

Modeling and Verification
Using UML Statecharts

This page intentionally left blank

Modeling and Verification
Using UML Statecharts
A Working Guide to Reactive System

Design, Runtime Monitoring and
Execution-Based Model Checking

Doron Drusinsky

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2006, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request online via the Elsevier
homepage (http://www.elsevier.com), by selecting “Customer Support” and then “Obtain-
ing Permissions.”

Recognizing the importance of preserving what has been written,
Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Drusinsky, Doron.
 Modeling and verification using UML statecharts : a working guide to reactive system
design, runtime monitoring, and execution-based model checking / Doron Drusinsky.
 p. cm.
ISBN 0-7506-7949-2 (pbk. : alk. paper) 1. UML (Computer science) 2. Formal methods
(Computer science) 3. Computer software--Development. I. Title.
 QA76.76.D47D78 2006
 005.1’17--dc22
 2006005265

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.
ISBN-13: 978-0-7506-7949-7
ISBN 0-7506-7949-2

For information on all Newnes publications,
visit our website at www.books.elsevier.com.

06 07 08 09 10 10 9 8 7 6 5 4 3 2 1
Printed in the United States of America.

Dedication

This book could not have been written without the
lifelong support of my parents Harry and Luba.

To my wonderful children, Dana, Gabi, Shiron,
and Maya with whom I learned the real meaning

of reactive systems, and to my beloved wife Dganit.

This page intentionally left blank

Contents

vii

Preface. . ix
Acknowledgments. . xi
What’s on the CD-ROM?. . xii
Chapter 1: Formal Requirements and Finite Automata Overview. . 1

1.1. Terms. 1
1.2. Finite Automata: The Basics. 2
1.3 Regular Expressions. 7
1.4. Deterministic Finite Automata and Finite State Diagrams. 8
1.5. Nondeterministic Finite Automata . 15
1.6. Other Forms of FA. 19
1.7. FA Conversions and Lower Bounds . 26
1.8. Operations on Regular Requirements. 34
1.9. Succinctness of FA . 35
1.10. Specifications as Zipped Requirements. 38
1.11. Finite State Machines . 39
1.12. Normal Form and Minimization of FA and FSMs 40

Chapter 2: Statecharts. . 43
2.1. Transformational vs. Reactive Components. 43
2.2. Statecharts in Brief . 44
2.3. A Related Tool. 45
2.4. Basic Elements of Statecharts. 46
2.5. Code Generation and Scheduling . 72
2.6. Event-Driven Statecharts, Procedural Statecharts,

	 and Mixed Flowcharts and Statecharts. 84
2.7. Flowcharts inside Statecharts: Workflow within

	 Event-Driven Controllers . 85
2.8. Nonstandard Elements of Statecharts. 87
2.9. Passing Data to a Statechart Controller. 95
2.10. JUnit Testing of Statechart Objects. 95
2.11. Statecharts vs. Message Sequence Charts and Scenarios. . . . 98
2.12. Probabilistic Statecharts . 98

Chapter 3: Academic Specification Languages for
Reactive Systems. . 103

3.1. Natural Language Specifications. 104
3.2. Using Specification Languages for Runtime Monitoring. . . . 106
3.3. Linear-time Temporal Logic (LTL). 108

Contentsviii

3.4. Other Formal Specification Languages
	 for Reactive Systems. 134
Chapter 4: Using Statechart Assertions for Formal Specification. 141

4.1. Statechart Specification Assertions. 141
4.2. Nondeterministic Statechart Assertions. 163
4.3. Operations on Assertions. 196
4.4. Quantified Distributed Assertions. 200
4.5. Runtime Recovery for Assertion Violations 202
4.6. The Language Dog-Fight: Statechart Assertions vs.

	 LTL and ERE. 203
4.7. Succinctness of Pure Statechart Assertions. 209
4.8. Temporal Assertions vs. JML and Java Assertions. 211
4.9. Commonly Used Assertions . 213

Chapter 5: Creating and Using Temporal Statechart Assertions. . 217
5.1. Motivation, or Why Use Temporal Assertions?. 217
5.2. Applying Assertions: Three Uses . 229
5.3. Writing Assertions. 230
5.4. Runtime Execution Monitoring—Runtime Verification. 243
5.5. Runtime Recovery from Requirement Violations. 245
5.6. Automatic Test Generation . 247
5.7. Execution-Based Model Checking. 248

Chapter 6: Application of Formal Specifications and
Runtime Monitoring to the Ballistic Missile Defense Project. 261

6.1. Abstract. 262
6.2. Context . 263
6.3. Formal Specification and Verification Approach. 263
6.4. Overall Value. 276
6.5. Challenges. 278

