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Chapter 1

Introduction
There exists a large body of literature focused on teaching both
general embedded systems principles and design techniques, and
tips and tricks for specific microcontrollers. The majority of this
literature is targeted at small 8-bit microcontrollers such as the
Microchip PIC, Atmel AVR and the venerable 8051, principally
because these devices are inexpensive and readily available in
small quantity, and development hardware is available from a
variety of sources at affordable prices. Historically, higher-per-
formance 16- and 32-bit parts have been hard to obtain in small
quantities, their development toolchains have been prohibitively
expensive, and the devices themselves have been difficult to de-
sign around, with tight electrical and timing requirements on
external circuitry necessitating very careful hardware design. A
dearth of royalty-free, open-source operating system and library
code for these processors also meant that developing a new project
was a huge from-the-ground-up effort.

However, over the past few years we have simultaneously
seen the size and price of 16- and 32-bit cores fall, and the devel-
opment of many highly integrated parts that enable the easy
development of almost single-chip 32-bit systems. In addition,
many readily available appliances now contain a well-documented
32-bit microcontroller with ample flash memory, RAM and a
variety of useful peripherals such as color LCDs, network inter-
faces and so forth, which can be exploited by the cunning
embedded developer as a ready-made hardware platform. Cross-
platform assemblers, high-level language compilers and
debugging tools are available free for the downloading and will
run satisfactorily on the average desktop PC; it is no longer nec-
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essary to spend tens of thousands of dollars on proprietary com-
pilers and special workstations on which to run them.

As these systems have increased in complexity, to a certain
extent the degree of specialization required to develop them has
decreased. This might sound paradoxical, but consider the fact
that high-end 32-bit embedded systems, and the tools used to
develop for them, are effectively converging with the low-end
mainstream PC. The skills required to develop an application for
embedded Linux, NetBSD or Windows CE are by intention not
radically different from the skills used in developing applica-
tions for the desktop equivalents of these operating systems
(though of course different coding best practices usually apply in
embedded environments). In most cases there are mature off-
the-shelf operating systems available ready-to-run for the common
hardware reference designs and manufacturer-supplied evalua-
tion boards, so we are usually spared even the initial bring-up
phase and much of the effort required to debug device drivers.

Given a working hardware platform with reasonably well-
documented components, the only task for which traditional
embedded expertise is absolutely necessary is to create the nec-
essary bootstrap and “glue” code to get a C run-time working on
the target platform, and perhaps create drivers for some periph-
erals (and as discussed above, even this step can often be skipped
if you are building around a reference platform). From that point
on, most of the programming work to be done runs in the appli-
cation layer and can be accomplished using high-level languages.
There is a large workforce available almost ready-trained for this
type of coding.

The end result of this evolutionary process is that it is now
well within the financial and logistical reach of a small company
or even an individual hobbyist or student to develop (or at least
repurpose) advanced embedded systems with exciting function-
ality provided by these high-performance parts. Unfortunately,
however, device vendors’ support infrastructures are still geared
towards large-scale commercial developers. This raises two ma-
jor obstacles:


