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PREFACE TO THE THIRD EDITION

Since its first publication, Theory of Plasticity has been well received by both students
and instructors across the world, and has been generally recognized as a useful
exposition of the mechanics of plastic deformation of metals. The many encouraging
comments I have received over the years from professors and researchers in the
field of plasticity have prompted me to prepare a revised third edition of the book.
Although several other works on plasticity have appeared since the first publication
of this book, there is apparently none that deals with the specific areas of application
treated in this book with comparable degrees of completeness.

The major addition to this third edition consists of the addition of a new Chap-
ter 9 that deals with numerical methods of solving elastic/plastic problems, using
both the finite difference and finite element methods. A new section has been added
to Chapter 4 to discuss the limit analysis of space frames, including grillages, which
involve beams under combined loading. A number of recent references to the pub-
lished literature on plasticity are made in appropriate footnotes throughout the book.
A set of new homework problems is also included at the end of several chapters for
the benefit of both the student and the instructor, and worked solutions for instructors
are provided on the accompanying website at http://textbooks.elsevier.com.

It is hoped that this new edition will continue to be useful for teaching and
research in the field of plasticity. Though intended primarily for graduate students,
there is also material in the book that could be used for senior undergraduate students
and by practicing engineers. The book will also serve as a suitable reference work
for numerous other courses related to solid mechanics.

I would like to express my sincere gratitude to Professor J. M. Alexander, who
has always encouraged me with his admiration for this work. I am also grateful to
Professor W. Johnson for his support. It is a great pleasure to express my sincere
thanks to Mr. J. Simpson of Elsevier for his unfailing support and cooperation in
bringing out the revised third edition of the book.Above all, I am profoundly grateful
to Ma Indira Devi, who graciously provided the inspiration that was so necessary
for the satisfactory completion of this work.

J. Chakrabarty
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PREFACE TO THE FIRST EDITION

During recent years, there has been considerable interest in the application of the
macroscopic theory of plasticity to engineering problems associated with structural
designs and the technological forming of metals. The need for a comprehensive text
book on plasticity, incorporating the most recent developments of the subject, has
been strongly felt for some years. This book has been written primarily to meet
the needs of graduate and research students of Mechanical, Civil, and Metallurgical
Engineering, although some of the material in the book is also suitable for under-
graduate students and practicing engineers. In order to discuss the various topics
as fully as possible, it has been found necessary to treat the subject matter in two
volumes, of which the first one is now presented to the reader.

The first chapter of the book deals with the analysis of stress and strain rate, and
introduces the definition of the stress rate. The second chapter discusses the yield cri-
teria, stress–strain relations, uniqueness theorems, and extremum principles.A series
of physical problems where elastic and plastic strains are simultaneously important
are discussed in Chaps. 3 and 5. A detailed account of the limit analysis of framed
structures is given in Chap. 4 as a logical continuation of the treatment of the bending
of beams. The remaining chapters of the book deal with the theory and application
of slipline fields, an area that has received the greatest attention in the literature.
The basic theory is explained in Chap. 6, which includes the recent analytical and
numerical methods of solution of the plane strain problem. A variety of practical
problems involving steady, pseudosteady, and nonsteady states of plastic flow are
thoroughly discussed in Chaps. 7 and 8. Several numerical tables are presented in
the Appendix to facilitate the computation of slipline field solutions.

Tensor or suffix notation is introduced in the first chapter, where the summation
convention and the associated algebraic operations have been explained for the bene-
fit of those readers who are unfamiliar with them. The suffix notation is a convenient
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xii preface to the first edition

shorthand for writing the general equations, and is practically indispensable in the
derivation of general theorems. Bessel functions are extensively used in the latter
half of Chap. 6 for the analytical solution of boundary-value problems involving
slipline fields. These sections may be omitted during the first reading, provided the
results used in the subsequent chapters for the solution of special problems are taken
for granted. I have made an earnest endeavor to make the treatment of each problem
as complete as is warranted by the present state of knowledge. A large number of
exercise problems are provided at the end of each chapter to enable the student to
test his or her mastery of the subject. There is more material in this book than can be
covered in a one-semester course on plasticity, so that the instructor has sufficient
flexibility in the selection of topics.

References to original papers and books relating to plasticity and its applications
have been given in numerous footnotes throughout the book. The literature in the
field of plasticity is so extensive that I have been compelled to restrict myself mainly
to publications that appeared in English. The reader would be able to form a list of
publications in other languages from some of the references cited in this book.
Although an exhaustive bibliography has not been attempted, I wish to express my
sincere regrets for any inadvertent omission of important publications.

I would like to thank the following professors for reviewing the manuscript:
David H. Allen, Texas A & M University; Nicholas J. Altiero, Michigan State Uni-
versity; James M. Gere, Stanford University; Kerry S. Havner, North Carolina State
University; Philip G. Hodge, University of Minnesota; Francis T. C. Loo, Clarkson
University; Huseyin Sehitoglu, University of Illinois; and David J. Unger, Ohio State
University.

I take this opportunity to record my profound appreciation of the cooperation
offered by the officers of McGraw-Hill Book Company during the planning and
production of the book. I am indebted to Albert Harrison, Harley Editorial Services
for his ready cooperation while dealing with the proofs.

J. Chakrabarty



CHAPTER

ONE
STRESSES AND STRAINS

1.1 Introduction

The theory of plasticity is the branch of mechanics that deals with the calculation
of stresses and strains in a body, made of ductile material, permanently deformed
by a set of applied forces. The theory is based on certain experimental observations
on the macroscopic behavior of metals in uniform states of combined stresses. The
observed results are then idealized into a mathematical formulation to describe the
behavior of metals under complex stresses. Unlike elastic solids, in which the state of
strain depends only on the final state of stress, the deformation that occurs in a plastic
solid is determined by the complete history of the loading. The plasticity problem
is, therefore, essentially incremental in nature, the final distortion of the solid being
obtained as the sum total of the incremental distortions following the strain path.

A metal may be regarded as macroscopically homogeneous and isotropic when
the small crystal grains forming the aggregate are distributed with random orienta-
tions. As a result of plastic deformation, the crystallographic directions gradually
rotate toward a common axis, producing a preferred orientation. An initially
isotropic material thereby becomes anisotropic, and its mechanical properties vary
with direction. The development of anisotropy with progressive cold work and the
resulting strain-hardening are too complex to be successfully incorporated in the the-
oretical framework. In the mathematical theory of plasticity, it is generally assumed
that the material remains isotropic throughout the deformation irrespective of the
degree of cold work. Since the strain-hardening characteristic of a metal in a complex
state of stress can be related to that in uniaxial tension or compression, it is necessary
to examine the uniaxial stress–strain behavior in some detail before considering the
general theory of plasticity.

1



2 theory of plasticity

The plastic deformation in a single crystal is generally produced by slip, which
is the sliding of adjacent blocks of the crystal along definite crystallographic planes,
called slip planes. The boundary line separating the slipped region of a crystal from
the neighboring unslipped region is called a dislocation. The movement of the dis-
location, which is responsible for the slip, is initiated by a line defect causing a local
concentration of stress. Slip usually occurs on those planes which are most densely
packed with atoms. The magnitude and direction of the relative movement in a slip
is specified by a vector known as the Burgers vector. A dislocation is said to be one
of unit strength when the magnitude of the Burgers vector is equal to one atomic
spacing. The terms edge dislocation and screw dislocation are used to describe the
situations where the Burgers vector is normal and parallel respectively to the dis-
location line. In general, a dislocation is partly edge and partly screw in character,
and the dislocation line forms a curve or a closed loop.†

In a polycrystalline metal, the crystallographic orientation changes from one
grain to the next through a narrow transition zone, or grain boundary, which acts as
an effective barrier to slip. Dislocations pile up along the active slip planes at the
grain boundaries, the effect of which is to oppose the generations of new dislocations.
When the applied stress is increased to a critical value, the shear stress developed
at the head of the dislocation pile-up becomes large enough to cause dislocation
movement across the boundary. The dislocation pile-up is mainly responsible for
strain-hardening of the metal in the early stages of plastic deformation. The rate
of hardening of the polycrystalline metal is always higher than that of the single
crystal, where the increase in yield stress is caused by dislocations interacting with
one another and with foreign atoms serving as barriers. The dislocation interactions
control the yield strength of a polycrystalline metal only in the later stages of the
deformation.

If the temperature of the strain-hardened metal is progressively increased, the
cold-worked state becomes more and more unstable, and the material eventually
reverts to the unstrained state. The overall process of heat treatment that restores
the ductility to the cold-worked metal is known as annealing. The temperature
at which there is a marked decrease in hardness of the metal is known as the
recrystallization temperature. The dislocation density decreases considerably on
recrystallization, and the cold-worked structure is replaced by a set of new strain-
free grains. The greater the degree of cold-work, the lower the temperature necessary
for recrystallization, and smaller the resulting grain size.‡

In ductile metals, under favorable conditions, plastic deformation can con-
tinue to a very large extent without failure by fracture. Large plastic strains do occur

† For a complete discussion, see A. H. Cottrell, Dislocations and Plastic Flow in Crystals,
Clarendon Press, Oxford (1953); W. T. Read, Dislocations in Crystals, McGraw-Hill Book
Company, New York (1953); J. Friedel, Dislocations, Addison-Wesley Publishing Company, Read-
ing, Mass. (1964); F. R. N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford (1967);
D. Hull, Introduction to Dislocations, 2d ed., Pergamon Press, Oxford (1975).

‡ See, for example, G. E. Dieter, Mechanical Metallurgy, Chap. 5, 2d ed., McGraw-Hill Book
Company, New York (1976). See also R. W. K. Honeycombe, The Plastic Deformation of Metals, 2d
ed., Edward Arnold, London (1984).
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in many metal-working processes, which constitute an important area of application
of the theory of plasticity. While elastic strains may be neglected in such problems,
the continued change in geometry of the workpiece must be allowed for in the the-
oretical treatment. Severe plastic strains are produced locally in certain mechanical
tests such as the hardness test and the notch tensile test. The significance of these
tests cannot be fully appreciated without a knowledge of the extent of the plastic
zone and the associated state of stress. Situations in which elastic and plastic strains
are comparable in magnitude arise in a number of important structural problems
when the loading is continued beyond the elastic limit. Structural designs based on
the estimation of collapse loads are more economical than elastic designs, since the
plastic method takes full advantage of the available ductility of the material.

1.2 The Stress–Strain Behavior

(i) The true stress–strain curve The stress–strain curve of an annealed material
in simple tension is found to coincide with that in simple compression when the true
stress σ is plotted against the true or natural strain ε. The true stress, defined as the
load divided by the current cross-sectional area of the specimen, can be significantly
different from the nominal stress, which is the load per unit original area of cross-
section. Let l denote the current length of a tensile specimen and dl the increase in
length produced by a small increment of the stress. Then the true strain increases by
the amount dε = dl/l. If the initial length is l0, the total strain is ε = ln(l0/l), called
the true or natural strain.† For a specimen uniformly compressed from an initial
height h0 to a final height h, the magnitude of the natural strain is ε = ln(h0/h). The
conventional or engineering strain e, on the other hand, is the amount of extension
or contraction per unit original length or height. It follows that ε = ln(l + e) in the
case of tension, and ε = −ln(l − e) in the case of compression. Thus ε becomes
progressively lower than e in tension, and higher than e in compression, as the
deformation is continued in the plastic range.

Figure 1.1 shows the true stress–strain curve of a typical annealed material
in simple tension. So long as the stress is sufficiently small, the material behaves
elastically, and the original size of the specimen is regained on removal of the
applied load. The initial part of the stress–strain curve is a straight line of slope
E, which is known as Young’s modulus. The point A represents the proportional
limit at which the linear relationship between the stress and the strain ceases to
hold. The elastic range generally extends slightly beyond the proportional limit.
For most metals, the transition from elastic to plastic behavior is gradual, owing to
successive yielding of the individual crystal grains. The location of the yield point
B is, therefore, largely a matter of convention. The corresponding stress Y , known
as the yield stress, is generally defined as that for which a specified small amount of
permanent deformation is observed. For theoretical purposes, it is often convenient

† The concept of natural strain has been introduced by P. Ludwik, Elemente der Technologischen
Mechanik, Springer Verlag, Berlin (1909). The natural strains associated with successive deformations
are additive, but the engineering strains are not.
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Figure 1.1 True stress–strain curve
of metals with effects of unloading
and reversed loading.

to assume a sharp yield point defined by the intersection of a pair of straight lines,
one of which is a continuation of OA and the other a tangent to the stress–strain
curve at a point slightly above B.

Beyond the yield point, the stress continually increases with further plastic
strain, while the slope of the stress–strain curve, representing the rate of strain-
hardening, steadily decreases with increasing stress. If the specimen is stressed to
some point C in the plastic range and the load is subsequently released, there is an
elastic recovery following the path CD which is very nearly a straight line† of slope
E. The permanent strain that remains on complete unloading is equal to OE. On
reapplication of the load, the specimen deforms elasticity until a new yield point
F is reached. Neglecting the hysteresis loop of narrow width formed during the
loading and unloading, F may be taken as coincident with C. On further loading,
the stress–strain curve proceeds along FG, virtually as a continuation of the curve
BC. The curve EFG may be regarded as the stress–strain curve of the metal when
prestrained by the amount OE. The greater the degree of prestrain, the higher the
new yield point and the flatter the strain-hardening curve. For a heavily prestrained
metal, the rate of strain-hardening is so small that the material may be regarded as
approximately nonhardening or ideally plastic.

A generic point on the stress–strain curve in the plastic range corresponds to
a recoverable elastic strain equal to σ/E, and an irrecoverable plastic strain equal

† L. Prandtl, Z. angew. Math. Mech., 8: 85 (1928).
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to ε − σ/E. If the stress is plotted against the plastic strain only, and the material
is assumed to have a sharp yield point, the resulting curve will begin at σ = Y . Let
H be the slope of the true stress–strain curve excluding the elastic strain, and T
the slope of the curve including the elastic strain, for a given value of the stress σ.
The quantities H and T are known as the plastic modulus and the tangent modulus
respectively. A stress increment dσ produces an elastic strain increment dσ/E and
a plastic strain increment dσ/H, while the total strain increment is dσ/T . Hence the
relationship between H and T is

1

T
= 1

E
+ 1

H
(1)

In an annealed material, H is considerably greater than T at the initial yielding, but
these two moduli rapidly approach one another as the strain is increased. The differ-
ence between H and T becomes insignificant when the slope is only a few times the
yield stress. At this stage, the elastic strain increment becomes negligible in com-
parison with the plastic strain increment. When the total strain is sufficiently large,
the elastic strain itself is negligible. The stress–strain behavior at sufficiently large
strains is identical to that of a hypothetical material in which E is infinitely large. Such
a material is regarded as rigid/plastic, since it remains undeformed so long as the
stress is below the yield point, while the subsequent deformation is entirely plastic.

Suppose that a specimen that has been completely unloaded from a tensile plas-
tic state, represented by the point C, is reloaded in simple compression (Fig. 1.1).
The stress–strain curve will then follow the path DF ′, where the new yield point
F ′ corresponds to a stress that is appreciably smaller in magnitude than that at C.

This phenomenon is known as the Bauschinger effect,† which occurs in real metals
whenever there is a reversal of the stress. The subsequent strain-hardening follows
the path F ′G′, and approaches the stress–strain curve in compression as the loading
is continued. The lowering of the yield stress in reversed loading is mainly caused by
residual stresses that are left in the specimen on a microscopic scale due to the differ-
ent stress states in the individual crystals. The Bauschinger effect can, therefore, be
largely removed by a mild annealing. In the theory of plasticity, it is generally neces-
sary to neglect the Bauschinger effect, the material being assumed to have identical
yield stresses in tension and compression irrespective of the previous cold-work.

Some metals, such as annealed mild steel, exhibit a sharp yield point followed
by a sudden drop in the stress, which remains approximately constant during a
small amount of further straining. The sharp peak is known as the upper yield point,
which is usually 10 to 20 percent higher than the lower yield point represented
by the constant stress. At the upper yield point, a lamellar plastic zone, known as
Lüder’s band, inclined at approximately 45◦ to the tensile axis, appears at a local
stress concentration. During the subsequent elongation under constant stress, several
Lüder’s bands appear and gradually spread over the entire specimen. After a total
yield point elongation of about 10 percent, the stress begins to rise again due to

† J. Bauschinger, Zivilingenieur, 27: 289 (1881).
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strain-hardening, and the stress–strain curve then continues as before. The yield
point drop is suppressed by a light cold-work, but the phenomenon reappears after
the metal has been rested for several days at room temperature, or several hours at
a relatively high temperature.†

(ii) Some consequences of work-hardening A longitudinal extension in the tensile
test is accompanied by a contraction in the lateral direction. The ratio of the mag-
nitude of the lateral strain increment to that of the longitudinal strain increment is
known as the contraction ratio, denoted by η. In the elastic range of deformation, the
contraction ratio has a constant value equal to Poisson’s ratio ν. When the yield point
is exceeded, the plastic part of the lateral strain increment for an isotropic material
is numerically equal to one-half of the longitudinal plastic strain increment. Since
the ratio of the elastic parts of the lateral and longitudinal strain increments is equal
to −ν, the total lateral strain increment in uniaxial tension is

dε′ = − 1
2 dε + ( 1

2 − ν)dεe

where dεe is the elastic part of the longitudinal strain increment dε. In view of the
relationship dεe = dσ/E = (T/E)dε, the contraction ratio becomes

η = −dε′

dε
= 1

2 − ( 1
2 − ν)

T

E
(2)

Since the slope of the stress–strain curve decreases fairly rapidly in the early stages
of strain-hardening, the contraction ratio rapidly approaches the asymptotic value
of 0.5 as the strain is increased in the plastic range.‡ For a material having a sharp
yield point, the contraction ratio changes discontinuously at this point to a value that
depends on the initial rate of strain-hardening. When the tangent modulus becomes
of the same order as that of the current yield stress, η � 0.5, and the incremental
change in volume becomes negligible.

The standard tensile test is unsuitable for obtaining the stress–strain curve of
metals up to large values of the strain, since the specimen begins to neck when the
rate of hardening decreases to a critical value. At this stage, the increase in load
due to strain-hardening is exactly balanced by the decrease in load caused by the
diminution of the area of cross section. Consequently, the load attains a maximum
at the onset of necking. The longitudinal load at any stage is P = σA, where A is the
current cross-sectional area and σ the current stress, and the corresponding volume
of the specimen is lA, where l is the current length. Using the constancy of volume,
the maximum load condition dP = 0 may be written as

dσ

σ
= −dA

A
= dl

l

† In addition to low-carbon steel, yield point phenomenon has been observed in aluminum,
molybdenum, and titanium alloys.

‡ For an experimental investigation on the variation of the contraction ratio, see A. Shelton,
J. Mech. Eng. Sci., 3: 89 (1961).
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Figure 1.2 Peculiarities in tension and compression. (a) Location of point of tensile necking;
(b) nominal stress versus engineering strain.

Since dl/l is equal to dε, the condition for the onset of necking becomes

dσ

dε
= σ (3)

When the true stress–strain curve is given, the point on the curve that corresponds to
the tensile necking can be located graphically from the fact that the slope at this point
is equal to the current stress (Fig. 1.2a). A heavily prestrained metal will obviously
neck as soon as the yield point is exceeded. Since dε = de/(1 + e), the condition for
necking can be expressed in the alternative form

dσ

de
= σ

1 + e

It follows that the maximum load corresponds to the point of contact of the tangent
to the (σ, e) curve from the point (−1, 0) on the negative strain axis.† The tensile
test becomes unstable when the load reaches its maximum. The deformation is
confined locally in the neck, while the remainder of the specimen recovers elastically
under decreasing load until fracture intervenes. The stress distribution in the neck
assumes a triaxial state which varies through the cross section of the neck. The
test no longer provides a direct measure of the stress–strain behavior. Although the
stress–strain curve may be continued by introducing a correction factor that requires

† A Considere, Ann. ponts et chausses, 6: 574 (1885). An interesting discussion has been given by
C. R. Calladine, Engineering Plasticity, Chap. 2, Pergamon Press, Oxford (1969).
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careful measurements of the geometry of the neck,† the experimental difficulties
render the method unsuitable for practical purposes.‡

The strain-hardening characteristic of metals at large strains is most conveniently
obtained by compressing a solid cylindrical specimen between a pair of parallel
platens. In the absence of efficient lubrication, the compression test is complicated
by the fact that the friction at the platens restricts the metal flow at the ends of
the specimen, causing barreling as the compression proceeds. Since homogeneous
compression is thus prevented by friction, the stress–strain curve cannot be derived
by the direct measurement of the load and the change in height of the specimen. In
actual practice, the difficulty is overcome by using several cylinders with different
initial diameter/height ratios, subjecting them to the same load each time on an
incremental basis, and then extrapolating the results at each stage to obtain the strain
corresponding to zero diameter/height ratio.§ Since the barreling would theoretically
disappear for a specimen of infinite height, the extrapolation method eliminates the
frictional effect.

Homogeneous deformation in the simple compression test can be achieved by
inserting PTFE (polytetra fluoroethylene) films of suitable thickness between the
specimen and the compression platens. As well as producing effective lubrication,
the PTFE films are themselves compressed so as to exert radial pressure to the
material near the periphery. This inhibits the barreling tendency, except when the
film thickness is too small. An excessive film thickness, on the other hand, produces
bollarding in which the diameter of the specimen becomes bigger at the ends than
at the middle. For a given specimen, there is an optimum film thickness for which
neither barreling nor bollarding would occur. The compression should be carried
out incrementally, renewing the PTFE films after each load application. Using the
constancy of volume, the load required during the homogeneous compression may
be written as

P = σA = σA0h0

h
= σA0

1 − e

where A0 is the original area of cross section of the specimen. The graph for P against
e shows an upward inflection and rises continuously without limit (Fig. 1.2b). Setting
d2P/de2 = 0, and using the fact that d/dε = (1 − e)d/de, the condition for inflection
is found as (

d

dε
+ 2

)(
dσ

dε
+ σ

)
= 0 (4)

† P. W. Bridgman, Trans. A.S.M.E., 32: 553 (1944); N. N. Davidenkov and N. I. Spiridonova, Proc.
Am. Soc. Test. Mat., 46: 1147 (1946). See also E. R. Marshall and M. C. Shaw, Trans. A.S.M.E., 44:
716 (1952); J. D. Lubahn and R. P. Felgar, Plasticity and Creep of Metals, p. 114, Wiley and Sons, New
York (1961).

‡ A dynamic analysis for the development of the neck has been given by N. K. Gupta and B. Karunes,
Int. J. Mech. Sci., 21: 387 (1979).

§ The extrapolation method has been developed by G. Sachs, Zeit. Metallkunde, 16: 55 (1924),
M. Cook and E. C. Larke, J. Inst. Metals, 71: 371 (1945), A. B. Watts and H. Ford, Proc. Inst. Mech.
Eng., 169: 1141 (1955).
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which defines the corresponding point on the true stress–strain curve. This point is
most conveniently located if the stress–strain curve is represented by an empirical
equation. In view of the incompressibility of the material, the nominal stress is
s = σ exp(ε) in compression and s = σ exp(−ε) in tension.

The work done in changing the height of a specimen from h to h + dh in simple
compression is −P dh, where P is the current axial load. The incremental work done
per unit volume of the specimen is therefore equal to −P dh/Ah or σ dε. It follows
that during the homogeneous compression of a specimen from an initial height h0
to a current height h, the work done per unit volume is given by the area under the
true stress–strain curve up to a total strain of ln(h0/h).

(iii) Empirical stress–strain equations For theoretical computations, it is often
necessary to represent an experimentally determined stress–strain curve by an empir-
ical equation of suitable form. When the material is rigid/plastic, it is frequently
convenient to employ the Ludwik power law†

σ = Cεn (5)

where C is a constant stress, and n is a strain-hardening exponent usually lying
between zero and 0.5. The equation predicts a zero initial stress and an infinite initial
slope, except for n = 0 which represents a nonhardening rigid/plastic material. The
higher the value of n, the more pronounced is the strain-hardening characteristic of
the material (Fig. 1.3a). Since dσ/dε = nσ/ε in view of (5), it follows from (3) that
the magnitude of the true strain at the onset of necking in simple tension is equal to
n. The work done per unit volume during a homogeneous extension or contraction
is easily shown to be σε/(1 + n), where σ and ε are the final values of stress and
strain.

The simple power law (5) may be readily modified by including a constant term
Y representing the initial yield stress. The stress–strain equation then becomes

σ = Y (1 + mεn) (6)

where m and n are dimensionless constants. Although this formula represents the
strict rigid/plastic behavior of metals, it does not give a better fit for an actual stress–
strain curve over a wide range of strains. When n = 1, the above equation represents a
linear strain-hardening, which is a reasonable approximation for heavily prestrained
metals. A more successful formula, due to Swift,‡ is the generalized power law

σ = C(m + ε)n (7)

where C, m, and n are empirical constants. The stress–strain curve represented by
(7) can be obtained from that given by (5) if the stress axis is move along the positive
strain axis through a distance m. Hence m may be regarded as the amount of prestrain

† P. Ludwik, Elem. Technol. Mech., Springer Verlag, Berlin (1909).
‡ H. W. Swift, J. Mech. Phys. Solids, 1: 1 (1952).
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Figure 1.3 Empirical stress–strain curves for rigid/plastic materials. (a) Ludwik equation; (b) Voce
equation.

in a material whose stress–strain curve in the annealed state corresponds to m = 0,
the value of n remaining the same. If a given prestrained metal is represented by both
(5) and (7), the value of n in the two cases will of course be different. The instability
strain in simple tension according to the Swift equation is n − m for m � n and zero
for m � n.

For certain applications involving rigid/plastic materials, it is convenient to use
an equation suggested by Voce.† In its simplest form, the Voce equation may be
written as

σ = C(1 − me−nε) (8)

where e is the exponential constant. The curves corresponding to varying m and n
approach the asymptote σ = C (Fig. 1.3b). However, C is unlikely to be the satu-
ration stress of a given metal as the rate of hardening becomes vanishingly small.
The rapidity with which the asymptotic value is approached is represented by n.
The coefficient m defines the initial state of hardening, the fully hardened material
corresponding to m = 0. The slope of the stress–strain curve given by (8) is equal to
n(C − σ), which varies linearly with the stress.

When the elastic and plastic strains are of comparable magnitudes, it is necessary
to replace ε in the preceding equations by the plastic strain εp. Considering the power
law (5), the plastic part of the strain may be assumed to vary as σm, where m = 1/n,
Since the elastic part of the strain is equal to σ/E, the total strain may be expressed

† E. Voce, J. Inst. Metals, 74: 537 (1948). See also J. H. Palm, Appl. Sci. Res., A-2: 198 (1948).
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Figure 1.4 Empirical stress–strain curves for elastic/plastic materials. (a) Modified Ludwik equation;
(b) Ramberg-Osgood equation.

by the Ramberg-Osgood equation†

ε = σ

E

{
1 + α

(
σ

σ0

)m−1
}

(9)

where σ0 is a nominal yield stress and α a dimensionless constant. The slope of
the stress–strain curve given by the above equation continuously decreases from
the value E at the origin (Fig. 1.4b). At the nominal yield point σ = σ0, the plastic
strain is α times the elastic strain, and the secant modulus is E/(1 + α). The tangent
modulus at any point of the curve is given by

E

T
= 1 + αm

(
σ

σ0

)m−1

(10)

The second term on the right-hand side is equal to E/H in view of (1). The stress–
strain curve for a range of materials can be reasonably fitted by Equation (9) with
α = 3/7. For a nonhardening material (m = ∞), the equation degenerates into a pair
of straight lines meeting at the yield point σ = σ0.

The contraction ratio η determined from (2) and (10) is plotted against Eε/σ0
in Fig. 1.5, assuming α = 3/7. Due to the nature of the Ramberg-Osgood equation,
a variation of η is predicted even in the elastic range of straining. The contraction

† W. Ramberg and W. R. Osgood, NACA Tech. Note, 902 (1943).
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Figure 1.5 Variation of the contraction ratio with longitudinal strain in uniaxial tension according to
the Ramberg-Osgood stress–strain equation (ν = 0.3).

ratio increases very rapidly in the neighborhood of the yield point, following which
η approaches the value 0.5 in an asymptotic manner. The actual value of η is seen
to be reasonably close to 0.5 while the total strain is still of the elastic order of
magnitude.

It is sometimes more convenient to employ a stress–strain equation where the
curve in the plastic range is expressed by a simple power law, the material being
assumed to have a definite yield point at σ = Y . The empirical representation then
becomes

σ =

⎧⎪⎪⎨
⎪⎪⎩

Eε ε � Y

E

Y

(
Eε

Y

)n

ε � Y

E

(11)

where n is generally less than 0.5. The slope of the stress–strain curve given by (11)
changes discontinuously from E to nE at the yield point (Fig. 1.4a). The tangent
modulus at any point in the plastic range is n times the secant modulus. The empirical
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curve is effectively the Ludwik curve whose initial part is replaced by a chord of
slope E.

The Ramberg-Osgood curve represents a continuous transition from the elastic
to the plastic behavior expressed by a single equation when the material work-
hardens. A similar curve for the ideally plastic material is given by the equation

σ = Y tanh

(
Eε

Y

)

which is due to Prager.† The curve having an initial slope E gradually bends over
to approach the yield stress Y in an asymptotic manner. The approach is so rapid
that σ is within 1 percent of Y when ε is only 4Y/E. The tangent modulus at any
point on the curve is equal to E(1 − σ2/Y2), and the corresponding plastic modulus
is E(Y2/σ2 − 1). These moduli soon become negligible while the strain is still quite
small.‡

(iv) Influence of pressure, strain rate, and temperature The tensile test of ductile
materials under superimposed hydrostatic pressure has revealed that the yield point
and the uniform elongation are unaffected by the applied pressure, but the strain to
fracture increases with the intensity of the pressure. The increased ductility of the
material is caused by the lateral compressive stresses which inhibit the formation of
microcracks that lead to fracture. Test results for both tension and compression of
brittle materials under fluid pressure indicate that there is a certain critical pressure
above which the material behaves in a ductile manner.§ The stress–strain curves
for axially compressed limestone cylinders under uniform fluid pressures acting on
the curved surface are shown in Fig. 1.6, where σ denotes the axial compressive
stress in excess of the confining pressure p. Each curve corresponds to a particular
confining pressure expressed in atmospheres.¶ Some materials are found to suffer
a certain amount of permanent volume change when subjected to hydrostatic pres-
sures of exceedingly high magnitude, although the change is negligible in ordinary
situations.‖

† W. Prager, Rev. Fac. Sci., Univ. Istanbul, 5: 215 (1941); Duke Math. J., 9: 228 (1942).
‡ Other forms of stress–strain equation are sometimes used for the derivation of special solutions.

See, for example, R. Hill, Phil. Mag., 41: 1133 (1950), and J. Chakrabarty, Int. J. Mech. Sci., 12: 315
(1970).

§ The pressure can be accurately measured from the change in resistance of a manganin wire
immersed in the pressurized fluid. A detailed account of the experimental investigations regarding the
effect of hydrostatic pressure on metals has been presented by P. W. Bridgman, Studies in Large Plastic
Flow and Fracture, McGraw-Hill Book Company, New York (1952), and by H. Ll. D. Pugh (ed.),
Mechanical Behavior of Materials under Pressure, Elsevier, Amsterdam (1970).

¶ Experimental results on the compression of marble and limestone cylinders under fluid pressure
have been reported by Th. von Karman, Z. Ver. deut. Ing., 55: 1749 (1911), and by D. T. Griggs,
J. Geol., 44: 541 (1936).

‖ P. W. Bridgman, J. Appl. Phys., 18: 246 (1947). The effect of hydrolastic pressure on the shear
properties of metals has been investigated by B. Crossland, Proc. Inst. Mech. Eng., 169: 935 (1954);
B. Crossland and W. H. Dearden, ibid., 172, 805 (1958). See also M. C. Shaw, Int. J. Mech. Sci., 22:
673 (1980).
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Figure 1.6 Behavior of limestone cylinders under axial thrust and lateral pressure (after Griggs).

Plastic instability is found to occur in cylindrical bars when subjected to lateral
fluid pressures of sufficient magnitude.† The phenomenon is caused by a slight
non-uniformity in distortion of the unconstrained surface which is exposed to fluid
pressure. When the material is ductile, the longitudinal strain at the onset of necking
is exactly the same as that in uniaxial tension, but the cross section of the neck is
greatly reduced before fracture. Brittle materials, which normally fracture with no
significant plastic strain under simple tension, are found to deform beyond the point
of necking when tested under lateral fluid pressure. Moreover, the uniform strain at
the onset of necking is found to be identical to that given by (3), with the stress–strain
curve obtained in simple compression. For extremely brittle materials, the fracture
mode seems to remain brittle even under a fluid pressure acting on the lateral surface.‡

At room temperature, the stress–strain curve of metals is practically indepen-
dent of the rate of straining attainable in ordinary testing machines. High-speed
tensile tests have shown that the yield stress increases with the strain rate, and this
effect is more pronounced at elevated temperatures. The true strain rate in simple
compression is defined as ε̇ = −ḣ/h, where h is the current specimen height and ḣ its
rate of change. To obtain a constant strain rate during a test, it is therefore necessary
to decrease the platen speed in proportion to the specimen height. This is achieved
by using a cam plastometer in which one of the compression platens is actuated by
a cam of logarithmic profile.§ Maintaining a constant temperature during a test is

† J. Chakrabarty. Proc. 13th Int. M.T.D.R. Conf., p. 565, Pergamon Press, Oxford (1972).
‡ P. W. Bridgman, Phil. Mag., July, 63 (1912).
§ The cam plastometer has been devised by E. Orowan, Brit. Iron and Steel Res. Assoc. Rep.,

MW/F/22 (1950).
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Figure 1.7 Effects of strain rate and temperature on the stress–strain curve of metals. (a) EN25 steel at
1000◦C (after Cook); (b) annealed copper at a strain rate of 10−3/s (after Mahtab et al.).

more difficult, since the heat generated during the test raises the temperature of the
specimen adiabatically. Figure 1.7 shows typical stress–strain curves of metals in
compression, obtained under constant temperatures and strain rates.†

For a given value of the strain, the combined effect of strain rate and temperature
on the yield stress may be expressed by the functional relationship‡

σ = f

{
ε̇ exp

(
Q

RT

)}
(12)

where Q is an activation energy for plastic flow, T the absolute testing temperature,
and R the universal gas constant equal to 8.314 J/g mol ◦K. The above relationship
has been experimentally confirmed for several metals over wide ranges of strain rate

† For experimental methods and results on the high-speed compression at elevated temperatures,
see P. M. Cook, Proc. Conf. Properties of Materials at High Rates of Strain, Inst. Mech. Eng., 86
(1957); F. U. Mahtab, W. Johnson, and R. A. C. Slater, Proc. Inst. Mech. Eng., 180: 285 (1965);
S. K. Samanta, Int. J. Mech. Sci., 10: 613 (1968), J. Mech. Phys. Solids, 19: 117 (1971); T. A. Dean and
C. E. N. Sturgess, Proc. Inst. Mech. Eng., 187: 523 (1973). See also R. A. C. Slater, Engineering
Plasticity, Chap. 6, Wiley and Sons, London (1977); M. S. J. Hashmi, J. Strain Anal., 15: 201 (1980).

‡ C. Zener and J. H. Hollomon, J. Appl. Phys., 15: 22 (1944); T. Trozera, O. D. Sherby, and
J. L. Dorn, Trans. ASME, 49: 173 (1957). The expression in the curly bracket of (12) is often called the
Zener-Hollomon parameter, which is also useful in the theory of high-temperature creep. A generalized
constitutive equation, including the effect of strain, has been discussed by J. M. Alexander, Plasticity
Today (Ed. H. Sawczick), Elsevier, Amsterdam (1986).
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and temperature. When the temperature is held constant, the test results can be fitted
by the power law†

σ = Cεnε̇m (13)

where C, m and n depend on the operating temperature. The exponent m is known as
the strain-rate sensitivity, which generally increases with temperature, particularly
when it is above the recrystallization temperature. The strain-hardening exponent
n, on the other hand, rapidly decreases with increasing values of the elevated
temperature.

The dependence of the flow stress on strain rate and temperature for a given
strain is sometimes expressed in the alternative form‡

σ = f

{
T

(
1 − m ln

ε̇

ε̇0

)}
(14)

where m and ε̇0 are constants, the quantity in the curly bracket being known as the
velocity modified temperature. It is consistent with the fact that an increase in strain
rate is in effect equivalent to a decrease in temperature. Equation (14) agrees with
test data for a fairly wide range of values of the strain rate and temperature.

Above the recrystallization temperature, the yield stress attains a saturation
value after a small amount of strain, as a result of the work-hardening rate being
balanced by the rate of thermal softening. The dependence of the saturation stress
on strain rate and temperature can be expressed with reasonable accuracy by the
empirical equation§

σ = C sinh−1
(

mε̇n exp
b

T

)

where b, C, m, and n are material constants. The activation energy Q is then indepen-
dent of the temperature, and is approximately equal to Rb/n. A distinction between
cold- and hot-working of metals is usually made on the basis of the recrystalliza-
tion temperature, whose absolute value is roughly one-half of the absolute melting
temperature. The above equation reduces to a power law when the expression in the
parenthesis is sufficiently small.¶

† W. F. Hosford and R. M. Caddell, Metal Forming Mechanics and Metallurgy, 2d ed., Chap. 5,
Prentice-Hall, Englewood Cliffs, NJ (1993).

‡ C. W. MacGregor and J. C. Fisher, J. Appl. Mech., 13: 11 (1946).
§ C. M. Sellars and W. J. McG. Tegart, Mem. Sci. Rev. Met., 63: 731 (1966); S. K. Samanta, Proc.

11th Int. M.T.D.R. Conf., Pergamon Press, Oxford (1970).
¶ Large neck-free extensions are possible in certain highly rate-sensitive alloys, called superplastic

alloys. See W. A. Backofen, I. Turner and H. Avery, Trans. Q. ASM, 57: 981 (1966); J. W. Edington,
K. N. Melton, and C. P. Cutler, Prog. Mater. Sci., 21: 63 (1976); K. A. Padmanabhan and G. J. Davies,
Superplasticity, Springer-Verlag, Berlin (1980); T. G. Nieh, J. Wadsworth, and O. D. Sherby,
Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge (1997).
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1.3 Analysis of Stress

(i) Stress tensor When a body is subjected to a set of external forces, internal forces
are produced in different parts of the body so that each element of the body is in
a state of statical equilibrium. Through any point O within the body, consider a
small surface element δS whose orientation is specified by the unit vector l along the
normal drawn on one side of the element (Fig. 1.8a). The material on this side of δS
may be regarded as exerting a force δP across the surface element upon the material
on the other side. The limit of the ratio δP/δS as δS tends to zero is the stress vector
T at O associated with the direction I. For given external loading, the stress acting
across any plane passing through a given point O depends on the orientation of the
plane. The resolved component of the stress vector along the unit normal l is called
the direct or normal stress denoted by σ, while the component tangential to the plane
is known as the shear stress denoted by τ.

Consider now a set of rectangular axes Ox, Oy, and Oz emanating from a
typical point O, and imagines a small rectangular parallelepiped at O having its
edges parallel to the axes of reference (Fig. 1.8b). The normal stresses across the
faces of the block are denoted by σx, σy, and σz, where the subscripts denote the
directions of the normal to the faces. The shear stress acting on the faces normal to
the x axis is resolved into the components τxy and τxz parallel to the y and z axes
respectively. The first suffix denotes the direction of the normal to the face and the
second suffix the direction of the component. In a similar way, the shear stresses
on the faces normal to the y axis are denoted by τyx and τyz, and those on the faces
normal to the z axis by τzx and τzy. The stresses are taken as positive if they are
directed as shown in the figure, when the outward normals to the faces are in the
positive directions of the coordinate axes. The positive directions are all reversed
on the remaining faces of the block where the outward normals are in the negative
directions of the axes of reference. The nine components of the stress at any point
form a second-order tensor σij, known as the stress tensor, where i and j take integral

Figure 1.8 Definition of stress. (a) Normal and shear stresses; (b) components of stress tensor.
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values 1, 2, and 3. The stress components may be displayed as elements of the square
matrix

σij =
⎡
⎣σx τxy τxz

τyx σy τyz
τzx τzy σz

⎤
⎦ =

⎡
⎣σ11 σ12 σ13

σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦

The forces acting on the faces of the parallelepiped are clearly in equilibrium.
To examine the couple equilibrium, let δx, δy, δz denote the lengths of these faces
along the respective coordinate axes. Then the resultant couple about the z axis is
(τxy − τyx)δx δy δz, which must vanish for equilibrium. This gives τxy = τyx. Simi-
larly, the conditions for couple equilibrium about the other two axes give τyz = τzy
and τzx = τxz. These identities may be expressed as σij = σji, implying that the stress
tensor is symmetric with respect to its subscripts. Thus there are six independent
stress components, three normal components σx, σy, σz, and three shear components
τxy, τyz, τzx, which completely specify the state of stress at each point of the body.
The matrix representing the stress tensor is evidently symmetrical.

The mean of the three normal stresses, equal to (σx + σy + σz)/3, is known as
the hydrostatic stress denoted by σ0. A deviatoric or reduced stress tensor sij is
defined as that which is obtained from σij by reducing the normal stress components
by σ0. This gives the deviatoric stresses as

sij =
⎡
⎣sx sxy sxz

syx sy syz
szx szy sz

⎤
⎦ =

⎡
⎣(σx − σ0) τxy τxz

τyx (σy − σ0) τyz
τzx τzy (σz − σ0)

⎤
⎦

The deviatoric normal stresses are therefore given by

3sx = 2σx − σy − σz, 3sy = 2σy − σz − σx, 3sz = 2σz − σx − σy

The deviatoric shear stresses are the same as the actual shear stresses. Since sx + sy +
sz = 0, the deviatoric normal stresses cannot all have the same sign. The difference
between any two normal components of the deviatoric stress is the same as that
between the corresponding components of the actual stress. Expressed in suffix
notation, the relationship between sij and σij is

sij = σij − σ0δij = σij − 1
3σkkδij (15)

where δij is the Kronecker delta whose value is unity when i = j and zero when
i �= j. Evidently, δij = δji. Any repeated or dummy suffix indicates a summation of all
terms obtainable by assigning the values 1, 2, and 3 to this suffix in succession. Thus
σkk = σx + σy + σz. It follows from the definition of the delta symbol that σijδjk = σik ,
where j is a dummy suffix and i, k are free suffixes. Each term of a tensor equation
must have the same free suffixes, but a dummy suffix can be replaced by any other
letter different from the free suffixes.
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(ii) Stresses on an oblique plane Consider the equilibrium of a small tetrahedron
OABC of which the edges OA, OB, and OC are along the coordinate axes (Fig. 1.9).
Let (l, m, n) be the directions cosines of a straight line drawn along the exterior
normal to the oblique plane ABC. These are the components of the unit normal 1
with respect to Ox, Oy, and Oz. If the area of the face ABC is denoted by δS, the
faces OAB, OBC, and OCA have areas n δS, l δS, and m δS respectively. The stress
vector T acting across the face ABC has components Tx, Ty, and Tz along the axes
of reference. Resolving the forces in the directions Ox, Oy, and Oz, we get

Tx = lσx + mτxy + nτzx

Ty = lτxy + mσy + nτyz (16)

Tz = lτzx + mτyz + nσz

on cancelling out δS from each equation of force equilibrium. When δS tends to zero,
these equations give the components of the stress vector at O, associated with the
direction (l, m, n), in terms of the components of the stress tensor. Using the suffix
notation and the summation convention, (16) can be expressed as

Tj = liσij

where l1 = l, l2 = m, l3 = n. The above equation is equivalent to three equations
corresponding to the three possible values of the free suffix j. A single free suffix
therefore characterizes a vector. The normal stress across the plane specified by its

Figure 1.9 Stresses across an oblique
plane in a three-dimensional state of stress.
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normal (l, m, n) is

σ = lTx + mTy + nTz = ljTj = liljσij

= l2σx + m2σy + n2σz + 2lmτxy + 2mnτyz + 2nlτzx (17)

The shear stress across the plane can be resolved into two components in a pair of
mutually perpendicular directions in the plane. Denoting one of these directions by
(l′, m′, n′), the corresponding shear component is obtained as

τ′ = l′Tx + m′Ty + n′Tz = l′jTj = lil
′
jσij

= ll′σx + mm′σy + nn′σz + (lm′ + ml′)τxy + (mn′ + nm′)τyz + (nl′ + ln′)τzx
(18)

This evidently is the resolved component of the resultant stress in the direction
(l′, m′, n′). The direction cosines satisfy the well-known geometrical relations

l2 + m2 + n2 = 1 l′2 + m′2 + n′2 = 1 ll′ + mm′ + nn′ = 0 (19)

The first two equations express the fact (l, m, n) and (l′, m′, n′) represent unit vectors,
while the last relation expresses the orthogonality of these vectors. The shear stress
is most conveniently found from the fact that its magnitude is

√
T2 − σ2, and its

direction cosines are proportional to its rectangular components

Tx − lσ Ty − mσ Tz − nσ

Let xi and x′
i represent two sets of rectangular axes through a common origin O, and

aij denote the direction cosine of the x′
i axis with respect to the xj axis. The direction

cosine of the xi axis with respect to the x′
j axis is then equal to aji. It follows from

geometry that the coordinates of any point in space referred to the two sets of axes
are related by the equations

x′
i = aijxj xj = aijx

′
i (20)

The components of any vector transform† according to the same law as (20). Let
σ′

ij denote the components of the stress tensor when referred to the set of axes x′
i. A

defining property of tensors is the transformation law

σ′
ij = aikajlσkl (21)

Let us suppose that a11 = l, a12 = m, a13 = n, and a21 = l′, a22 = m′, a23 = n′. The
normal stress across the plane (l, m, n) is then equal to σ′

11, and the corresponding
expression (17) can be readily verified from (21). Similarly, the component of the
shear stress across the plane resolved in the direction (l′, m′, n′) is equal to σ′

12 which
can be shown to be that given by (18).

