

Embedded System Design
on a Shoestring

Achieving High Performance with a Limited Budget

This Page Intentionally Left Blank

Embedded System Design
on a Shoestring

Achieving High Performance with a Limited Budget

by Lewin A.R.W. Edwards

A m s t e r d a m B o s t o n H e i d e l b e r g L o n d o n N e w Yo r k O x f o r d

P a r i s S a n D i e g o S a n F r a n c i s c o S i n g a p o r e S y d n e y To k y o

Newnes is an imprint of Elsevier Science.

Copyright © 2003, Elsevier Science (USA). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written,
Elsevier Science prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

ISBN: 0-7506-7609-4

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:

Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803
Tel: 781-313-4700
Fax: 781-313-4882

For information on all Newnes publications available, contact our World Wide Web
home page at: http://www.newnespress.com

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Contents
Acknowledgments .. iv

Chapter 1: Introduction .. 1

Chapter 2: Before You Start—Fundamental Decisions 9

General Microcontroller Selection Considerations 9
Choosing the Right Core ... 13
Building Custom Peripherals with FPGAs .. 19
Whose Development Hardware to Use—Chicken or Egg? 21
Our Hardware Choice—The Atmel EB40 ... 29
Recommended Laboratory Equipment .. 30
Free Development Toolchains .. 32
Free Embedded Operating Systems ... 36
GNU and You—How Using “Free” Software
Affects Your Product ... 44
Choices of Development Operating System ... 51
Special PCB Layout and Initial Bring-Up Rules
for the Shoestring Prototype ... 53
Hints for Surface-Mounting by Hand ... 62
Choosing PCB Layout Software ... 65

Chapter 3: The GNU Toolchain ... 71

Building the Toolchain ... 71
Overview of the GNU Build Environment ... 76
GNU Make and an Introduction to Makefiles ... 80

v

Gas—The GNU Assembler .. 87
Comments ... 88
Symbols and Labels .. 88
Code Sections and Section Directives ... 90
Pseudo-Operations .. 96
Conditional Assembly Directives ... 108
Macros, Assembler Loops and Synthetic Instructions 111

Ld—GNU Linker .. 114
Introduction ... 114
The SECTIONS command .. 118
Symbol Assignments, Expressions and Functions 119
Output Section Descriptions .. 124
Overlay Section Descriptions ... 127
Emitting Data Directly into the Executable ... 131
Input Section Descriptions .. 132
Named Memory Regions ... 134
Special Considerations for C++ ... 136
Further ld Information ... 137

Converting Files with Objcopy ... 138
Objdump—Check Your Executable’s Layout .. 139
Size—Check the Load Size of Your Executable .. 143
Gdb—The GNU Debugger ... 143

Invoking and Quitting gdb and Loading Your Program 145
Examining Target Memory ... 148
Breakpoints and Other Conditional Breaks .. 149
Getting Further Help .. 151

Chapter 4: Example Firmware Walkthroughs
and Debugging Techniques... 153

A Quick Introduction to ARM and the Atmel EB40 153
First Step—the LED Flasher (in Assembler) .. 158

Contents

vi

Bringing Up a Simple C Program—
The LED Flasher (in C) ... 167
Writing a Simple Flash-Loader
(and Inspecting Memory with gdb) ... 172
A Simple ROM-Startup Program ... 180
A Complete ROM-Startup Application in C .. 185
Blind-Debugging Your Program .. 194
Miscellaneous Glue—Handling Hardware Exceptions
in C with gcc .. 199

Chapter 5: Portability and Reliability Considerations 203

Chapter 6: Useful Vendors and Other Web Resources 221

Index of CD-ROM Contents ... 223

About the Author... 227

Index... 229

Contents

vii

This Page Intentionally Left Blank

ix

Acknowledgments
The author would like to extend his sincere thanks to the follow-
ing individuals and corporations who have contributed directly
and indirectly to the publication of this book:

■ Atmel developer support

■ Cadsoft Computer, Inc.

■ Cirrus Logic developer support

■ Michael Barr

■ Don McKenzie of dontronics.com

■ Spehro Pefhany

■ Rob Severson of USBmicro

■ Sharp Microelectronics developer support

In keeping with the open-source nature of this book’s subject
matter, the manuscript of this work was developed entirely using
the free open-source OpenOffice.org office productivity suite,
under Red Hat Linux 8.0.

This Page Intentionally Left Blank

1

Chapter 1

Introduction
There exists a large body of literature focused on teaching both
general embedded systems principles and design techniques, and
tips and tricks for specific microcontrollers. The majority of this
literature is targeted at small 8-bit microcontrollers such as the
Microchip PIC, Atmel AVR and the venerable 8051, principally
because these devices are inexpensive and readily available in
small quantity, and development hardware is available from a
variety of sources at affordable prices. Historically, higher-per-
formance 16- and 32-bit parts have been hard to obtain in small
quantities, their development toolchains have been prohibitively
expensive, and the devices themselves have been difficult to de-
sign around, with tight electrical and timing requirements on
external circuitry necessitating very careful hardware design. A
dearth of royalty-free, open-source operating system and library
code for these processors also meant that developing a new project
was a huge from-the-ground-up effort.

However, over the past few years we have simultaneously
seen the size and price of 16- and 32-bit cores fall, and the devel-
opment of many highly integrated parts that enable the easy
development of almost single-chip 32-bit systems. In addition,
many readily available appliances now contain a well-documented
32-bit microcontroller with ample flash memory, RAM and a
variety of useful peripherals such as color LCDs, network inter-
faces and so forth, which can be exploited by the cunning
embedded developer as a ready-made hardware platform. Cross-
platform assemblers, high-level language compilers and
debugging tools are available free for the downloading and will
run satisfactorily on the average desktop PC; it is no longer nec-

2 Chapter 1

essary to spend tens of thousands of dollars on proprietary com-
pilers and special workstations on which to run them.

As these systems have increased in complexity, to a certain
extent the degree of specialization required to develop them has
decreased. This might sound paradoxical, but consider the fact
that high-end 32-bit embedded systems, and the tools used to
develop for them, are effectively converging with the low-end
mainstream PC. The skills required to develop an application for
embedded Linux, NetBSD or Windows CE are by intention not
radically different from the skills used in developing applica-
tions for the desktop equivalents of these operating systems
(though of course different coding best practices usually apply in
embedded environments). In most cases there are mature off-
the-shelf operating systems available ready-to-run for the common
hardware reference designs and manufacturer-supplied evalua-
tion boards, so we are usually spared even the initial bring-up
phase and much of the effort required to debug device drivers.

Given a working hardware platform with reasonably well-
documented components, the only task for which traditional
embedded expertise is absolutely necessary is to create the nec-
essary bootstrap and “glue” code to get a C run-time working on
the target platform, and perhaps create drivers for some periph-
erals (and as discussed above, even this step can often be skipped
if you are building around a reference platform). From that point
on, most of the programming work to be done runs in the appli-
cation layer and can be accomplished using high-level languages.
There is a large workforce available almost ready-trained for this
type of coding.

The end result of this evolutionary process is that it is now
well within the financial and logistical reach of a small company
or even an individual hobbyist or student to develop (or at least
repurpose) advanced embedded systems with exciting function-
ality provided by these high-performance parts. Unfortunately,
however, device vendors’ support infrastructures are still geared
towards large-scale commercial developers. This raises two ma-
jor obstacles:

