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Michal Pióro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing
Approach
Feng Zhao and Leonidas Guibas

Communication Networking: An Analytical Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach
Adrian Farrel

Modern Cable Television Technology: Video, Voice, and
Data Communications, 2e
Walter Ciciora, James Farmer, David Large,
and Michael Adams

Bluetooth Application Programming with the Java APIs
C. Bala Kumar, Paul J. Kline,
and Timothy J. Thompson

Policy-Based Network Management: Solutions for the
Next Generation
John Strassner

Network Architecture, Analysis, and Design, 2e
James D. McCabe

MPLS Network Management: MIBs, Tools, and
Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service
Providers and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective, 2e
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for
Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming,
and Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce Davie and Yakov Rekhter

High-Performance Communication Networks, 2e
Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Integrated Management of Networked Systems:
Concepts, Architectures, and Their Operational
Application
Heinz-Gerd Hegering, Sebastian Abeck,
and Bernhard Neumair

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing
Infrastructure
David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for
Optimization
Robert S. Cahn

For further information on these books and for a list
of forthcoming titles, please visit our Web site at
http://www.mkp.com.



IPv6 Advanced Protocols
Implementation

Qing Li
Blue Coat Systems, Inc.

Tatuya Jinmei
Toshiba Corporation

Keiichi Shima
Internet Initiative Japan, Inc.

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier



Senior Acquisitions Editor Rick Adams
Publishing Services Manager George Morrison
Senior Production Editor Dawnmarie Simpson
Acquisitions Editor Rachel Roumeliotis
Production Assistant Lianne Hong
Cover Design Eric DeCicco
Cover Image Side-by-Side Design
Cover Illustration Side-by-Side Design
Composition diacriTech
Technical Illustration diacriTech
Copyeditor JC Publishing
Proofreader Janet Cocker
Indexer Joan Green
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corporation

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

c© 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks.
In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or
all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—
electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone:
(+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and
then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Li, Qing, 1971-

IPv6 advanced protocols implementation/Qing Li, Tatuya Jinmei, Keiichi Shima.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-12-370479-5 (hardcover: alk. paper)
ISBN-10: 0-12-370479-0 (hardcover: alk. paper) 1. TCP/IP (Computer network protocol)

I. Jinmei, Tatuya, 1971- II. Shima, Keiichi, 1970- III. Title.
TK5105.585.L536 2007
004.6′2–dc22

2006038489
ISBN: 978-0-12-370479-5

For information on all Morgan Kaufmann publications,

visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America

07 08 09 10 5 4 3 2 1



To Huaying, Jane and Adalia
in Him

—Qing Li

To my colleagues at KAME: working with you talented geeks was an exciting experience and
has even made this derivative project possible.

—Tatuya Jinmei

To all KAME developers, all people who developed the Internet, and all people who
will develop the future Internet.

—Keiichi Shima



This page intentionally left blank



Contents

Preface xix

About the Authors xxv

1 IPv6 Unicast Routing Protocols 1
1.1 Introduction 1

1.2 Overview of Routing Concepts 2

1.3 Overview of Vector-based Algorithms and Link-State
Algorithm 5

1.3.1 Distance-Vector Algorithm 5

1.3.2 Path-Vector Algorithm 7

1.3.3 Link-State Algorithm 7

1.4 Introduction to RIPng 10

1.4.1 RIPng Message Formats 11

1.4.2 RIPng Operation 14

1.4.3 Problems with RIPng 15

1.5 Introduction to BGP4+ 17

1.5.1 BGP4+ Operation 19

1.5.2 BGP4+ Messages 21

1.5.3 Path Attributes 27

1.5.4 IPv6 Extensions for BGP4+ 29

1.5.5 BGP4+ Route Selection Process 31

vii



viii Contents

1.6 Introduction to OSPFv3 33

1.6.1 Router Adjacency and LSDB Synchronization 33

1.6.2 Area Types and Router Classification 35

1.6.3 Link State Advertisement and LSA Types 35

1.6.4 LSA Formats 37

1.6.5 OSPF Tree Construction and Route Computation 46

1.7 Code Introduction 49

1.8 IPv6 Routing Table in the BSD Kernel 50

1.8.1 Scope Zone Representation in the Routing
Table 53

1.9 Routing API 55

1.9.1 Routing Sockets 55

1.9.2 Dumping Routing Table via sysctl() 62

1.10 Overview of route6d Daemon 65

1.11 Common Data Structures, Routines and Global Variables 65

1.11.1 Structures for RIPng Messages 65

1.11.2 route6d’s Routing Table 67

1.11.3 Structures for Local Interfaces 68

1.11.4 route6d Route Filter Entry 70

1.11.5 Subroutines and Global Variables 72

1.12 Interface Configuration 74

1.12.1 ifconfig() Function 74

1.12.2 ifconfig1() Function 77

1.13 RIPng Protocol Operation 81

1.13.1 sendrequest() Function 82

1.13.2 riprecv() Function 83

1.13.3 riprequest() Function 96

1.13.4 ripsend() Function 97

1.13.5 ripalarm() Function 104

1.14 Routing Operation Using route6d 105

1.14.1 A Leaf Network 105

1.14.2 A Simple Loop Network 108

1.14.3 A Hierarchical Network 111

2 IPv6 Multicasting 113
2.1 Introduction 113

2.2 IPv6 Multicast Address to Layer-2 Multicast Address
Mapping 114



Contents ix

2.3 Multicast Listener Discovery Protocol 114

2.3.1 MLD Protocol Message Format 115

2.3.2 Router Alert Option 116

2.3.3 Source Address Selection 116

2.3.4 Destination Address Selection 116

2.3.5 MLD Querier 116

2.3.6 Operational Variables 117

2.3.7 MLD Join Process 118

2.3.8 MLD Leave Process 119

2.4 Multicast Routing Fundamentals 120

2.4.1 Reverse Path Forwarding 120

2.4.2 Multicast Routing Models 121

2.4.3 Protocol Independent Multicast 125

2.4.4 IPv6 Specific Issues about PIM 128

2.4.5 IPv6 Multicast Future—MLDv2 and SSM 130

2.5 Code Introduction 131

2.6 MLD Implementation 133

2.6.1 Types and Structures 133

2.6.2 mld6_init() Function 136

2.6.3 Joining a Group: mld6_start_listening()
Function 137

2.6.4 Leaving a Group: mld6_stop_listening()
Function 139

2.6.5 Input Processing: mld6_input() Function 140

2.6.6 mld6_fasttimeo() Function 144

2.6.7 mld6_sendpkt() Function 146

2.6.8 mld_allocbuf() Function 149

2.7 IPv6 Multicast Interface: mif6{} Structure 150

2.8 IPv6 Multicast Routing API 152

2.8.1 ip6_mrouter_set() Function 152

2.8.2 ip6_mrouter_init() Function 155

2.8.3 ip6_mrouter_get() Function 156

2.8.4 set_pim6() Function 157

2.8.5 add_m6if() Function 157

2.8.6 del_m6if() Function 160

2.8.7 ip6_mrouter_done() Function 161

2.8.8 mrt6_ioctl() Function 164

2.8.9 get_mif6_cnt() Function 164



x Contents

2.9 IPv6 Multicast Forwarding Cache 165

2.9.1 add_m6fc() Function 166

2.9.2 del_m6fc() Function 171

2.9.3 expire_upcalls() Function 172

2.9.4 get_sg_cnt() Function 173

2.10 IPv6 Multicast Forwarding 174

2.10.1 ip6_mforward() Function 175

2.10.2 ip6_mdq() Function 183

2.10.3 phyint_send() Function 189

2.10.4 register_send() Function 192

2.10.5 socket_send() Function 194

2.10.6 pim6_input() Function 195

2.11 IPv6 Multicast Operation 202

2.11.1 ifmcstat Command 202

2.11.2 Enable IPv6 Multicast Routing 203

2.11.3 pim6dd and pim6sd Routing Daemons 203

2.11.4 pim6stat Output 203

2.11.5 netstat Command 206

3 DNS for IPv6 207
3.1 Introduction 207

3.2 Basics of DNS Definitions and Protocols 208

3.2.1 DNS, Domains, and Zones 208

3.2.2 Resource Records and Zone Files 210

3.2.3 DNS Transaction and Packet Format 212

3.2.4 Name Resolution and Caching 214

3.3 IPv6-Related Topics about DNS 217

3.3.1 AAAA Resource Record 217

3.3.2 DNS Reverse Tree for IPv6 217

3.3.3 IPv6 Transport for DNS 219

3.3.4 Packet Size Issue and EDNS0 219

3.3.5 Misbehaving DNS Servers against AAAA 222

3.3.6 Obsolete Standards 225

3.4 Implementation of IPv6 DNS Resolver 226

3.4.1 _dns_getaddrinfo() Function 229

3.4.2 getanswer() Function 235

3.4.3 res_queryN() Function 243

3.4.4 Resolver State Structure 245



Contents xi

3.4.5 res_init() Function 248

3.4.6 res_send() Function 250

3.4.7 IPv6 Reverse Lookup: _dns_ghbyaddr()
Function 260

3.5 IPv6 DNS Operation with BIND 264

3.5.1 Overview of BIND9 265

3.5.2 Getting BIND9 266

3.5.3 Building and Installing BIND9 266

3.5.4 Configuring BIND9 for IPv6 Operation 267

3.5.5 Implementation-Specific Notes 274

3.5.6 Complete Configuration Example 282

3.5.7 dig and host Utilities 286

4 DHCPv6 289
4.1 Introduction 289

4.2 Overview of the DHCPv6 Protocol 290

4.2.1 Cases for DHCPv6 290

4.2.2 Definitions about DHCPv6 293

4.2.3 DHCPv6 Message Exchanges 297

4.2.4 Summary of DHCPv6 Options 310

4.2.5 Interaction with Neighbor Discovery 319

4.2.6 Comparison to DHCPv4 319

4.3 Code Introduction 320

4.3.1 Common Data Structures and Routines 320

4.4 Client Implementation 326

4.4.1 Client-Specific Data Structures 328

4.4.2 client6_mainloop() Function 332

4.4.3 client6_timo() Function 333

4.4.4 client6_send() Function 338

4.4.5 client6_recv() Function 344

4.4.6 client6_recvadvert() Function 346

4.4.7 client6_recvreply() Function 352

4.4.8 Processing Identity Association 357

4.4.9 update_ia() Function 359

4.4.10 update_address() Function 365

4.4.11 reestablish_ia() Function 369

4.4.12 ia_timo() Function 374

4.4.13 Release Resources 379



xii Contents

4.5 Server Implementation 382

4.5.1 server6_mainloop() Function 386

4.5.2 server6_recv() Function 387

4.5.3 process_relayforw() Function 391

4.5.4 react_solicit() Function 396

4.5.5 react_request() Function 401

4.5.6 make_ia() Function 406

4.5.7 react_renew() Function 417

4.5.8 react_rebind() Function 419

4.5.9 binding_time() Function 426

4.5.10 react_release() Function 428

4.5.11 react_informreq() Function 432

4.5.12 server6_send() Function 434

4.6 Relay Agent Implementation 439

4.6.1 relay6_loop() Function 439

4.6.2 relay6_recv() Function 441

4.6.3 relay_to_server() Function 444

4.6.4 relay_to_client() Function 450

4.7 Implementation of DHCPv6 Authentication 454

4.7.1 Data Structures Related to DHCPv6 Authentication 454

4.7.2 set_auth() Function 455

4.7.3 process_auth() Function (Client Side) 458

4.7.4 process_auth() Function (Server Side) 462

4.8 DHCPv6 Operation 468

4.8.1 Building the DHCPv6 Implementation 468

4.8.2 Configuring a DUID 469

4.8.3 Configuring the DHCPv6 Server 469

4.8.4 Configuring the DHCPv6 Client 470

4.8.5 Configuring the DHCPv6 Relay Agent 474

4.8.6 Configuring DHCPv6 Authentication 475

4.8.7 Configuring Control Command Keys 476

4.8.8 Operation of DHCPv6 Services 476

5 Mobile IPv6 485
5.1 Introduction 485

5.2 Mobile IPv6 Overview 486

5.2.1 Types of Nodes 487

5.2.2 Basic Operation of Mobile IPv6 488



Contents xiii

5.3 Header Extension 491

5.3.1 Alignment Requirements 493

5.3.2 Home Address Option 493

5.3.3 Type 2 Routing Header 494

5.3.4 Mobility Header 495

5.3.5 Mobility Options 503

5.3.6 Neighbor Discovery Messages 506

5.3.7 ICMPv6 Messages 509

5.4 Procedure of Mobile IPv6 512

5.4.1 Protocol Constants and Variables 512

5.4.2 Home Registration 512

5.4.3 Bi-directional Tunneling 516

5.4.4 Intercepting Packets for a Mobile Node 518

5.4.5 Returning Home 519

5.5 Route Optimization 521

5.5.1 Return Routability 522

5.5.2 Sending Initial Messages 522

5.5.3 Responding to Initial Messages 523

5.5.4 Computing a Shared Secret 525

5.5.5 Verifying Message 526

5.5.6 Security Considerations 527

5.5.7 De-Register Binding for Correspondent Nodes 528

5.5.8 Backward Compatibility 528

5.6 Movement Detection 529

5.7 Dynamic Home Agent Address Discovery 530

5.8 Mobile Prefix Solicitation/Advertisement 533

5.9 Relationship with IPsec 534

5.10 Code Introduction 537

5.10.1 Statistics 537

5.11 Mobile IPv6 Related Structures 539

5.11.1 Files 539

5.11.2 Mobility Header Message—ip6_mh{} Structure 539

5.11.3 Binding Refresh Request Message—ip6_mh_binding_request{}
Structure 541

5.11.4 Home Test Init Message—ip6_mh_home_test_init{}
Structure 541

5.11.5 Care-of Test Init Message—ip6_mh_careof_test_init{}
Structure 542

5.11.6 Home Test Message—ip6_mh_home_test{}
Structure 543



xiv Contents

5.11.7 Care-of Test Message—ip6_mh_careof_test{}
Structure 543

5.11.8 Binding Update Message—ip6_mh_binding_update{}
Structure 544

5.11.9 Binding Acknowledgment Message—ip6_mh_binding_ack{}
Structure 545

5.11.10 Binding Error Message—ip6_mh_binding_error{}
Structure 546

5.11.11 Mobility Option Message Structures 548

5.11.12 Mobility Option Message—ip6_mh_opt{} Structure 548

5.11.13 Binding Refresh Advice Option—ip6_mh_opt_refresh_advice{}
Structure 549

5.11.14 Alternate Care-of Address Option—ip6_mh_opt_altcoa{}
Structure 549

5.11.15 Nonce Index Option—ip6_mh_opt_nonce_index{}
Structure 550

5.11.16 Authentication Data Option—ip6_mh_opt_auth_data{}
Structure 550

5.11.17 The Internal Mobility Option—mip6_mobility_options{}
Structure 551

5.11.18 Home Address Option—ip6_opt_home_address{}
Structure 551

5.11.19 Type 2 Routing Header—ip6_rthdr2{} Structure 552

5.11.20 The Modified Router Advertisement Message—nd_router_advert{}
Structure 552

5.11.21 The Modified Prefix Information Option—nd_opt_prefix_info{}
Structure 553

5.11.22 Advertisement Interval Option—nd_opt_adv_interval{}
Structure 554

5.11.23 Home Agent Information Option—nd_opt_homeagent_info{}
Structure 554

5.11.24 Dynamic Home Agent Address Discovery Request Message—
mip6_dhaad_req{} Structure 555

5.11.25 Dynamic Home Agent Address Discovery Reply Message—
mip6_dhaad_rep{} Structure 555

5.11.26 Mobile Prefix Solicitation Message—mip6_prefix_solicit{}
Structure 556

5.11.27 Mobile Prefix Advertisement Message—mip6_prefix_advert{}
Structure 556

5.11.28 Binding Cache Entry—mip6_bc{} Structure 557

5.11.29 Binding Update List Entry—mip6_bu{} Structure 559



Contents xv

5.11.30 Home Agent Entry—mip6_ha{} structure 561

5.11.31 Prefix Entry—mip6_prefix{} Structure 562

5.11.32 Home Virtual Interface—hif_softc{} Structure 563

5.12 Macro and Type Definitions 567

5.13 Global Variables 570

5.14 Utility Functions 570

5.14.1 Files 570

5.14.2 Creation of IPv6 Header 570

5.14.3 Checksum Computation 572

5.15 Common Mobility Header Processing 575

5.15.1 Files 575

5.15.2 Mobility Header Input 575

5.15.3 Generating Binding Error Messages 581

5.15.4 Rate Limitation of Binding Error Messages 582

5.15.5 Creation of Binding Error Message 583

5.15.6 Mobility Header Message Delivery to Raw Sockets 585

5.16 Home Agent and Correspondent Node 588

5.16.1 Files 589

5.16.2 Binding Update Message Input 589

5.16.3 Binding Cache Entry Management 598

5.16.4 Mobility Options Processing 606

5.16.5 Validation of Binding Update Message for Correspondent
Node 608

5.16.6 Kbm and Authorization Data Computation 610

5.16.7 Managing Binding Cache Entry as Correspondent
Node 615

5.16.8 Sending Binding Refresh Request Message 618

5.16.9 Home Registration Processing 622

5.16.10 The DAD Procedure 628

5.16.11 Proxy Neighbor Discovery Control 634

5.16.12 Home De-Registration Procedure 639

5.16.13 Sending a Binding Acknowledgment Message 642

5.16.14 Nonce and Nodekey Management 649

5.16.15 Receiving a Home Address Option 653

5.16.16 Sending Packets to Mobile Nodes via Tunnel 660

5.16.17 Recovery of Temporarily Disabled Proxy Entry 664

5.16.18 Receiving ICMPv6 Error Messages 666

5.16.19 Home Agent List Management 670

5.16.20 Prefix List Management 684



xvi Contents

5.16.21 Sending a Mobile Prefix Advertisement Message 684

5.16.22 Constructing the Payload 687

5.17 Mobile Node 689

5.17.1 Files 689

5.17.2 Binding Update List Entry Management 689

5.17.3 Movement Detection 699

5.17.4 Configuring Home Addresses 711

5.17.5 Sending a Binding Update Message 721

5.17.6 Receiving a Binding Acknowledgment Message 737

5.17.7 Receiving a Type 2 Routing Header 750

5.17.8 Receiving a Binding Refresh Request Message 754

5.17.9 Receiving a Binding Error Message 755

5.17.10 Source Address Selection 758

5.17.11 Home Agent List Management 763

5.17.12 Prefix Information Management 772

5.17.13 Receiving Prefix Information by Router Advertisement
Messages 784

5.17.14 Sending a Mobile Prefix Solicitation Message 793

5.17.15 Receiving a Mobile Prefix Advertisement Message 796

5.17.16 Sending a Dynamic Home Agent Address Discovery Request
Message 804

5.17.17 Receiving a Dynamic Home Agent Address Discovery Reply
Message 808

5.17.18 Receiving ICMPv6 Error Messages 813

5.17.19 State Machine 815

5.17.20 Primary State Machine 817

5.17.21 Secondary State Machine 837

5.17.22 Virtual Home Interface 844

5.17.23 Return Routability and Route Optimization 857

5.17.24 Route Optimized Communication 874

5.17.25 Tunnel Control 884

5.17.26 Receiving Packets from a Tunnel 887

5.17.27 I/O Control 889

5.18 Mobile IPv6 Operation 892

5.18.1 Rebuilding a Kernel with Mobile IPv6 Extension 892

5.18.2 Rebuilding User Space Programs 893

5.18.3 IPsec Signal Protection 894

5.18.4 Configuring Node 897



Contents xvii

5.18.5 Viewing Status Information 899

5.18.6 Viewing Statistics 899

5.19 Appendix 901

5.19.1 The Manual Page of mip6control 901

6 IPv6 and IP Security 903
6.1 Introduction 903

6.2 Authentication Header 904

6.3 Encapsulating Security Payload 906

6.4 Transport Mode and Tunnel Mode 908

6.5 Security Association Database 909

6.5.1 Security Policy Database 910

6.5.2 Security Association Database 911

6.5.3 SAD and SPD Example 912

6.6 IPsec Traffic Processing 913

6.7 SPD and SAD Management 914

6.7.1 Manual Keying and Automatic Keying 915

6.8 Manual Configuration 916

6.8.1 Configuration File Format 917

6.8.2 Examples of Manipulating SP Entries 922

6.8.3 Examples of Manipulating SA Entries 924

6.9 Internet Security Association and Key Management Protocol
(ISAKMP) Overview 925

6.9.1 ISAKMP Exchanges 927

6.9.2 Domain of Interpretation 929

6.9.3 Internet Key Exchange Protocol 930

6.10 Racoon Operation 931

6.10.1 Configuring Racoon 931

6.10.2 Configuration File Format 932

6.11 Scenarios 937

6.11.1 Creating a VPN between 3 Networks 938

6.11.2 Creating Star Topology VPN 942

6.11.3 Using Transport Mode IP Security 945

6.11.4 Connecting to the Server from Public Access Points 949

References 953

Index 961



This page intentionally left blank



Preface

This book is the second installment of our series detailing IPv6 and related protocols through
the KAME implementation. KAME is a widely deployed de facto reference implementation for
IPv6 and IP security protocols developed on multiple variants of the BSD operating systems.

The first installment of this series is titled IPv6 Core Protocols Implementation, which is
referred to as the Core Protocols book below, and it focuses on the fundamentals of IPv6 and
the essential protocols that are supported by most implementations. These essential protocols
operate in IPv6-capable devices, large or small. Our Core Protocols book also describes IPv6
implication on higher layer protocols, such as TCP and UDP, and covers IPv6 related application
programming interfaces.

This second book discusses those protocols that are found in more capable IPv6 devices,
are commonly deployed in more complex IPv6 network environments, or are not specific to
IPv6 but are extended to support IPv6. Specifically, this book engages the readers in more
advanced topics, such as routing, multicasting, DNS, mobility, and security.

The general structure and style of this book is the same as that of the Core Protocols book;
each chapter begins with a summary of the relevant specifications followed by line-by-line code
description and analysis of the actual implementation.

We hope to help the readers establish a solid and empirical understanding of IPv6 with our
book series. Our two books together cover a wide spectrum of the IPv6 technology and are
paralleled by none.

This book consists of the following chapters:

• Chapter 1 (“IPv6 Unicast Routing Protocols”) discusses general routing concepts and the
fundamentals of various types of unicast routing protocols. This chapter details RIPng,
a simple routing protocol for IPv6, and summarizes IPv6-specific extensions defined for
the BGP4+ and OSPFv3 routing protocols. Comparisons are made among these proto-
cols in regards to protocol complexity, stability, and the operational issues and solutions

xix



xx Preface

offered by each. This chapter also provides the necessary background to implement IPv6
routing protocols on BSD variants through descriptions of the routing API for IPv6 and
code narrations of KAME’s RIPng implementation, the route6d daemon. This chapter
concludes with configuration examples of route6d for some typical scenarios.

• Chapter 2 (“IPv6 Multicasting”) discusses details about IPv6 multicasting, especially on
multicast routing mechanisms. It first provides the basics of a host-to-router protocol and
multicast routing protocols, specifically the Multicast Listener Discovery protocol version
1 (MLDv1) and Protocol Independent Multicast (PIM), focusing on IPv6 specific issues.
The latter part of this chapter describes the KAME kernel implementation of MLDv1 and
IPv6 multicast forwarding.

• Chapter 3 (“DNS for IPv6”) describes IPv6 extensions to the DNS (Domain Name System)
protocol specification and implementation. It begins with a general description of the
DNS protocol and its extensions that support IPv6. It then describes KAME’s DNS client
(called a resolver) implementation, and highlights the support for IPv6. This section also
gives a complete view of the getaddrinfo() library function, which was partially
described in the Core Protocols book. The latter half of this chapter shows how to
operate the BIND9 DNS server to support IPv6 with notes about common pitfalls and
issues specific to IPv6-related operations.

• Chapter 4 (“DHCPv6”) details DHCPv6 (Dynamic Host Configuration Protocol for IPv6)
both on the protocol specification and on KAME’s implementation. Although the basic
concept of the protocol is largely derived from DHCP for IPv4 (DHCPv4), DHCPv6 has
introduced various improvements in its design and the expected usage model differs
from that of DHCPv4; this chapter clarifies such major differences. The implementation
descriptions cover all protocol functionalities, that is, clients, servers, and relay agents,
and will provide an in-depth understanding of how the protocol works. This chapter also
provides how to operate DHCPv6 with the KAME implementation for some common
usage scenarios.

• Chapter 5 (“Mobile IPv6”) covers the IPv6 host mobility protocol known as Mobile IPv6.
The chapter begins with a basic description of Mobile IPv6, and then details protocol
specifications and data structures. The actual implementation is discussed in the middle
of the chapter. The KAME Mobile IPv6 implementation supports both home agent and
mobile node functions. The code description section will discuss all data structures and
functions in detail. This chapter also provides a brief instruction of Mobile IPv6 operation
with sample configuration files using the KAME Mobile IPv6 implementation at the end
of the chapter.

• Chapter 6 (“IPv6 and IP Security”) begins with an introduction of the IPsec protocols and
the concept of keying in the context of the Internet Key Exchange (IKE) protocol. The
remainder of this chapter then focuses on describing the popular racoon IKE daemon.
Its configuration and operation are thoroughly explained. This chapter concludes with
some practical examples of using racoon. Unlike other chapters, this chapter does not
provide any code description because the basic mechanism of IP Security and most of
its implementation are not specific to IPv6; including non-IPv6 specific code description
would change the main objective of this book.
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Intended Audience

In general, this book is intended for the same class of readers as was the Core Protocols book:
developers implementing IPv6 and related protocols, and students who are going to start a
project on these protocols, especially on top of or using the KAME/BSD implementation. Unlike
the Core Protocols book, however, this book discusses more advanced topics, such as protocols
that have been standardized relatively recently, so it can also be used as a reference to these
protocols per se; DHCPv6 and Mobile IPv6 are two specific examples of this.

As in the Core Protocols book, it is assumed that readers are fluent in the C programming
language. In addition, this book assumes knowledge of the basic notions of IPv6 and related
protocols described in the Core Protocols book, though other references within this book will
help those who cannot refer to the Core Protocols book to understand the contents. Chapters 2
and 5 also require general understanding of the BSD kernel implementation.

Unlike the Core Protocols book, each chapter of this book is quite independent; although
there are several cross references among the chapters, readers can generally start from any
chapter based on their interest.

Typographical Conventions

This book adopts the same typographical conventions as those for the Core Protocols book,
which is summarized as follows:

Variable, function, or structure names, structure members, and programming language key-
words are represented in a constant-width font when referred to in the code descriptions.
Function names are in a constant-width font followed by parentheses, as in
ip6_mforward(), and structure names are in a constant-width font followed by braces,
as in ip6_mh{}.

Program names are displayed in bold fonts, as in route6d. The command line input and
the output of a program are displayed in a constant-width font.

Accompanying CD-ROM

This book comes with two CD-ROMs. The first CD-ROM is an ISO image of FreeBSD4.8-
RELEASE, which is the base operating system covered in Chapters 1, 2, 3, and 6. It is a bootable
CD-ROM and includes installation files. The installation procedure is started by turning on the
computer with the CD-ROM loaded. The detailed installation procedure can be found in the
INSTALL.TXT file located in the root directory of the CD-ROM.

Similarly, the second CD-ROM is a bootable ISO image of FreeBSD4.9-RELEASE, which is
the base operating system covered in Chapter 5.

Note: FreeBSD 4.8 and 4.9 RELEASEs are known to have several security flaws and are no
longer supported by the FreeBSD project. Therefore, these systems should only be used
for reference on learning the KAME implementation as part of reading this book. It is not
advisable to use these versions of FreeBSD in a production environment connected to the
Internet.
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The first CD-ROM also contains the KAME source code discussed in this book. It is
accessed via the appendix directory located at the root directory, which has two subdirec-
tories, kame-snap and rtadd6.

The kame-snap subdirectory contains the following archive files:

• kame-20030421-freebsd48-snap.tgz
A KAME snapshot for FreeBSD 4.8 taken on April 21, 2003.

• kame-20040712-freebsd49-snap.tgz
A KAME snapshot for FreeBSD 4.9 taken on July 12, 2004. This is referred to in Chapter 5,
and should be used with the FreeBSD 4.9 system contained in the second CD-ROM.

• kame-dhcp6-20050509.tgz
KAME’s DHCPv6 implementation included in a KAME snapshot taken on May 9, 2005,
which is referred to in Chapter 4.

To install the KAME snapshot, unpack the archive, go down to the top level directory named
kame (which is also referred to as ${KAME} throughout this book), and see the INSTALL file
located in the directory. For those who have the Core Protocols book, its Chapter 1 provides
a more detailed description of the usage. Chapter 4 of this book explains how to install the
DHCPv6 implementation.

The other subdirectory, rtadd6, contains the source code of the rtadd6 program referred
to in Chapter 1, which was newly written for this book.

Source Code Copyright

This book presents many parts of the source code developed by the KAME project and external
contributors. It also refers to system header files that are part of the FreeBSD distributions. All
of the source code has copyright notices, which are available in the copy of the code contained
in the CD-ROM discs.

Reporting Errors and Errata Page

The authors are happy to receive error reports on the content of this book, and plan to pro-
vide an error correction page on the Internet. It will be available at the following web page:
http://books.elsevier.com/companions/9780123704795.
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1IPv6 Unicast Routing Protocols

1.1 Introduction

Any time when communication takes place between any pair of nodes, especially when that
communication involves nodes that reside on different network segments, a decision must be
made about where each packet should go. This decision is often known as a packet routing
decision, or a packet forwarding decision. The intermediate network devices, commonly known
as routers, perform the routing functions that involve making the routing decision normally
based on each packet’s final destination.

The routing decision could be made based on manually configured routing information
at each router, but such practice is obviously impractical for a complex network of middle to
large scale. Routing protocols provide the necessary information that enable the routers to make
correct routing decisions automatically. Since a packet’s destination may be a unicast destination
or a multicast destination (treating broadcast destination as a special case of multicast), routing
protocols are designed for either unicast routing or multicast routing. We will focus on the
routing protocols in this chapter.

In the IPv4 world, RIPv2 [RFC2453], the integrated IS-IS [RFC1195], and OSPFv2 [RFC2328]
are commonly deployed unicast routing protocols in networks of small to middle scale such
as enterprise environments, while BGP-4 [RFC4271] is the common routing protocol deployed
among large organizations such as Internet Service Providers (ISPs). In general, since the rout-
ing concept is identical between IPv4 and IPv6, these routing protocols have been naturally
extended to support IPv6. Even though the packet formats may have changed, the principles
remain largely the same.

Yet there are IPv6 specific issues. In particular, most IPv6 routing protocols rely heavily on
link-local addresses since communication using these addresses is stable in terms of routing,
thanks to their limited scope. On the other hand, the ambiguity of link-local addresses discussed
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in Chapter 2 of IPv6 Core Protocols Implementation, “IPv6 Addressing Architecture”, requires
special care in implementing these protocols. It is therefore important to understand the details
of the protocols and how they should be implemented even for those who are familiar with
IPv4 routing protocols.

In this chapter we provide all the essential information to understand and implement IPv6
unicast routing protocols. We first describe the basic routing concepts followed by an introduc-
tion to IPv6 unicast routing protocols. These unicast routing protocols include RIPng [RFC2080],
OSPFv3 [RFC2740] and BGP4+ [RFC2545]. We provide full coverage on the RIPng protocol. In
addition, we summarize the general protocol operations of OSPFv3 and BGP4+ without diving
into the protocol specifics, other than the IPv6-related protocol packets. Readers who do not
require such advanced topics can safely skip these sections (1.5 and 1.6) as they are not needed
in any other part of the book.

Sections that follow the protocol background focus on implementation, which will provide
all of the essential information to develop IPv6 routing programs on BSD systems, covering
the kernel architecture to routing application code. We first explain how to deal with IPv6
routing information on BSD systems, from the kernel internal data structures to application
interfaces (APIs). We also note major pitfalls in handling link-local addresses with these APIs.
We then describe the implementation of the route6d program, KAME’s RIPng routing daemon,
focusing on its RIPng protocol processing. The provenance of RIP is the routed program, a
popular implementation that is widely available on various platforms. Its popularity is due to
the simplicity in both its implementation and its operation. The route6d daemon is the IPv6
counterpart of routed.

Finally, we conclude this chapter by showing how to operate route6d for some typical
scenarios.

1.2 Overview of Routing Concepts

Routing information enables a node to determine whether a given destination is reachable
and where to send the packet en route to the destination. Routing information can be either
configured statically or obtained dynamically. Routers exchange routing information with one
another through one or more dynamic routing protocols. Each router builds a local database,
called the Routing Information Base (RIB) to store the exchanged routing information. A subset
of this RIB is then selected to build a Forwarding Information Base (FIB) for the purpose of
forwarding packets.

The routing concepts are identical between IPv4 and IPv6. That is, the goal of routing is
to find a loop-free path for the destination address between any pair of end systems, and the
best path is chosen according to some defined criteria at the time of route selection. Many
of the existing dynamic routing protocols have been updated to support IPv6. Three well-
known routing protocols—RIP, OSPF and BGP—have been extended to support IPv6, resulting
in RIPng, OSPFv3 (OSPF for IPv6) and BGP4+, respectively. Another deployed routing protocol,
IS-IS, was also extended to support both IPv4 and IPv6 (see the note on page 4).

The choice of the routing protocol depends on many factors, such as the diameter of the
routing domain, the size and complexity of the networks within the routing domain, the level
of tolerance to changing network topology by applications, and the complexity and the ease of
deployment of the routing protocol.
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In general, routing protocols are classified as either interior routing protocols or exterior
routing protocols, based on where the protocol is deployed. Interior routing protocol is also
known as interior gateway protocol (IGP) while exterior routing protocol is also known as
exterior gateway protocol (EGP).

An interior routing protocol is deployed within a routing domain that is controlled by a
single administrative entity. In this context, a routing domain is also known as an autonomous
system (AS). Each autonomous system should have only one governing routing policy. For exam-
ple, an interior routing protocol is deployed within the intranet of an organization, which may
comprise multiple sub-networks. In other words, an interior routing protocol is deployed within
a single routing domain to exchange routing information about these sub-networks among
routers that belong to the same routing domain. Examples of interior routing protocols are
RIPng and OSPFv3.

An exterior routing protocol is deployed among routing domains that are under the manage-
ment of different administrative entities. For example, an exterior routing protocol is deployed
between two different Internet Service Providers (ISPs). In other words, an exterior routing
protocol is deployed to exchange routing information among routers that belong to different
autonomous systems. BGP4+ is an example of an exterior routing protocol.

Within each AS, a small subset of the routers are situated at the boundary of the AS. These
boundary routers, sometimes referred to as either border gateways or edge routers, exchange
route information over EGP with other edge routers that belong to different ASs. An edge router
also typically participates in IGP within its AS to advertise externally reachable networks, or it
simply acts as the default router for the AS to reach the rest of the Internet. Figure 1-1 illustrates
this relationship. In this example each AS has one edge router that participates in the EGP.

The purpose of running a dynamic routing protocol is to provide reachability information
about networks and individual nodes to routers that participate in the routing domain. The
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reachability information allows each router to compute the appropriate next hop or the paths
to these networks and nodes using a specific routing algorithm. Whether the paths are loop-free
depends on the routing protocol and the information distributed by the routing protocol. The
way the routing algorithm works determines the type of information distributed in the rout-
ing protocol messages. Therefore routing protocols are also classified according to the routing
algorithms by which the routing protocols are employed for route computation. The routing
algorithms can be classified as vector-based algorithms or link-state algorithms. The vector-
based algorithms can be further classified as either distance vector algorithms or path-vector
algorithms. RIPng is a routing protocol representative of the distance vector algorithm; BGP4+
is a routing protocol representative of the path-vector algorithm; OSPFv3 is a routing protocol
representative of the link-state algorithm.

Another link-state algorithm-based routing protocol is the Intermediate System to Interme-
diate System (IS-IS) routing protocol. IS-IS was originally designed for ISO’s protocol stack
known as the Connectionless Network Protocol (CLNP), which was meant to be the replace-
ment of TCP/IP. The CLNP protocol stack was developed in anticipation of the greater adop-
tion of the OSI’s 7-layer communication model, but such migration has not taken place in
reality. The IS-IS routing protocol is an IGP and is another link-state routing protocol. The
Integrated IS-IS supports both CLNP and IP. In actual deployment, IS-IS is largely deployed
for routing in the IP network. IS-IS is quite similar to OSPF. For this reason, we will focus on
OSPF as the representative protocol for describing the link-state routing algorithm. IS-IS is
defined by [ISO-10589]. The Integrated IS-IS is defined in [RFC1195]. The reader is encouraged
to consult [ISIS-IPV6] for details on the IPv6 extension for IS-IS.

The routing protocols are designed to satisfy a different set of goals. A routing protocol,
more precisely the algorithm used by the routing protocol, must be capable of selecting the
optimal route according to predefined selection criteria. For example, a routing algorithm can
select the best route according to the least number of hops traversed to reach the destination.
A routing protocol must be robust to changing network topologies and network conditions. For
example, the routing protocol must continue to function when an interface on the router fails, or
when one or more routers fail. A routing protocol should have a good convergence rate. When
network topologies or network conditions change, the routing protocol should have the ability
to convey this information to all participating routers quickly to avoid routing problems. The
convergence rate refers to the time taken for all routers in the domain to become aware of the
changing condition. Routing protocols should be designed to have small operational overhead
and should be relatively easy to deploy.

A predefined selection criteria determines what is considered the optimal route or the
best route according to one or more metrics. The metrics can be either static or dynamic.
Examples of static metrics are path length or monetary cost of using a particular path. Path
length can be either simple hop counts, or the sum of the costs of all links in a given path.
Typically a system administrator assigns the cost of each link. Examples of dynamic metrics are
the measured network load, delay, available bandwidth, and reliability (such as error rate and
drop rate).
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1.3 Overview of Vector-based Algorithms and Link-State Algorithm

1.3.1 Distance-Vector Algorithm

A router running the distance-vector algorithm, as is the case with RIPng, initializes its local
routing database with the addresses and costs of the directly attached networks and nodes.
This information is exchanged with other directly connected routers through routing protocol
messages. When a router receives routing messages from its neighboring routers, it adds the
cost of the network on which the routing messages arrived to all of the destinations that are
advertised in the routing messages. A destination can appear in multiple routing messages
that were sent by different neighboring routers. The receiving router chooses the router that
advertised the smallest metric to that destination as the preferred next hop. The smallest metric
value is updated with the cost of the network. The receiving router then readvertises that
destination with the updated metric.

Figure 1-2 illustrates how the distance-vector algorithm works for a very simple network
topology (a more interesting example will be shown in Section 1.4). There are three routers
(A, B and C) connected in series, and router A is attached to a leaf network N. For simplicity,
let us just concentrate on the routing information about network N, and assume that the cost
of any link is 1.

The arrows shown in Figure 1-2 are labeled with the routing information distributed among
the routers, which highlights the destination information (N) and the total cost to reach the
destination. The box drawn next to each router represents its routing table, whose entry is
a combination of <destination, metric, next hop router>. For example, router B accepts the
information advertised by router A (which by default has the smallest metric because that route
is the only route about network N) and installs the route to its routing table. Router B then
readvertises that route toward router C with the updated cost. Eventually all of the routers will
converge to a stable state in which each router knows the path to leaf network N. Router C
forwards any packet destined to network N toward router B, which then forwards the packet
to router A. Router A will then deliver the packet to the final destination on N.
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As seen in this example, the major advantage of the distance-vector algorithm is its simplicity.
The algorithm is easy to understand and implement. In fact, KAME’s RIPng implementation
consists of only about 3500 lines of source code written in C, including all optional features.

The simplicity comes with a different cost. One major disadvantage of the distance-vector
algorithm is that it is vulnerable to changes in topology.

Consider the scenario shown in Figure 1-3, where the link between router A and router
B is down. Router B detects the link failure, removes the route information about network
N because B knows N is now unreachable. In the pure distance-vector algorithm, router B
does nothing further. Since the information is still in router C, router C advertises that stale
route back to B, which is then installed in router B with a higher cost. B accepts C’s adver-
tisement because B is aware that router A is no longer reachable due to the dead link, and
B has not accepted any route about network N from C previously. At this point a routing
loop between routers B and C is created. Router B will subsequently advertise that same route
back to router C with a higher cost. This higher cost route will override C’s entry because
router C knows its route about N came from B’s original advertisement. This iterative pro-
cess continues until the advertised cost reaches some upper limit set by the protocol, allow-
ing these routers to finally detect the failure. This symptom is called the counting to infinity
problem.

Although several techniques are available to mitigate this problem (see Section 1.4.3), none
of them can completely eliminate the algorithm flaw. Even when such remedies do solve the
problem in some types of deployment, route convergence generally takes a longer time with
the distance-vector algorithm than other algorithms on a topology change, especially when the
network contains slower links.

In the distance-vector algorithm, the router stores and distributes only the current best route
to any known destination. Therefore, the computation of a route at each router depends largely
on the previous computation results made by other routers. Additionally, since only the distance
to any destination is given, it is impossible for the distance vector algorithm to identify the origin
of a route and to guarantee loop-free routes.

FIGURE 1-3
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1.3.2 Path-Vector Algorithm

With the path-vector algorithm, the reachability information does not include the distance to
the destination. Instead, the reachability information includes the entire path to the destination,
not just the first hop as is the case for the distance-vector algorithm. A router running the
path-vector algorithm includes itself in the path when redistributing a route. The path-vector
algorithm allows a router to detect routing loops. Consider the path-vector example depicted
in Figure 1-4.

Each router advertises the destination network N along with the full path to reach N. Router
A advertises the route about N to B. The only router on this path is A because N is a directly
attached network. Router B adds itself into the path when it redistributes that route to router C.
At router C the path to N contains A and B. If router C were to advertise this route back to B, B
would find itself in that path and immediately detect the routing loop. In this case B will reject
this route advertisement from C, thus breaking the loop.

Since the complete path information is available for each advertised route, the path-vector
algorithm allows better policy control in terms of what advertised routes to accept, and allows
policy to influence route computation and selection.

1.3.3 Link-State Algorithm

A router running the link-state algorithm advertises the state of each of its attached links, called
its link-state, to its adjacent routers. A receiving router of the advertised state stores this infor-
mation in its local database. This receiver then redistributes the received link-state information

FIGURE 1-4
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unmodified to all of its adjacent routers, resulting in every router in that AS which participates
in the routing protocol to receive the same link-state information. Each router then computes
the paths to all possible destinations based on this link-state information independently.

Figure 1-5 illustrates a state where routers in a routing domain have collected all link-states.
For simplicity, this example assumes that a link-state is a set of neighbor routers. In actual
routing protocol such as OSPFv3, a link-state contains many more parameters, such as per link
cost and leaf network information. This example also assumes that some flooding mechanism
is provided to advertise the link-states throughout the routing domain.

Once a router collects the link-states from all other routers, it can construct a tree-based
map (also known as a shortest path tree) of the entire network that gives the shortest path to
every part of the network as shown in Figure 1-6. The procedure used for the tree construction
is called the Dijkstra algorithm, which is explained in Section 1.6.5.

Once every router computes the map, packet forwarding can be done based on the map.
Figure 1-7 illustrates the forwarding path from router A to router F. Each router forwards the
packet to the appropriate next hop following the path in the tree, and the result is a loop-free,
shortest route to the destination.

The flooding of the link-state information which originated from all of the routers enables
each router to gain a complete view of the topology of the routing domain. Each router can
build a routing table independently. As can be seen from the comparisons made between
distance-vector algorithm and link-state algorithm, in the distance-vector algorithm, each router
sends its entire routing database to neighboring routers because vector-based algorithms deploy
a distributed route computation scheme. In contrast, since only per router link-state informa-
tion is distributed, the amount of information that is exchanged among routers that run the
link-state algorithm is considerably smaller. In response to changing network conditions, infor-
mation exchanged among routers running the distance-vector may contain stale information,
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that is, an unreachable network may still be advertised as reachable by some routers. Such stale
information will result in longer convergence time. Since the link-state algorithm exchanges
information that pertains to a specific router, each router is more independent in calculat-
ing its routing database. This is one reason that the link-state algorithm has a fast conver-
gence rate.

In conclusion, the distance-vector algorithm sends global routing information (a router’s
entire routing table) locally, while the link-state algorithm floods local information (attached
interfaces and links) globally.

1.4 Introduction to RIPng

The RIPng protocol is based on the distance-vector algorithm commonly known as the Bellman-
Ford algorithm. Consider the example in Figure 1-8. Router RT-1 advertises its directly connected
network N-1 of prefix 2001:db8:0:1000::/64 with a metric of 1 on the point-to-point links
to RT-2 and RT-3. The costs of the links from RT-1 to RT-2 and RT-3 are 1 and 3 respec-
tively, which have RT-2 and RT-3 advertise the same prefix on networks N-2 and N-3 (where
router RT-4 resides) but with different metrics. RT-2 advertises a metric value of 2 while RT-3
advertises a metric value of 4. After processing the routing messages from RT-2 and RT-3, RT-4

FIGURE 1-8
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selects the route with the smaller metric and chooses RT-2 as the next hop to reach network
2001:db8:0:1000::/64 with a metric of 2. RT-4 adds the cost of its network to the received
metric and advertises that prefix with a metric of 3 on network N-4. RT-4 also advertises pre-
fixes 2001:db8:1:1::/64 and 2001:db8:2:2::/64 for networks N-2 and N-3 on N-4.
RT-5 and RT-6 receive this routing information and build their routing tables.

We can see from this example that RT-4 is able to compute the optimal route to pre-
fix 2001:db8:0:1000::/64 from just the information exchanged with RT-2 and RT-3. The
direction going toward this network is through RT-2.

1.4.1 RIPng Message Formats

Figure 1-9 depicts the RIPng protocol message format. Each decimal value in parentheses refers
to the field size in bytes.

command This field specifies whether the RIPng message is a request message or a response
message. A value of 1 indicates a request message, a value of 2 indicates a response
message.

version This field specifies the version of the RIPng protocol in operation. [RFC2080] defines
version 1 of RIPng.

The next two bytes must be set to zero by the sender.

Each Routing Table Entry (RTE) field is 20 bytes in size and specifies a reachable IPv6
destination. The format of the RTE field is shown in Figure 1-10.

IPv6 prefix The IPv6 prefix is 16 bytes in size and specifies either an IPv6 network or an IPv6
end node depending on the prefix length. The prefix is stored in network byte order.

FIGURE 1-9
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RIPng protocol message format.
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FIGURE 1-10

prefix length (1) metric (1)route tag (2)

IPv6 Prefix (16)

0 2315 16 3124

Routing table entry.

FIGURE 1-11
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Specifying next hop address.

route tag The route tag is considered an attribute of the advertised destination. The route tag
was designed for distinguishing the origin of the route, that is, whether the advertised
prefix was imported from another routing protocol. In practice the route tag is used by
operators to define sets of routes for custom handling in RIPng. The receiving router must
preserve this field and readvertise it with the prefix.

prefix length The prefix length specifies the number of significant bits of the prefix field,
counting from left to right. The valid prefix length is 0 to 128 inclusive. The prefix field
is ignored if the prefix length is 0, which indicates that the advertised route is a default
route. In this case it is good practice to set the prefix field to 0:0:0:0:0:0:0:0, or ::
in compressed form.

metric Even though the metric field is 1 byte in size, the valid values are 0 to 15, which
specifies the cost of reaching the advertised destination. Value 16, known as infinity,
indicates the advertised destination is not reachable. We will revisit the infinity value in
Section 1.4.2.

In general the receiving router sets the advertising router as the next hop for the advertised
destination. The advertising router may optionally specify a next hop router for one or more
destinations by a special RTE. Figure 1-11 illustrates the special RTE that is used for specifying
a next hop address.

The IPv6 next hop address field contains a link-local address of the next hop router, which
belongs to the interface that shares the same network segment as the advertising router. The
metric field is set to 0xFF. If the next hop address is ::, then the originating router of the
message is used as the next hop router. If the next hop address is not a link-local address,
then again the originating router is used as the next hop router. All of the RTEs that follow this
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special RTE will use the given address as the next hop router until either another special RTE
is encountered, or the end of the message is reached. For example, consider Figure 1-12.

In this example, the advertising router is treated as the next hop router for RTE 1 to N. The
next hop router specified in the special RTE 1 applies to destination M, and the next hop router
specified in the second special RTE applies to destination P.

FIGURE 1-12
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The number of RTEs that can be carried in a single RIPng message is limited by the link
MTU. The formula for calculating the number of RTEs is given as:

number of RTEs =
MTU − (length of IPv6 headers) − (UDP header length) − (RIPng header length)

size of RTE
(1.1)

1.4.2 RIPng Operation

The RIPng protocol operates over UDP. The IANA assigned port number for the RIPng process
is 521.

A router sends its entire routing table to all its directly connected neighboring routers every
30 seconds—called a regular update. This unsolicited transmission has a UDP source port 521
and a destination port 521. The source address must be a link-local address of the transmitting
interface of the originating router. The destination address is the all-rip-routers multicast address
ff02::9.

When a router first comes up and is in the initialization phase, it may request other routers
to send their routing tables in order for it to populate its routing table. This request may be sent
to the all-rip-routers multicast address on each attached interface. If there exists only a single
RTE in the RIPng request message, and the prefix in this RTE is ::, the prefix length is 0, and
the metric value is 16, then the requesting router is asking the receiving router to send its entire
routing table.

A router may send a request to a specific peer soliciting a specific list of destinations. In this
case, the receiving router processes each RTE by performing a search of the given prefix in its
routing table. If an entry is found, then the metric value is retrieved and is set in the RTE. If an
entry is not found, then the metric value is set to 16 indicating the destination is not reachable
from this router’s perspective. Once all of the RTEs have been processed, the command field is
changed from request to response and is sent to the requesting router.