† It follows from (20) that x′
i = aikxk = aikajkx′

j , indicating that aikajk = δij , which furnishes six
independent relations of types (19).
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(iii) Principal stresses The normal stress σ has maximum and minimum values for
varying orientations of the oblique plane. Regarding l and m as the independent direc-
tion cosines, the conditions for stationary σ may be written as ∂σ/∂l = 0, ∂σ/∂m = 0.
Differentiating the first equation of (19) partially with respect to l and m, we get
∂n/∂l = −l/n and ∂n/∂m = −m/n. Inserting these results into the partial derivatives
of (17), and using (16), the stationary condition can be expressed as

Tx

l
= Ty

m
= Tz

n

This shows that the resultant stress across the plane acts in the direction of the normal
when the normal stress has a stationary value. Each of the above ratios is therefore
equal to the normal stress σ. The substitution into (16) gives

l(σx − σ) + mτxy + nτzx = 0

lτxy + m(σy − σ) + nτyz = 0 (22)

lτzx + mτyz + n(σz − σ) = 0

In suffix notation, these relations are equivalent to li(σij − σδij) = 0, which follows
directly from the fact that Tj = σlj across a principal plane. The set of linear homo-
geneous equations (22) would have a nonzero solution for l, m, n if the determinant
of their coefficients vanishes. Thus∣∣∣∣∣∣

σx − σ τxy τzx
τxy σy − σ τyz
τzx τyz σz − σ

∣∣∣∣∣∣ = 0

Expanding this determinant, we obtain a cubic equation in σ having three real roots
σ1, σ2, σ3, which are known as the principal stresses. These stresses act across
planes on which the shear stresses are zero. The cubic may be expressed in the form

σ3 − I1σ
2 − I2σ − I3 = 0 (23)

where

I1 = σx + σy + σz = σ1 + σ2 + σ3 = σii (24)

I2 = −(σxσy + σyσz + σzσx) + τ2
xy + τ2

yz + τ2
zx

= −(σ1σ2 + σ2σ3 + σ3σ1) = 1
2 (σijσij − σiiσjj) (25)

I3 = σxσyσz + 2τxyτyzτzx − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy

=
∣∣∣∣∣∣
σx τxy τzx
τxy σy τyz
τzx τyz σz

∣∣∣∣∣∣ = σ1σ2σ3 (26)
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The expressions for I1, I2, I3 in terms of the principal stresses follow from the fact that
(23) is equivalent to the equation (σ − σ1)(σ − σ2)(σ − σ3) = 0. Since the stationary
values of the normal stress do not depend on the orientation of the coordinate axes, the
coefficients of (23) must also be independent of the choice of the axes of references.
The quantities I1, I2, I3 are therefore known as the invariants of the stress tensor.†

The direction cosines corresponding to each principal stress can be found from
the first equation of (19) and any two equations of (22) with the appropriate value of
σ. Let (l1, m1, n1) and (l2, m2, n2) represent the directions of σ1 and σ2 respectively.
If we express (22) in terms of l1, m1, n1, and σ1, multiply these equations by l2, m2, n2
in order and add them together, and then subtract the resulting equation from that
obtained by interchanging the subscripts, we arrive at the result

(σ1 − σ2)(l1l2 + m1m2 + n1n2) = 0

If σ1 �= σ2, the above equation indicates that the directions (l1, m1, n1) and (l2, m2, n2)
are perpendicular to one another. It follows, therefore, that the principal directions
corresponding to distinct values of the principal stresses are mutually orthogonal.
These directions are known as the principal axes of the stress. When two of the
principal stresses are equal to one another, the direction of the third principal stress
is uniquely determined, but all directions perpendicular to this principal axis are
principal directions. When σ1 = σ2 = σ3, representing a hydrostatic state of stress,
any direction in space is a principal direction.

The invariants of the deviatoric stress tensor are obtained by replacing the actual
stress components in (24) to (26) by the corresponding deviatoric components. The
first deviatoric stress invariant is

J1 = sx + sy + sz = s1 + s2 + s3 = sii = 0

where s1, s2, s3 are the principal deviatoric stresses. These principal values are the
roots of the cubic equation

s3 − J2s − J3 = 0 (27)

where

J2 = −(sxsy + sysz + szsx) + τ2
xy + τ2

yz + τ2
zx

= 1
2 (s2

x + s2
y + s2

z ) + τ2
xy + τ2

yz + τ2
zx

= 1
6 [(σx − σy)2 + (σy − σz)

2 + (σz − σx)2] + τ2
xy + τ2

yz + τ2
zx (28)

J3 = sxsysz + 2τxyτyzτzx − sxτ
2
yz − syτ

2
zx − szτ

2
xy

=
∣∣∣∣∣∣
sx τxy τzx
τxy sy τyz
τzx τyz sz

∣∣∣∣∣∣ = s1s2s3 = 1
3 (s3

1 + s3
2 + s3

3) (29)

† Any symmetric tensor of second order has three real principal values, the basic invariants of the
tensor being identical in form to those for the stress.
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The last two expressions for J2 are obtained from the first expression by adding the
identically zero terms 1

2 (sx + sy + sz)2 and 1
3 (sx + sy + sz)2 respectively, and noting

the fact that sx − sy = σx − σy etc. Similarly, the last expression for J3 follows from
the preceding one on adding the term 1

3 (s1 + s2 + s3)3. In suffix notation, these
invariants can be written as

J2 = 1
2 sijsij J3 = 1

3 sijsjkski (30)

The repetition of all suffixes is a characteristic of invariants, which are scalars.
Substituting σ = s + I1/3 in (23) and comparing the coefficients of the resulting
equation with those of (27), we obtain

J2 = I2 + 1
3 I2

1 J3 = I3 + 1
3 I1I2 + 2

27 I3
1

When J2 and J3 have been found, equation (27) may be solved by means of the
substitution s = 2

√
J2/3 cos φ, which reduces the cubic to

cos 3φ = J3

2

(
3

J2

)3/2

(31)

Since 4J3
2 � 27J2

3 , the right-hand side† of (31) lies between −1 and 1, and one
value of φ lies between 0 and π/3. The principal deviatoric stresses may therefore
be written as

s1 = 2

√
J2

3
cos φ s2, s3 = −2

√
J2

3
cos
(π

3
± φ

)
(32)

where 0 �φ �π/3. Any function of these principal components is also a function
of the invariants, which play an important part in the mathematical development of
the theory of plasticity.

(iv) Principal shear stresses When the principal stresses and their directions are
known, it is convenient to take the principal axes as the axes of reference. If Ox,
Oy, Oz denote the coordinate axes associated with the principal stresses σ1, σ2, σ3
respectively, the components of the stress vector across a plane whose normal is in
the direction (l, m, n) are

Tx = lσ1 Ty = mσ2 Tz = nσ3

The normal stress across the oblique plane therefore becomes

σ = l2σ1 + m2σ2 + n2σ3 (33)

† Using (32) and (31), it can be shown that 4J3
2 − 27J2

3 = (σ1 − σ2)2(σ2 − σ3)2(σ3 − σ1)2, which
is a positive quantity for distinct values of the principal stresses.
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If the magnitude of the shear stress across the plane is denoted by τ, then

τ2 = T2 − σ2 = (l2σ2
1 + m2σ2

2 + n2σ2
3 ) − (l2σ1 + m2σ2 + n2σ3)2

= (σ1 − σ2)2l2m2 + (σ2 − σ3)2m2n2 + (σ3 − σ1)2n2l2 (34)

in view of the relation l2 + m2 + n2 = 1. Since the components of the normal stress
along the coordinate axes are (lσ, mσ, nσ), the components of the shear stress are
l(σ1 − σ), m(σ2 − σ), n(σ3 − σ). Hence the direction cosines of the shear stress are

ls = l

(
σ1 − σ

τ

)
ms = m

(
σ2 − σ

τ

)
ns = n

(
σ3 − σ

τ

)
(35)

A plane which is equally inclined to the three principal axes is known as the octa-
hedral plane, the direction cosines of its normal being given by l2 = m2 = n2 = 1/3.
These relations are satisfied by four pairs of parallel planes forming a regular octa-
hedron having its vertices on the principal axes. By (33) and (34), the octahedral
normal stress is equal to the hydrostatic stress σ0, and the octahedral shear stress is
of the magnitude

τ0 = 1
3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 =

√
2
3 J2

The components of the octahedral shear stress along the principal axes are
numerically equal to 1/

√
3 times the deviatoric principal stresses.

