


Embedded Microprocessor Systems
Real World Design



This Page Intentionally Left Blank



Embedded Microprocessor Systems
Real World Design

Third Edition

Stuart R. Ball

An imprint of Elsevier Science

Amsterdam Boston London New York Oxford Paris San Diego
San Francisco Singapore Sydney Tokyo



Newnes is an imprint of Elsevier Science.

Copyright © 2002, Elsevier Science (USA). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Elsevier Science
prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Ball, Stuart R., 1956–

Embedded microprocessor systems : real world design / Stuart R. Ball.—3rd ed.
p. cm.

ISBN 0-7506-7534-9 (pbk. : alk. paper)
1. Embedded computer systems—Design and construction. 2. Microprocessors.

I. Title.
TK7895.E42 B35 2002
621.39¢16—dc21 2002071917

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:

Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803
Tel: 781-313-4700
Fax: 781-313-4880

For information on all Newnes publications available, contact our World Wide Web
home page at: http://www.newnespress.com

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America



Contents

v

Introduction xi
Special Introduction to the Third Edition xiv

1 System Design 1

Requirements Definition 3
Processor Selection 5
Development Environment 17
Development Costs 19
Hardware and Software Requirements 20
Hardware/Software Partitioning 22
Distributed Processor Systems 24
Specifications Summary 25
A Requirements Document Outline 26
Communication 28

2 Hardware Design 1 29

Single-Chip Designs 29
Multichip Designs 31
Wait States 35
Memory 38
Types of PROM 39
RAM 45
I/O 54
Peripheral ICs 58
Data Bus Loading 68
Nonvolatile Memory 70
Microwire 73
DMA 74



Watchdog Timers 81
In-Circuit Programming 83
Internal Peripherals 85
Design Shortcuts 85
EMC Considerations 86
Microprocessor Clocks 90
Hardware Checklist 92

3 Hardware Design 2 95

Dynamic Bus Sizing 95
Fast Cycle Termination 95
Bus Sizing at Reset 96
Clock-Synchronized Buses 97
Built-in Dynamic Ram Interface 99
Combination ICs 100
Digital-to-Analog Converters 101
Analog-to-Digital Converters 103
SPI/Microwire in Multichip Designs 106
Timer Basics 107
Example System 115
Hardware Specifications Outline 115

4 Software Design 119

Data Flow Diagram 120
State Diagram 121
Flowcharts 123
Pseudocode 123
Partitioning the Code 125
Software Architecture 129
The Development Language 131
Microprocessor Hardware 135
Hard Deadlines Versus Soft Deadlines 138
Dangerous Independence 138
Software Specifications 140
Software Specifications Outline 141

5 Interrupts in Embedded Systems 143

Interrupt Basics 143
Interrupt Vectors 144
Edge- and Level-Sensitive Interrupts 146

vi Contents



Interrupt Priority 146
Interrupt Hardware 146
Interrupt Bus Cycles 148
Daisy-Chained Interrupts 148
Other Types of Interrupts 149
Using Interrupt Hardware 150
Interrupt Software 155
Interrupt Service Mechanics 155
Nested Interrupts 157
Passing Data to or from the ISR 158
Some Real World Dos and Don’ts 159
Minimizing Low-Priority Interrupt Service Time 166
When to Use Interrupts 168

6 Adding Debug Hardware and Software 171

Action Codes 172
Hardware Output 173
Write to ROM 175
Read from ROM 176
Software Timing 177
Software Throughput 177
Circular Trace Buffers 178
Monitor Programs 179
Logic Analyzer Breakpoints 180
Memory Dumps 181
Serial Condition Monitor 182

7 System Integration and Debug 189

Hardware Testing 190
Software Debug 191
Debugging in RAM 193
Functional Test Plan 194
Stress Testing 196
Problem Log 197
A Real-World Example 198
Emulators/Debuggers 201

8 Multiprocessor Systems 203

Communication Between Processors 205
Dual-Port RAM (DPRAM) 212

Contents vii



9 Real-Time Operating Systems 235

Multitasking 238
Keeping Track of Tasks 242
Communication Between Tasks 243
Memory Management 244
Resource Management 245
RTOS and Interrupts 247
Typical RTOS Communication 247
Preemption Considerations 248
Applicability of RTOS 250
Debuggers 253

10 Industry-Standard Embedded Platforms 255

Advantages of Using a PC Platform 255
Drawbacks of Using a PC Platform 258
Some Solutions to These Problems 260
ISA- and PCI-Based Embedded Boards 261
Other Platforms for Embedded Systems 262
Example Real-Time PC Application 267