When a router receives a message from a neighbor, if it contains a destination that is not
already in its routing table, or if either the metric or the next hop address of an existing route
entry is updated by the newly received RTE, then the corresponding route entry in the routing
table is created or updated with new information. The next hop address of the entry is set to
the source address of the received message or the next hop address specified by a next hop
RTE (shown in Figure 1-11); note that in either case the address is a link-local address. The
receiving router will then send an update message on all other interfaces. This process is called
a triggered update, and is limited to one transmission per 1 to 5 seconds, depending on the
timer expiration.

There are two timers associated with each route entry: the timeout timer and the garbage
collection timer. The timeout timer is initialized to 180 seconds when the route entry is first
created. Each time a response message which contains the destination of this route entry is
received, the timeout timer is reset to 180 seconds. The route entry is considered expired if a
message has not been received which covers that destination. In this case, once the route entry
expires, a garbage collection timer is initialized to 120 seconds for the expired entry. The route
entry is removed from the routing table when the garbage collection timer expires. The reason
for setting the garbage collection timer is to aid convergence, as explained in Section 1.4.3.
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The following points summarize the key characteristics of the RIPng protocol:

• The routing algorithm selects a best route for each possible destination using distance
as the main selection criteria.

• Each piece of routing information consists of a destination, a gateway and the distance
to the destination.

• A router exchanges routing information with only directly connected routers. Route
information from a new neighboring router can be dynamically reflected, but the state
of each router is not maintained.

• Distribution of routing information is unreliable because the routing information is
exchanged over UDP without any application-level acknowledgments.

• Origin of a route cannot be identified.

• Route computation is distributed in that selection decision made at one router depends
largely on the route selection decisions made by other routers.

• Routing loop cannot always be detected or avoided.

• The algorithm can be vulnerable to topological changes and can converge slowly.

1.4.3 Problems with RIPng

The main advantage of RIPng is that RIPng is a simple routing protocol and its implementation
is fairly straightforward. This simplicity, however, causes a number of operational problems.
The most visible problems are its inability to detect routing loops in more complex network
topologies and that it may converge slowly in some situations. This was briefly discussed in
Section 1.3.1; this section revisits and details the problem in the context of the RIPng protocol.
Consider the example given in Figure 1-13.

In this figure, the horizontal axis represents time. The first vertical column lists the available
routers RT-1, RT-2 and RT-3. Starting from the second column, each pair of values represents
each router’s perspective on the reachability of the IPv6 prefix 2001:db8:0:1000/64, that is,
the gateway to the prefix and the cost of that path. For example, at time t1, RT-1 sees the prefix
2001:db8:0:1000::/64 as directly reachable, and the cost of that route is 1. At the same
time, router RT-2 and RT-3 view the prefix as reachable through router RT-1, and the costs of
the route are 2 and 4 respectively.

Router RT-1 advertises network 2001:db8:0:1000::/64 to both RT-2 and RT-3 with
metric 1. At time t2, the link between RT-1 and N-1 is broken. This link is the only one to reach
N-1. Now RT-1 correctly marks 2001:db8:0:1000::/64 as unreachable. However, at time
t3 both RT-2 and RT-3 still advertise a route to 2001:db8:0:1000::/64 with metric 2 and 4
respectively. At time t4, upon receiving these routes from RT-2 and RT-3, RT-1 incorrectly thinks
that N-1 is reachable through either RT-2 or RT-3. Since RT-2 advertises a smaller metric, RT-1
treats RT-2 as the next hop router and inserts the route with the updated metric 3 into its routing
table. This route entry is then advertised to RT-2 and RT-3 causing both RT-2 and RT-3 to think
N-1 is now reachable via RT-1 but with a new metric value. RT-2 and RT-3 update their metric
values accordingly and readvertise the route to RT-1. RT-1 again updates its metric value and
then advertises the update route back to RT-2 and RT-3. This process continues until eventually
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FIGURE 1-13
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all three routers have a metric value of 16 to 2001:db8:0:1000::/64, which indicates this
network is no longer reachable, that is, this is a symptom of the counting to infinity problem
described in Section 1.3.1.

With the counting to infinity problem, none of the routers would know that N-1 is no longer
reachable until the metric value reaches 16 at a time long passed t2, (i.e., at time tn). One reason
that the metric for RIPng has a maximum allowed value of 16 is that the larger the allowable
metric, the longer RIPng takes to reach the convergence state. The maximum value of 16 also
implies that RIPng is limited to networks that have diameters of at most 15 hops, assuming the
cost of each hop is 1. Note in this example, RT-3 converges faster than both RT-1 and RT-2 due
to its larger metric value.

As illustrated by this example, due to the counting to infinity problem, RIPng has a large
convergence time when it is deployed in more complex networks. As can be seen from this
example, the source of the problem is that RT-2 is advertising to RT-1 a route which RT-2 had
learned from RT-1. The problem disappears if RT-2 never advertises any route that was learned
from RT-1 back to RT-1. This solution is called the Split Horizon algorithm. Alternatively, RT-2
may advertise the route that it learned from RT-1 back to RT-1, but RT-2 sets the metric to
16 which indicates that destination is not reachable through RT-2, which is known as route
poisoning. The garbage collection timer mentioned in the pevious section, also known as the
hold-down timer, is used for route poisoning. During the hold-down time, an expired route is
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FIGURE 1-14
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advertised to the neighbors with a metric of 16. Split horizon combined with route poisoning
is called Split Horizon with Poisoned Reverse.

The Split Horizon algorithm solves the problem depicted in Figure 1-13, but this algorithm
still cannot detect the routing loop if the network has a configuration as shown in Figure 1-14.

In this figure, because RT-2 and RT-3 share a common link, the two routers will advertise
2001:db8:0:1000::/64 with a metric of 2 to each other. Due to Split Horizon with Poisoned
Reverse, RT-2 and RT-3 both advertise to RT-1 that 2001:db8:0:1000::/64 is unreachable.
When the link between RT-1 and N-1 is broken, RT-1 will mark N-1 as unreachable. At this point
RT-2 considers the new route to 2001:db8:0:1000::/64 is through RT-3 with a metric of 3.
RT-2 will also advertise this route to RT-1. RT-1 is led to believe that 2001:db8:0:1000::/64
is now reachable through RT-2. Again the counting to infinity problem occurs and the Split
Horizon algorithm could not detect the routing loop in this configuration.

1.5 Introduction to BGP4+

The BGP-4 protocol as defined in [RFC4271] is an exterior routing protocol that is mainly
deployed between different autonomous systems (ASs). Since the original BGP-4 specification
assumes the routing protocol operates over the IPv4 network, the routing messages carry only
IPv4 routes. [RFC2858] updates the BGP-4 specification to support additional protocols such as
IPv6. The extended BGP is commonly known as BGP4+. The specific use of BGP4+ by IPv6
is documented in [RFC2545]. We will use BGP4+ to refer to BGP4+ as deployed in the IPv6
network. We will also use the terms BGP4+ and BGP interchangeably for the remainder of this
chapter.

In the context of BGP4+, each AS has an Autonomous System Number or ASN. The ASN
can be either a public ASN or a private ASN. A public ASN is a globally unique identifier and
is assigned by an organization such as RIR or NIR. The IANA has reserved AS64512 to AS65535
as private ASNs. [RFC1930] discusses ASN in detail.
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RIR stands for the Regional Internet Registry, which is responsible for the allocation and
management of IP adresses and ASNs for a specific region of the world. Today there exist
five RIRs: AfriNIC (Africa), APNIC (Asia Pacific), ARIN (North America), LACNIC (Central and
South America), and RIPE-NCC (Europe).

NIR stands for the National Internet Registry, which is responsible for IP address allocation
and management for a specific country.

BGP4+ uses the path-vector algorithm and solves the routing loop detection problem by
including the path to the destination in the route message. When a BGP4+ router receives a route
update, a router will update the path information to include its ASN before redistributing that
route to other ASs. Since BGP4+ is an exterior routing protocol, routing information is exchanged
among ASs, each with a different routing policy that governs what information could be made
externally visible. For this reason, the path information carried in the route message is a list of
ASNs instead of a list of specific routers in order to hide the internal topology of each AS on
that path. Consider the example given in Figure 1-15.

As illustrated in the figure, each router records its ASN in the route message before distribut-
ing that route to another router. But first, each router must validate the received route message

FIGURE 1-15
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by examining the path information and verify that its ASN is not present in the path. Routers
RT-2 to RT-7 accept the received route message according to this rule. RT-8 finds its ASN in
the route message originated from RT-7, therefore detecting the routing loop. In this case RT-8
rejects the advertised route from RT-7, thus breaking the loop.

1.5.1 BGP4+ Operation

BGP4+ operates over TCP. A BGP4+ router establishes a peering relationship with another
BGP4+ router by establishing a TCP connection to port 179 of that other router. The two BGP4+
routers are called BGP peers, also known as BGP speakers. Typically BGP4+ is deployed for inter-
AS routing, but large organizations and enterprises that have hundreds of branch offices also
deploy BGP4+ within an AS. When a BGP4+ router peers with another BGP4+ router of the
same AS, these routers are called internal BGP (IBGP) peers. When a BGP4+ router peers with
a BGP4+ router of another AS, these routers are called external BGP (EBGP) peers. Figure 1-16
illustrates the concept of EBGP and IBGP peers.

As shown in the figure, routers RT1, RT2 and RT3 are IBGP peers because these routers
belong to the same AS(64600). RT1 and RT5 are EBGP peers. Similarly RT2 and RT4 are EBGP
peers. In this figure, router RT3 acts as a route reflector that redistributes routing information
learned from one IBGP peer to another IBGP peer. BGP route reflector is fully described in
[RFC2796].

FIGURE 1-16
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The BGP4+ routers cannot exchange any routing information until the peering process
completes successfully. BGP defines a Finite State Machine (FSM) to represent its operation.
Associated with the FSM is a set of events and timers that trigger state transition. The BGP
peering process is part of the FSM but we omit the discussion of the BGP FSM in detail. Instead,
we will describe the peering process through one possible scenario as illustrated in Figure 1-17.

The peering process begins by first establishing a TCP connection. One BGP4+ router
initiates the TCP connection to another BGP4+ router. It is possible that both routers try to
initiate the TCP connection to each other at the same time. In order to avoid establishing two
TCP connections, the BGP router with the smaller BGP Identifier (see Figure 1-19) will cancel
its TCP connection request. The OPEN message is the first BGP message sent once the under-
lying TCP connection has been established successfully. A subsequent KEEPALIVE message
confirms the OPEN message. Notice two BGP speakers send the OPEN and the KEEPALIVE
messages. The BGP speakers then exchange their routing databases through the UPDATE mes-
sage once the BGP peering session is established.

FIGURE 1-17
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For each of its peers, a BGP router maintains a database that stores the routes advertised
by its peer, and a separate database that stores the routes that it advertised to the peer. By
maintaining separate databases on incoming and outgoing route exchanges, each BGP router
is able to determine which updated routes affect its peer, and distributes to its peer only those
updates to reduce routing traffic.

Since BGP is mainly deployed between different ISPs or between different companies,
routing policies and enforcement of those policies play a significant role in BGP. It is important
for an ISP or a company to define what types of routes can be accepted from a peer, what types
of routes can be distributed to a peer, what external routes can be redistributed internally and
externally, which entry points inbound traffic should take, which exit points outbound traffic
should take, and much more.

The following points summarize the key characteristics of the BGP4+ routing protocol:

• The routing algorithm selects a best route for each possible destination by examining
the path information in conjunction with the locally administered routing policies.

• Routes are re-advertised to other routers that are not directly connected. There is no
dynamic discovery of neighboring routers. Routes are exchanged with configured peer
routers.

• Each piece of routing information consists of the destination, a gateway and the entire
path to the destination.

• Distribution of routing information is reliable because route exchanges are carried over
TCP.

• Origin of each route can be identified.

• Routing loops can be easily detected and avoided.

• Route computation is distributed in that selection decision made at one router depends
largely on the route selection decisions made by other routers; however, decision of
route selection can be made by local policy with a good degree of flexibility due to the
explicit loop avoidance mechanism.

1.5.2 BGP4+ Messages

There are four message types in BGP, which are shown in Table 1-1.

Message Header

The BGP message header format is shown in Figure 1-18.

Marker This 4-byte field must be filled with all ones.

Length This 2-byte field specifies the size of the BGP message. The message header is 19 bytes,
so Length can have the minimum value of 19. The maximum value that Length can have
is 4096 including the header size.

Type This 1-byte field specifies the BGP message type as described in Table 1-1.
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TABLE 1-1

Type Name Description

1 OPEN The OPEN message is the first message that is sent over the TCP connection
to initiate the peering exchange.

2 UPDATE The UPDATE message carries routing information and is exchanged between
the peers. A router also sends the UPDATE message to withdraw a previously
advertised route.

3 NOTIFICATION A router sends the NOTIFICATION message when it detects an error condi-
tion and closes the connection.

4 KEEPALIVE Instead of relying on the TCP keep-alive mechanism, a BGP4+ router sends
the KEEPALIVE message to detect the liveliness of its peer. The KEEPALIVE
message is also sent in response to an OPEN message to complete the initial
peering handshake.

BGP message types.

FIGURE 1-18
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OPEN message

The OPEN message is the first message that is exchanged between two BGP speakers once
the TCP connection is established between them. The OPEN message serves as the request
to establish a peering relation. The OPEN messages also allow the BGP speakers to identify
each other’s capabilities. The BGP speakers may fail to establish the peering relationship if
incompatibilities are found.

The OPEN message contains the message header and the additional fields that are shown
in Figure 1-19.

Version This 1-byte field specifies the BGP protocol version number. The current BGP
version is 4.

My Autonomous System Number This 2-byte field contains the ASN of the sender of the OPEN
message.

Hold Time This 2-byte field specifies the maximum duration between successive KEEPALIVE
or UPDATE messages. This value is proposed from the sender. The receiver sets its Hold
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FIGURE 1-19
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Time to be the smaller of its configured value and the proposed Hold Time from the
received OPEN message. A zero Hold Time implies the sender does not need to send any
message. The Hold Time must be at least 3 seconds if its value is not zero. In this case
the TCP connection is closed if the receiver does not receive a KEEPALIVE, UPDATE or
NOTIFICATION message when the Hold Time expires. The value received in the Hold
Time field may cause a BGP speaker to reject the peering request.

BGP Identifier The 4-byte field contains a valid IPv4 unicast address of the sender.

Optional Parameters Length This 1-byte field specifies size of the optional parameters that are
present in the message. No options are present if the length is zero. Otherwise these
optional parameters will be negotiated with the receiver.

Optional Parameters The variable length Optional Parameters field contains the parameters to
be negotiated with the receiver. Each optional parameter has the <type, length, value>
format. The Type 2 parameter represents the BGP capabilities. The value field of a Type
2 parameter is encoded as <code, length, value>. Table 1-2 lists the currently defined
capability codes, their descriptions and the documents in which they are defined.

KEEPALIVE message

The KEEPALIVE message contains only the message header and is therefore 19 bytes in size.
The KEEPALIVE message is sent to avoid the expiration of the Hold Time and serves the same
purpose as the TCP keepalive packets, that is, to verify the connection state. The KEEPALIVE
message is rate limited and more than one message per second must not be sent. The KEEPALIVE
message must not be sent if the negotiated Hold Time is zero.



24 Chapter 1—IPv6 Unicast Routing Protocols

TABLE 1-2

Value Description Reference

0 Reserved [RFC3392]

1 Multiprotocol Extensions for BGP-4 [RFC2858]

2 Route Refresh Capability for BGP-4 [RFC2918]

3 Cooperative Route Filtering Capability [ROUTE-FILTER]

4 Multiple routes to a destination capability [RFC3107]

5–63 Unassigned

64 Graceful Restart Capability [IDR-RESTART]

65 Support for 4-byte AS number capability [AS4BYTES]

66 Deprecated (2003-03-06)

67 Support for Dynamic Capability (capability specific)

68–127 Unassigned

128–255 Vendor Specific

BGP capability codes.

FIGURE 1-20

0 15 16 31

Error Code

Data

7 8

Error Subcode

BGP4+ NOTIFICATION message.

NOTIFICATION message

The NOTIFICATION message is sent when an error condition is detected by a BGP speaker.
The BGP speaker terminates the connection immediately after sending the message. The
NOTIFICATION message contains the message header and the additional fields that are shown
in Figure 1-20.

Error Code This 1-byte field indicates the type of error that has occurred either during the
peering process or during an established BGP session.

Error Subcode The value of this 1-byte field depends on the value of the Error Code field.

Data The Data field is variable in length and its content depends on both the Error Code and
the Error Subcode. At a minimum the NOTIFICATION message is 21 bytes in size if Data
is not present.

The various error codes are listed in Table 1-3.


