Part II, physical and configuration tuning in Part III,
and tuning everything at once in Part IV. The object in this book is to
cover all aspects of tuning and Oracle installation. Each chapter focuses on
a particular aspect of tuning Oracle Database. As you read through each
part, each chapter will build on the preceding chapter, digging deeper step
by step.

Part I. Data Model Tuning

Chapters 1 and 2 introduce and offer tuning solutions for relational data
modeling. Chapter 3 looks at alternative data modeling methodologies, and
Chapter 4 provides some historical background.

Chapter 1. The Relational Database Model

Introduces normalization and referential integrity.

Chapter 2. Tuning the Relational Database Model

Tuning using efficient normalization, referential integrity index-
ing, alternate indexing, denormalization, and some useful tricks.

Chapter 3. Different Forms of the Relational Database Model

Introduction xlv

Introduction

This chapter provides a contrast of relational, object, and object-
relational concepts.

Chapter 4. A Brief History of Data Modeling

This is a brief history of relational data modeling and the roots of
SQL.

Part II. SQL Code Tuning

The format in Part II is to first describe problems and then offer solutions
and tools to help find those solutions. Chapters 5 to 7 present SQL and
describe how to tune SQL code without having to dig into the depths of
the Oracle optimizer. Chapter 8 looks at indexing. Chapters 9 to 11 dig
into the Oracle optimizer, statistics, and hints. Chapters 12 and 13 present
tools used to help find SQL code performance problems. Solving as
opposed to finding SQL code problems is in preceding chapters of Part II.

Chapter 5. What Is SQL?

A brief description of SQL and the basics that Oracle SQL can
accomplish. Everything is explained in detail and using practical
examples.

Chapter 6. The Basics of Efficient SQL

This chapter is the most important chapter in Part II: SQL Code
Tuning. This chapter will teach you step by step how to write
properly tuned SQL code. Robust realistic data sets and Oracle
Database schemas are used to prove all aspects of tuning. Some
tables in schemas are in excess of 1 million rows. There is plenty
of data to tune with.

Note: The number of rows in tables varies as the book progresses.

Chapter 7. Advanced Concepts of Efficient SQL

This chapter expands on the details learned in Chapter 6, by intro-
ducing more complex concepts, such as joins and subqueries.

Chapter 8. Common-Sense Indexing

Teaches how to build indexes properly, building on tuning of
SQL code taught in preceding chapters. Indexing and index types

xlvi Introduction

are analyzed, explained, and compared for speed in relation to
various database activities.

Chapter 9. Oracle SQL Optimization and Statistics

Covers very deep-level tuning of SQL code in Oracle with an
emphasis on using the optimizer, without wasting time on too
many nitty-gritty details. This chapter describes how the Oracle
SQL code optimizer functions and what can be done to influence
the optimizer. If you have read, understood, and implemented
the advice and pointers made in previous chapters, you may never
need to understand the optimizer on this level.

Chapter 10. How Oracle SQL Optimization Works

This chapter examines and explains the ways in which Oracle
Database internally accesses data. An understanding of the vari-
ous access methods will help when deciphering query plans.

Chapter 11. Overriding Optimizer Behavior Using Hints

This chapter examines and explains the ways in which Oracle
Database internally accesses data. An understanding of the vari-
ous access methods will help when deciphering query plans.

Chapter 12. How to Find Problem Queries

Describes the ins and outs of optimizer query plans using
EXPLAIN PLAN, Tracing, and TKPROF. Additional details cov-
ering Oracle V$ performance views for SQL code tuning are also
provided.

Chapter 13. Automated SQL Tuning

A brief picture of automated SQL code tuning tools, contained
within the Database Control.

Part III. Physical and Configuration Tuning

As in Part II, the format in Part III is to first describe problems and then
offer solutions and tools to help find those solutions. Part III describes how
to build cleanly structured Oracle installations.

Chapter 14. Tuning Oracle Database File Structures

Tuning Oracle Database file structures encompasses both the
physical and logical layers of tuning from the Oracle Instance and

Introduction xlvii

Introduction

Oracle Database file system layers through to logical layers and
tablespaces.

Chapter 15. Object Tuning

Object tuning covers database objects such as tables, indexes,
sequences, and synonyms. Numerous tweaks can be made to vari-
ous database objects to tune for performance.

Chapter 16. Low-Level Physical Tuning

This chapter covers physical block and extent structures and how
to build a physical structure from the ground up.

Chapter 17. Hardware Resource Usage Tuning

Hardware resource usage tuning is introduced, covering tuning
CPU usage, Oracle Database memory cache buffers, and finally
tuning of I/O activity.

Chapter 18. Tuning Network Usage

This chapter covers the Listener, network naming methods, and
shared server configuration. There are numerous ways in which
Oracle network connectivity can be tuned for better perfor-
mance, depending on requirements.

Chapter 19. Oracle Partitioning and Parallelism

Oracle Partitioning allows for breaking up of large tables into sep-
arate objects, which can have SQL code executed on them in par-
allel for excellent performance improvements.

Part IV. Tuning Everything at Once

This is where you get to see all aspects of tuning put together and into
practice.

Chapter 20. Ratios: Possible Symptoms of Problems

Traditionally, Oracle Database practitioners use large numbers of
ratios to assess and provide pointers as to what and where to tune.
The secret is to not tune the ratios themselves. Use the ratios as
indicators of and pointers to potential problems.

Chapter 21. Wait Events

A wait event occurs when a process or session is forced to wait for
another to finish using something both processes require.