We now proceed to determine the stationary values of the shear stress for varying
orientations of the oblique plane. To this end, we put n2 = 1 − l2 − m2 in (34), and
express it in the form

τ2 = l2(σ2
1 − σ2

3 ) + m2(σ2
2 − σ2

3 ) + σ2
3 − {l2(σ1 − σ3) + m2(σ2 − σ3) + σ3}2

where l and m are treated as the independent variables. We shall follow the convention
σ1 > σ2 > σ3. Equating to zero the derivatives of τ2 with respect to l and m, we obtain

l(σ1 − σ3)[(1 − 2l2)(σ1 − σ3) − 2m2(σ2 − σ3)] = 0

m(σ2 − σ3)[(1 − 2m2)(σ2 − σ3) − 2l2(σ1 − σ3)] = 0
(36)

These equations are obviously satisfied for l = m = 0, and hence n = 1, which cor-
responds to a principal stress direction for which the shear stress has a minimum
value of zero. To obtain a maximum value of the shear stress, we set l = 0 sat-
isfying the first equation of (36), and use this value in the second equation to get
l − 2m2 = 0. This gives l = 0, m2 = n2 = 1/2 corresponding to maximum shear stress
equal to 1

2 (σ2 − σ3) according to (34). Similarly, the direction represented by m = 0,
n2 = l2 = 1/2 satisfies (36), and furnishes a maximum value of 1

2 (σ1 − σ3) for the
shear stress. Finally, setting n = 0 and hence l2 + m2 = 1, we find that τ is a max-
imum for l2 = m2 = 1/2, giving a stationary value equal to 1

2 (σ1 − σ2). The three
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Figure 1.10 Construction for the normal stress and the direction of the shear stress.

stationary shear stresses, known as the principal shear stresses, may therefore be
written as

τ1 = 1
2 (σ2 − σ3) τ2 = 1

2 (σ1 − σ3) τ3 = 1
2 (σ1 − σ2) (37)

These stresses act in directions which bisect the angles between the principal axes.
By (33), the normal stresses acting on the planes of τ1, τ2, τ3 are immediately found
to be, respectively,

1
2 (σ2 + σ3) 1

2 (σ1 + σ3) 1
2 (σ1 + σ2)

In view of the assumption σ1 > σ2 > σ3, the greatest shear stress is of magnitude
1
2 (σ1 − σ3), and it acts across a plane whose normal bisects the angle between the
directions of σ1 and σ3. It follows from (32) that the greatest shear stress is equal to√

J2 cos(π/6 − φ), where φ lies between zero and π/3 satisfying (31).

(v) Shear stress and the oblique triangle Consider now the direction of the shear
stress on an inclined plane in relation to the true shape of the oblique triangle. It
is assumed for simplicity that the direction cosines (l, m, n) are all positive.† Let
δh denote the perpendicular distance from the origin O to the oblique plane ABC
(Fig. 1.10a). Then the distances of the vertices A, B, C from O are δh/l, δh/m, δh/n
respectively, their ratios being

OA:OB:OC = mn:nl:lm (38)

The sides of the triangle are readily found from the right-angled triangles AOB,
BOC, and COA. The true shape of the oblique triangle ABC is therefore defined by
the ratios

AB:BC:CA = n
√

1 − n2:l
√

1 − l2:m
√

1 − m2 (39)

† No generality is lost in this assumption, since the positive directions of the axes of reference can
be arbitrarily chosen, and the expressions for σ and τ involve only the squares of the direction cosines.
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The vertical angles of the triangle follow from (39) and the well-known cosine law.
The results can be conveniently put in the form

tan A = l

mn
tan B = m

nl
tan C = n

lm
(40)

The coordinate axes in Fig. 1.10a are in the directions of the principal stresses.
A line BD is drawn from the apex B to meet the opposite side of AC at D, such
that BD is perpendicular to the direction of the shear stress across the plane. The
components of the vector BD along the axes Ox, Oy, Oz are equal to ED, –OB, OE
respectively. Since BD is orthogonal to both the directions (l, m, n) and (ls, ms, ns),
the scalar products of BD with the unit vectors representing these directions must
vanish. Using (35) and (33), it is easily shown that

ED:OB:OE = mn(σ2 − σ3):nl(σ1 − σ3):lm(σ1 − σ2) (41)

If σ1 > σ2 > σ3, the line BD must meet AC internally as shown. Indeed, from the
similar triangles CDE and CAO, we have

CD

CA
= ED

OA
= ED

OB

OB

OA
= σ2 − σ3

σ1 − σ3
(42)

in view of (38) and (41). If points A, D, C, and G are located along a straight line, such
that GA = σ1, GD = σ2, and GC = σ3, and the true shape triangle ABC is constructed
on CA as base (Fig. 1.10b), then in view of (42), the shear stress is directed at right
angles to the line joining B and D. Since ns < 0 by (35), the direction of the shear
stress vector is obtained by a 90◦ counterclockwise rotation from the direction BD.
If R is the orthocenter of the triangle ABC, and BM is drawn perpendicular to CA,
then by Eqs. (40),

CM

AM
= cot C

cot A
= l2

n2

MR

MB
= cot A

tan C
= m2 (43)

since angle MRC is equal to the vertical angle A. If RN is drawn parallel to BD,
meeting CA at N , then MN/MD = MR/MB = m2, which gives

GN = GM + MN = (l2 + m2 + n2)GM + m2MD

= l2(GA − MA) + m2GD + n2(GC + CM) = l2GA + m2GD + n2GC

The expression on the right-hand side is equal to σ in view of (33). Hence GN
represents the magnitude of the normal stress transmitted across the plane.† It
follows from (34) and (41) that if OB represents the quantity nl(σ1 − σ3) to a certain
scale, then BD will represent the shear stress τ to the same scale. Hence

OB

BD
= nl

(
σ1 − σ3

τ

)
= nl

τ
CA

† The constructions for the normal stress and the direction of the shear stress are due to H. W.
Swift, Engineering, 162: 381 (1946).



stresses and strains 27

Figure 1.11 An element in a state of plane stress.

with reference to Fig. 1.10. Since RN/BD = MR/MB = m2 by (43), and
CA = √

OC2 + OA2, we have

RN = m2 · BD = m2τ

nl

OB

CA
= mτ√

1 − m2

in view of (38). It follows that the magnitude of the shear stress on the plane is
τ = RN tan β, where β is the angle made by the normal to the plane with the direction
of the intermediate principal stress σ2.

(vi) Plane stress A state of plane stress is defined by σz = τyz = τzx = 0. The z
axis then coincides with a principal axis, and the corresponding principal stress
vanishes.† The orientation of Ox and Oy with respect to the other two principal
axes is, however, arbitrary. Consider a plane AB perpendicular to the xy plane, and
let φ be the counterclockwise angle made by the normal to the plane with the x
axis (Fig. 1.11). The shear stress τ will be reckoned positive when it is directed to
the left of the exterior normal. Setting l = cos φ, m = sin φ, and n = 0 in (16), the
components of the stress vector across AB are obtained as

Tx = σx cos φ + τxy sin φ Ty = τxy cos φ + σy sin φ (44)

The resolved components of the resultant stress along the normal and the tangent to
the plane are

σ = Tx cos φ + Ty sin φ τ = −Tx sin φ + Ty cos φ

† The results for plane stress are directly applicable to the more general situation where the z axis
coincides with the direction of any nonzero principal stress.
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Substituting for Tx and Ty in the above equations, the normal and shear stresses
across the plane are obtained as

σ = σx cos2φ + σy sin2φ + 2τxy sin φ cos φ

= 1
2 (σx + σy) + 1

2 (σx − σy)cos 2φ + τxy sin 2φ (45)

τ = −(σx − σy)sin φ cos φ + τxy(cos2φ − sin2φ)

= − 1
2 (σx − σy)sin 2φ + τxy cos 2φ (46)

These results may be directly obtained from (16) and (17) by setting l = m′ = cos φ,
m = −l′ = sin φ and n = n′ = 0. Since dσ/dφ = 2τ, which is readily verified from
above, the shear stress vanishes on the plane for which the normal stress has a
stationary value. This corresponds to φ = α, where

tan 2α = 2τxy

σx − σy
(47)

which defines two directions at right angles to one another, giving the principal axes
in the plane of Ox and Oy. The principal stresses σ1, σ2 are the roots of the equation

(σ − σx)(σ − σy) = τ2
xy

which is obtained by writing Tx = σ cos φ and Ty = σ sin φ in (44), and then
eliminating φ between the two equations. The solution is

σ1, σ2 = 1
2 (σx + σy) ± 1

2

√
(σx − σy)2 + 4τ2

xy (48)

The acute angle made by the direction of the algebraically greater principal stress
σ1 with the x axis is measured in the counterclockwise sense when τxy is positive,
and in the clockwise sense when τxy is negative. It follows from (48) that

σx + σy = σ1 + σ2 σxσy − τ2
xy = σ1σ2 (49)

These are the basic invariants of the stress tensor in a state of plane stress. Evidently,
any function of these invariants is also an invariant.