Appendix: TLCharts: Syntax and Semantics. 279
A.1. About TLCharts . 279
A.2. Syntax. 281
A.3. Semantics without Temporal Conditions. 282
A.4. Semantics with Temporal Conditions. 285
A.5. TLCharts with Overlapping States. 289

Bibliographical Notes. . 295
About the Author. 302
Index. . 303

Preface

ix

In my twenty years of practice in the software and computer science
field, I was fortunate enough to have two careers: one in the industry
and one in the academia. Wearing these two hats I witnessed suc-
cessful transitions of research to commercial applications, such as in
the cases of cryptology and digital signal processing (DSP).

Formal methods, an assortment of mathematical methods for the
specification, development, and verification of software, did not enjoy
such a success. After being researched for a quarter of a century or
more by some of the most brilliant minds in the world, formal meth-
ods have been adopted in a very limited manner by the industry.

From an academic perspective, the most common explanation
for this lackluster acceptance is that the problem is hard. In other
words, the problem that academic research usually tries to address—
mathematically proving that a program conforms to a formal speci-
fication—is a hard problem to solve using computer-aided tools due
to computer science complexity-theory related issues. I refer to this
problem as the verification problem.

From an industry perspective, however, the core issues seem
rather different. Engineers and programmers want techniques that
reduce their pain or win them a gold mine, and hopefully both. It
is therefore hard to sell to engineers and programmers the idea that
some unknown academic—albeit mathematical—formal specifica-
tion language is actually better in capturing requirements than sim-
ply coding in them directly in Java. The idea of having yet another

language one needs to master, resulting in three separate views of
the component that need to be maintained and synchronized (formal
specification, source code, and UML) is hard to sell without having
a clear benefit as an end goal—a benefit that’s hard to justify given
the verification problem discussed above. In short, the prime issue
seen from the industry is about specification. I call this problem the
specification problem.

To be truthful, some formal methods have been recently accepted
by the software industry; specifically, these are methods that relate
to the specification and verification of transformational components
(the distinction between transformational and reactive systems is
described in Chapter 2). Techniques such as design-by-contract, man-
ifested by the Java Modeling Language (JML), are now used by many
Java developers. In fact, you may think of this book as suggesting cor-
responding techniques and tools suitable for reactive components.

This book addresses the specification problem first and foremost.
The book describes UML statecharts, the primary UML language
when it comes to reactive components. It then describes how to use
the same diagrammatic language for specifying requirements for
reactive components (which we call temporal requirements) instead
of using a special academic language. Having both the component
design and its formal requirement specification done in the same lan-
guage highlights the primary question engineers have always asked
about formal methods approach, namely: why bother? Why not just
have one kind of statechart—the design state-chart? This is an excel-
lent question and I devote an entire chapter to it.

The book also addresses the verification problem using run-time
monitoring, a lightweight method that is admittedly not perfect but
it works and scales for real systems. I then show how to extend run-
time monitoring with automatic test generation for the purpose of
constructing an execution-based model checker.

Preface�

I am indebted, far and foremost, to Dr. D. Caffal of the MDA for his
vision and courage without which many of the ideas presented in this
book would not have come to light.

My colleagues at NPS, specifically Bret Michael, Man-tak shing
and Tom Cook have provided me with excellent feedback and sup-
port throughout the last couple of years. Members of the MDNT,
including Scott Pringle, Nick Sklavounos, Dion Hinchcliffe, Chris
Kauffman, Erik Stein, Steve Apsel, Dirk Penberthy, Thad Goodwyn,
and Craig Trader have all provided me with excellent feedback over
the course of the last two years. Mike Robison provided excellent
writing and editing support. Last but not least Dganit Drusinsky
assisted me to bring this material to the light of day.

xi

Acknowledgments

What’s on the CD-ROM?

CD-ROM contains:

CD-ROM contains diagrams and code for the example in Chapter 4,
and also includes runtime code for monitoring and automatic white
box test generation.

xii

1.1.	Terms

Many students consider the theory of finite automata and formal lan-
guages theoretical and irrelevant to their future livelihood. Indeed, the
theory is more often than not taught as a prelude to complexity theory.

In this book we will put a fresh spin on the theory, using it as a
prelude to UML-based modeling, specification, and verification of
reactive systems. To be relevant to reactive systems in general, and
to UML in particular, we will use domain-specific terms, listed in
Table 1.1, that are not usually associated with formal languages.

TABLE 1.1 UML vs. Formal-Language terms.

Terms Used in This Book Classical, Formal-Language Counterparts

Domain of Discourse Alphabet(s)

Event or Condition Alphabet letter

Scenario String

Specification or Requirement Formal Language

Chapter 1

�

Formal Requirements and
Finite Automata Overview

1 ◊ Formal Requirements and Finite Automata Overview�

Throughout this chapter we will consider using automata and for-
mal languages in the context of the specification or design of a soft-
ware component, which we will call the component under design.

1.2.	Finite Automata: The Basics

1.2.1.	 The Domain of Discourse (Alphabet)

Formally speaking, an alphabet, typically represented with the
Greek letter ∑, is a finite set of symbols called letters. In practice,
these symbols are the names of events or conditions in the domain
of discourse for the component under design. For the sake of sim-
plicity, and to be able to tie our discussion closely to the theory of
formal languages, in this chapter we will mostly interpret alphabet
letters as events. We will leave the distinction between conditions
and events to Chapter 2, where we will see how statecharts accom-
modate both.

A question often asked is, Which events do we include in the
alphabet? The answer is simple: every event we might need for
modeling or specification. In other words, the domain of discourse,
as its name suggests, contains all the events that need to be taken
into account during those design phases. It is therefore important to
nail down the domain of discourse before proceeding to the model-
ing or specification phases. All subsequent modeling and specifica-
tion will be based on the domain of discourse.

Consider, for example, a traffic-light controller that receives the
following inputs from its environment: oneMinuteElapsed, newCar,
and newAmbulance. The alphabet for the controller is then ∑in1 =
{oneMinuteElapsed, newCar, newAmbulance}.

�

For alphabets that consist of conditions, there are two approach-
es to the relationships among member conditions.

The first, taken by formal language theory, says that conditions
(letters) in a single alphabet are by definition always mutually exclu-
sive. More precisely, exactly one condition from the alphabet must
be true at any given time. If two conditions could be true simulta-
neously, they must be associated with distinct alphabets. Hence, a
system with three unrelated conditions C1, C2, and C3 has a domain
of discourse that consists of the three alphabets ∑1 = {C1, !C1}, ∑2 =
{C2, !C2}, and ∑3 = {C3, !C3}.

The second approach, the one we will use in the context of stat-
echarts in Chapter 2, says that all conditions are unrelated, so that
any condition can be true at any given time. This amounts to the
creation of a distinct alphabet, ∑C, for every condition, C, where
∑C = {C, !C}.

Events are always considered as pair-wise mutually exclusive
for reasons we will discuss in Chapter 2.

1.2.2.	 An Input Scenario (String)

Since they are mutually exclusive, input events arrive one at a time
as inputs to the component under design. Such a sequence of inputs
is called a scenario, also known as a string. In other words, a scenar-
io is a sequence of alphabet events. Consider, for example, the fol-
lowing alphabet with two events, ∑ = {open, close}. The sequences
open.close.open and open.open.open.close.close are two scenari-
os. Note how the sequencing operator, a period or point, “.” (also
known as the concatenation operator) is used to represent the order
of events in a scenario, such as event close following event open in
the scenario open.close.

1.2.2. An Input Scenario (String)

1 ◊ Formal Requirements and Finite Automata Overview�

For historical reasons theoreticians consider an input string to
reside on a device called the input tape. In this book, however, we
will not consider events to reside anywhere. In fact, we will assume
that the events are lost forever after being received and processed by
the component under design.

A scenario event induces a cycle in the component under design.
Hence, a scenario of length 100 (a sequence of 100 events) induces
100 cycles in the component under design. The length of a scenario,
seq, is denoted |seq|.

The empty scenario, denoted ε, is one that contains no events.
It is useful mostly for mathematical purposes, such as to construct
slick proofs by mathematical induction or to create recursive defini-
tions. Obviously, since ε contains no events, ε.x = x.ε = x for every
scenario.

The symbol ∑* denotes all possible finite scenarios that can be
constructed from the events of the alphabet ∑. The * operator is
known as the Kleene star operator. Note that the empty scenario is
considered a member of ∑* whereas ∑* – {ε} is denoted ∑+. ∑*
represents all possible scenarios that can be constructed with the
events of the domain of discourse.

1.2.3.	 A Requirement (A Formal Language)

A requirement, also known as a formal language, is a set of scenarios
constructed from events of a given domain of discourse, ∑. In other
words, any subset of ∑* constitutes a requirement. As software com-
ponent developers and designers, we are not interested in just any sub-
set of ∑* but rather in specific ones. Intuitively, therefore, we can see
that a requirement is a specification of legal scenarios for a compo-
nent under design. We will discuss this interpretation in Chapter 4.