11 Advanced Microprocessor Concepts 271

Pipeline (Prefetch) Queue 271
Interleaving 272
DRAM Burst Mode 273
SDRAM 274
High-Speed, High-Integration Processors and Multiple Buses 277
Cache Memory 278
Processors with Multiple Clock Inputs and Phase-Locked Loops 279
Multiple-Instruction Fetch and Decode 280
Microcontroller/FPGA Combinations 281
On-Chip Debug 282
Memory Management Hardware 284
Application-Specific Microcontrollers 286

Appendix A: Example System Specifications 287

System Description 287
User Interface 287
Setting Time 288

viii Contents



Water Low 288
Example System Hardware Specifications 288
Example System Software Description 290
Example System Software Pseudocode 292

Appendix B: Number Systems 303

Number Bases 303
Converting Numbers Between Bases 306
Math with Binary and Hex Numbers 307
Negative Numbers and Computer Representation of Numbers 308
Number Suffixes 310
Floating Point 311

Appendix C: Digital Logic Review 315

Basic Logic Functions 316
Registers and Latches 320

Appendix D: Basic Microprocessor Concepts 325

A Simple Microprocessor 325
A More Complex Microprocessor 333
Addressing Modes 337
Code Formats 340

Appendix E: Embedded Web Sites 343

Organizations and Literature 343
Manufacturers 343
Software, Operating Systems, and Emulators 344

Glossary 345

Index 350

Contents ix



This Page Intentionally Left Blank



Introduction

xi

Imagine this scene: You get into your car and turn the key on. You take a 3.5≤ floppy
disk from the glove compartment, insert it into a slot in the dashboard, and drum
your fingers on the steering wheel until the operating system prompt appears on
the dashboard liquid crystal display (LCD). Using the cursor keys on the center
console, you select the program for the electronic ignition, then turn the key and
start the engine. On the way to work you want to listen to some music, so you insert
the program compact disc (CD) into the player, wait for the green light to flash
indicating that the digital signal processor (DSP) in the player is ready, then put in
your music CD.

You get to work and go to the cafeteria for a pastry. Someone has borrowed 
the mouse from the microwave but has not unplugged the microwave itself, so the
operating system is still up. You can heat your breakfast before starting work.

What is the point of this inconvenient scenario? This is how the world would
work if we used microprocessor technology without having embedded microprocessors.
Every microprocessor-based appliance would need a disk drive, some kind of input
device, and some kind of display.

Embedded microprocessors are all around us. Since the original Intel 8080 was
pioneered in the 1970s, engineers have been embedding microprocessors in their
designs. They even are embedded in general-purpose computers; if you own a vari-
ation of the IBM PC/AT, there is an embedded microprocessor in the keyboard.
Virtually all printers have at least one microprocessor in them, and no car on the
market is without at least one under the hood. Embedded microprocessors may
control the automatic processing equipment that cans your soup or the controls of
your microwave oven. Basically, we can define an embedded microprocessor as
having the following characteristics:

• Dedicated to controlling a specific real-time device or function.
• Self-starting, not requiring human intervention to begin. The user cannot tell if

the system is controlled by a microprocessor or by dedicated hardware.
• Self-contained, with the operating program in some kind of nonvolatile memory.



Of course, there are exceptions to this general description, which we will get to
eventually, but this definition will serve us for now.

An embedded microprocessor system usually contains the following com-
ponents:

• A microprocessor
• RAM (random access memory)
• Nonvolatile storage: erasable programmable read-only memory (EPROM), read-

only memory (ROM), flash memory, battery-backed RAM, and so on
• I/O (some means to monitor or control the real world)

If you have seen textbooks describing general computer systems, this description
fits those as well. The difference is in the details. A general-purpose computer, such
as the one this book was written on, may have many megabytes of RAM, whereas
an embedded system may have less than 256 bytes (that is bytes, not megabytes) of
RAM. Your PC at home or at the office may have a 10GB IDE hard drive with DOS,
Windows, and several other applications.

An embedded system usually contains its entire program in a few thousand bytes
of EPROM. The most important difference between the two is the application. Your
home personal computer (PC) runs a word processor, then you switch over to the
money management program to balance your checkbook, then to the spreadsheet
to work on the family budget, then back to the word processor. The embedded
system does just a limited number of tasks, such as making sure your toast does not
burn or timing the cook cycle in your microwave.

Why would anyone want to use a microprocessor? The main reasons are:

• Cost. The cost of developing firmware for an embedded system can be very high,
but it is a nonrecurring expense, only spent once to develop the product. The actual
cost of the finished product can be very low. On the other hand, the product cost
of a system such as a microwave oven controller, if implemented in discrete hard-
ware, can be very high by comparison.

• Flexibility. Say a typical microwave oven manufacturer gets a contract from a very
large discount store for microwave ovens, but the contract specifies certain
changes in the way the user controls the device. In a hardware-based system, the
control electronics would need to be redesigned. In a microprocessor-based
system, the only change may be a few lines of code.

• Programmability. You may want to program a robotic arm to paint car doors 
one day and trunk lids the next. An embedded microcontroller permits you to
have the same hardware perform different tasks. Of course, this also could be
implemented in discrete hardware but at much higher cost.

• Adaptability. A system may need to adapt to its environment or to a user’s needs.
A typical example of this is an automobile’s “smart” automatic transmission,
which remembers your driving patterns and adjusts its shift points for optimum

xii Introduction



with dedicated hardware, but a microprocessor makes the job much easier.

This book will take you step by step through the procedures involved in designing
an embedded control system. Many of the tricks I have learned in my 20 years in
the field will be passed on, as well as some pitfalls to avoid. Along the way, we will
use as an example of a simple embedded control system, a swimming pool pump
timer, to illustrate these concepts.

The book is aimed primarily at students, new graduates who will be moving into
the embedded processor field, and engineers working in another field who want
to switch to embedded microprocessors. It assumes that the reader has a basic
knowledge of software concepts, binary and hexadecimal number systems, and a
basic understanding of digital logic. A review of this material is included in the
appendixes at the end.

Introduction xiii

comfort, economy, or even reliability. You could implement this sort of feature



Special Introduction to the 
Third Edition

xiv

Since the first edition of this book was published, the embedded microprocessor
world has changed. Entire families of microprocessors have become obsolete, along
with their associated peripheral devices. This march of technology has the dis-
advantage of making examples using those devices obsolete as well. In some cases,
I have kept examples that used some of these older parts because they provide a
clearer means of communicating a concept than examples using newer, more
complex devices. In general I have tried to use parts that are still in production for
the examples, although some of these parts may be nearing their end of life and
not as common as newer parts.

In addition to using some older devices in examples, the text still refers to older
logic devices as well. These latches, gates, and registers provide a well-understood
means of illustrating an interface mechanism that tends to become overly complex
if all the component parts must be explained in detail before the desired concept
can be covered. In most modern circuits, these functions have been taken over by
programmable logic or custom ICs. The concepts, however, are still valid even if
the implementation technology has changed.

Owing to these advances in technology, I have added some new examples, using
updated parts, to the book. Readers of the first and second editions of the book
will note that some original examples have been replaced with examples that use
these newer parts. Of course, there is no guarantee that any current production
part will still be in production by the time you read this, but that is the nature of
the electronics industry!



1

System Design 1

It has been said that if you do not know where you are going, you will not know
when you get there. Success experts tell us that the first step in achieving anything
is to establish a goal—to be debt free in one year or to pay off the car in six months.

Like most things in life, the process of designing an embedded microprocessor
system begins with a goal—the definition of the product. The product definition
describes what the product is to be and do. The product definition is the first
element in a process that is key to any successful electronics system design: docu-
mentation. The documentation describes what you are going to build and how you
are going to build it. It tells marketing people what product they will have to sell,
and it tells the engineering team how to implement that product. Since this book
is about embedded systems, it will focus on documenting embedded systems. The
development documents that I have found useful in designing embedded systems
are as follows:

• Product Requirements: Describe what the product is.
• Functional Requirements: Describe what the product must do.
• Engineering Specification: Describes how the design will be implemented and

how the requirements will be met.
• Hardware Specifications: Describe how specific hardware is designed.
• Firmware Specifications: Describe how the firmware for specific processors will

be designed.
• Test Specifications: Describe what must be tested and how to verify that the

system operates correctly.

Figure 1.1 shows how each of the documents relates to the overall design. The
embedded design process generally follows these steps:

Product requirements definition

Functional requirements definition

Processor selection

Hardware/software specifications



System evaluation

Hardware design

Firmware design

Integration

Verification (test)

These steps are not necessarily serial. For example, if there are separate hardware
and software teams, the hardware and firmware design can proceed in parallel. The
process is not always linear—system evaluation may reveal a problem with the
selected processor, which means that step must be repeated. Last, the process is not
always this well divided. The requirements definition and functionality description,
for example, may be merged into a product specification or other customer-
required documents.

Many companies require such product specifications early in the design process.
I will not dwell on that here, as the requirements for this type of document are 
specific to the company or the customer for whom the product is intended. Com-
mercial customers, to pick one example, have considerably different requirements
than the Department of Defense. The design and documentation process begins
with the next level of documentation below the product specification: the require-
ments definition.

2 Embedded Microprocessor Systems

Figure 1.1
Design Documentation.



Requirements Definition

The requirements definition (which, again, may actually be part of the product
specifications), describes what the product is to do. In a very large company, the
marketing department or a major customer may define the requirements. In a
smaller company, the hardware and software engineers may sketch out the require-
ments definition. For a small, one-engineer project, the requirements may be the
result of a momentary inspiration.

The requirements definition can take the form of a book—defining every inter-
action, interface, and error condition in the system—or a single-page list of what
the finished product must do. In either case, the requirements definition must
describe:

• What the system is to do
• What the real world I/O consists of
• What the operator interface is (if any)

In a small embedded control system, defining the requirements is crucial, as it
prevents problems later when you find out that there is insufficient RAM or that
the microprocessor you have chosen is too slow for the job. A simple example of
this is the following system definition for a swimming pool pump timer. (Appendix
A contains the complete requirements definition and specifications.)

System description: A swimming pool timer that cycles the alternating current
(AC) pump motor on a swimming pool.

Power input: 9 to 12V DC from a wall-mount transformer.

Pump is a 1/2-hp, single-phase, AC motor, controlled by mechanical relay.

Provision is to be made for a switch closure input that inhibits pump
operation if the water level is low.

User can set the length of time the pump is on and off. An override is
available to permit turning off the pump when it is on for maintenance and
turning on the pump when it is off so that chemicals can be added.

On/off/override time is to be adjustable in 30-minute increments from 1/2
hour to 23 hours.

A display will indicate the on/off condition of the pump, the time remaining,
and whether the pump is in override mode. The display also will indicate the
condition of the water-low monitor.

Minimum switches and knobs.

In addition to a list of requirements and functions like this, a system that is
intended to be a commercial product might also include requirements for EMI/

System Design 3



EMC (electromagnetic interference/electromagnetic compatibility) certification,
safety agency approval (UL/IEC), and environmental specifications (temperature,
humidity, salt spray, and so on).

Although we’ll discuss this further in Chapter 7, one problem with specifying
requirements is verifying them. It is easy to determine whether the product meets
the EMI/EMC requirements—you can run tests to prove it. But how do you prove
you’ve met the requirement for “minimum switches and knobs”? Thus, keep in
mind the problem of verification when specifying requirements.

A complex system may have another level of documentation, which I usually
refer to as the Engineering Specification. This document describes the approach that
will be used to implement the design, including which boards will be included and
how the functions are partitioned onto those boards. I will return to this informa-
tion later, in Chapter 8. For now, assume that we have a simple product, which
makes this intermediate document unnecessary.

After the requirements are defined, the next step is to determine whether 
a microprocessor is the best choice. For the pool timer, it is fairly obvious that a
microprocessor is the easiest way to do the job. Some other systems are not so
obvious. The following questions can help determine whether a microprocessor is
justified:

• At what speed must the inputs and outputs be processed or updated? Although
the clock rates are ever increasing, there is a practical upper limit to the speed
at which a microprocessor can read an input or update an output and still do
any real work. At the time of this writing, an update rate of a few hundred kHz
is a practical upper limit for a simple microprocessor system with few processing
demands and running on a fast processor or digital signal processor (DSP). If
the system must do significant processing, buffer manipulation, or other com-
puting, the potential update rate will decrease.

• Is there a single integrated circuit (IC) or a programmable logic device (PLD)
that will do the job? If so, a microprocessor is probably not justified.

• Does the system have a lot of user I/O, such as switches or displays? If so, a micro-
processor usually makes the job much easier.

• What are the interfaces to other external systems? If your system must talk to
something else using Synchronous Data Link Control (SDLC) or some other
complex communication protocol, a microprocessor may be the only practical
choice.

• How complex is the computational burden on the system? Modern electronic
ignition systems, for example, have so many inputs (air sensors, engine rpm, and
so on) with complex relationships that few choices other than a microprocessor
are suitable.

• Will the design need to be changed once it is finished, or will the requirements
be changing as the design progresses? Is there a need for customization of the

4 Embedded Microprocessor Systems