Let Oξ, and Oη represent a new pair of rectangular axes in the (x, y) plane,
and let φ be the angle of inclination of the ξ axis to the x axis measured in the
counterclockwise sense. Then the stress components σξ and τξη, referred to the
new axes, are directly given by the right-hand sides of (45) and (46) respectively.
The remaining stress component ση is obtained by writing π/2 + φ for φ in (45),
resulting in

ση = σx sin2φ + σy cos2φ − 2τxy sin φ cos φ

= 1
2 (σx + σy) − 1

2 (σx − σy)cos 2φ − τxy sin 2φ (50)
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It immediately follows that σξ + ση = σx + σy, which shows the invariance of the first
expression of (49). The invariance of the second expression may be similarly verified.

Considering the principal axes as the axes of reference, the shear stress across
an inclined plane can be written as τ = − 1

2 (σ1 − σ2)sin 2φ, which indicates that the
shear stress is directed to the right of the outward normal to the plane when σ1 > σ2
and 0 < φ < π/2. The shear stress has its greatest magnitude when φ = ±π/4, the
maximum value of the shear stress being

τmax = 1
2 |σ1 − σ2| = 1

2

√
(σx − σy)2 + 4τ2

xy (51)

There are two other principal shear stresses, having magnitudes 1
2 |σ1| and 1

2 |σ2|, and
bisecting the angles between the z axis and the directions of σ1 and σ2 respectively.
A little examination of the three principal values reveals that the numerically greatest
shear stress occurs in the plane of the applied stresses when σ1 and σ2 have opposite
signs, and out of the plane of the applied stresses when they are of the same sign.
In view of (49), the former corresponds to σxσy < τ2

xy and the latter to σxσy > τ2
xy. A

state of pure shear is given by σ1 = −σ2, since the normal stress then vanishes on
the planes of maximum shear.

1.4 Mohr’s Representation of Stress

(i) Two-dimensional stress state A useful graphical method of analyzing the state
of stress has been developed by Mohr.† In this method, the normal and shear stresses
across any plane are represented by a point on a plane diagram in which σ and τ are
taken as rectangular coordinates. For the present purpose, it is necessary to regard
the shear stress as positive when it has a clockwise moment about a point within the
element. In Fig. 1.12, the stresses acting on planes perpendicular to the x and y axes
are represented by the points X and Y on the (σ, τ) plane. The circle drawn on XY
as diameter, and having its center C on the σ axis, is called the Mohr circle for the
considered state of stress. The points A and B, where the circle is intersected by the
σ axis, define the principal stresses, since OA = σ1 and OB = σ2 in view of (48) and
the geometry of Mohr’s diagram. By (47), the angle made by CA with CX is twice
the angle α which the direction of σ1 makes with the x axis in the physical plane.
The normal and shear stresses transmitted across a plane, whose normal is inclined
at a counterclockwise angle φ to the x axis, correspond to the point L on the Mohr
circle, where CL is inclined to CX at an angle 2φ measured in the same sense. The
proof of the construction follows from the fact that CD = CL cos 2α and XD = CL
sin 2α, where XD is perpendicular to OA. Then from the geometry of the figure,

ON = OC + CL cos 2(α − φ) = OC + CD cos 2φ + XD sin 2φ

LN = CL sin 2(α − φ) = −CD sin 2φ + XD cos 2φ

These expressions are equivalent to (45) and (46) in view of the present sign conven-
tion. If LC is produced to meet the circle again at M, then the coordinates of M give

† O. Mohr, Zivilingenieur, 28: 112 (1882). See also his book, Technische Mechanik, Berlin (1906).
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Figure 1.12 Mohr’s construction for a two-dimensional state of stress. (a) Physical plane; (b) stress
plane.

the stresses across a plane perpendicular to that corresponding to L. The maximum
shear stress is evidently equal to the radius of the Mohr circle, and acts on planes
that correspond to the extremities of the vertical diameter. The normal stress across
these planes is equal to the distance of the center of the circle from the origin of the
stress plane.

It is instructive to consider the following alternative construction, also due to
Mohr. Let a generic point P, the state of stress at which is being discussed, be taken
as the origin of coordinates in the physical plane (Fig. 1.12a). All planes passing
through P and containing the z axis are denoted by their traces in the xy plane. The
normal and shear stresses corresponding to the points X and Y on the Mohr circle
are transmitted across the planes Py and Px respectively. The lines through X and
Y drawn parallel to these planes intersect the circle at a common point P*, which is
called the pole of the Mohr circle. When the stress circle and the pole are given, the
stresses acting across any plane Pλ through P are found by locating the point L on
the circle such that P*L is parallel to Pλ, the angle XCL at the center being twice the
peripheral angle XP*L over the arc XL. The planes corresponding to the principal
stresses are parallel to P*A and P*B, and those corresponding to the maximum
shear stress are parallel to P*S and P*T . It may be noted that the magnitude of the
resultant stress across any plane is equal to the distance of the corresponding stress
point on the Mohr circle from the origin of the stress plane.

(ii) Three-dimensional stress state Suppose that the principal stresses σ1, σ2, σ3
are known in magnitude and direction for a three-dimensional state of stress. These
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principal values are assumed as distinct, and so labeled thatσ1 > σ2 > σ3.A graphical
method developed by Mohr can be used to find the variation of normal and shear
stresses with the direction (l, m, n). We begin with the relations

l2σ1 + m2σ2 + n2σ3 = σ

l2σ2
1 + m2σ2

2 + n2σ2
3 = σ2 + τ2 (52)

l2 + m2 + n2 = 1

This is a set of three linear equations for the squares of the direction cosines. The
solution is most conveniently obtained by eliminating n2 from the first two equations
by means of the third, resulting in

l2 = (σ − σ2)(σ − σ3) + τ2

(σ1 − σ2)(σ1 − σ3)
(53)

m2 = (σ − σ3)(σ − σ1) + τ2

(σ2 − σ3)(σ2 − σ1)
(54)

n2 = (σ − σ1)(σ − σ2) + τ2

(σ3 − σ1)(σ3 − σ2)
(55)

Let one of the direction cosines, say n, be held constant while the other two are
varied. By (55), the normal and shear stresses then vary according to the equation

τ2 + {σ − 1
2 (σ1 + σ2)}2 = 1

4 (σ1 − σ2)2 + n2(σ1 − σ3)(σ2 − σ3) (56)

In the stress plane, σ and τ therefore lie on a circle whose center is on the σ axis
at a distance 1

2 (σ1 + σ2) from the origin. The square of the radius of the circle is
given by the right-hand side of (56). The radius varies from 1

2 (σ1 − σ2) for n = 0 to
1
2 (σ1 + σ2) − σ3 for n = 1.

In Fig. 1.13, the points A, B, C with coordinates (σ1, 0), (σ2, 0), (σ3, 0) are the
principal points of the Mohr diagram. The centers of the segments AB, BC, and CA
are denoted by the points P, Q, and R. The upper semicircle drawn on the diameter
AB corresponds to n = 0. As n increases from 0 to 1, the radius of the semicircle
varies from PB to PC. Similarly, the upper semicircles with BC and CA as diameters
correspond to l = 0 and m = 0 respectively. For constant values of l, (53) defines a
family of circles having the equation

τ2 + {σ − 1
2 (σ2 + σ3)}2 = 1

4 (σ2 − σ3)2 + l2(σ1 − σ2)(σ1 − σ3) (57)

The center of these circles is at Q, while the radius varies from QB for l = 0 to QA
for l = 1. Finally, considering constant values of m, we have the family of circles

τ2 + {σ − 1
2 (σ1 + σ3)}2 = 1

4 (σ1 − σ3)2 + m2(σ1 − σ2)(σ3 − σ2) (58)
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Figure 1.13 Mohr’s representation of stress in three dimensions.

with the center at R, and the radius decreasing from RC for m = 0 to RB for m = 1.
For arbitrary values of (l, m, n), the state of stress will correspond to a point in the
space between the three semicircles drawn on the diameters AB, BC, and CA.

To find the values of σ and τ across any given plane, let α = cos−1 l and
γ = cos−1 n be the angles made by the normal to the plane with the directions
of σ1 and σ3 respectively. Set off angles APD and CQE equal to 2α and 2γ respec-
tively, by drawing the radii PD and QE to the appropriate semicircles. The circular
arcs DHF and EHG, drawn with centers Q and P respectively, intersect one another
at H giving the required stress point.† If the lines AD and CE are produced, they
will meet the outermost semicircle at F and G respectively. Since the angle ABD is
equal to α, and BD = (σ1 − σ2)cos α, the triangle BDQ furnishes

QD2 = QB2 + BD2 + 2QB · BD cos α

= 1
4 (σ2 − σ3)2 + (σ1 − σ2)(σ1 − σ3)cos2α

Hence QD is identical to the radius of the circle (57) corresponding to the given
value of l. Similarly, the radius PE is equal to that of the circle (56) corresponding
to the given value of n. This completes the proof of the construction for the stress
point H. It can be shown that the circular arc drawn through H with center at R cuts
the semicircles on AB and BC at J and K respectively, where BJ and BK are each
inclined at an angle β = cos−1 m to the vertical through B.

† Numerical examples have been given by J. M. Alexander, Strength of Materials, Chap. 4, Ellis
Horwood Limited, Chichester, U.K. (1981).


