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Preface

The term embedded systems design covers a very wide
range of microprocessor designs and does not simply start and
end with a simple microcontroller. It can be a PC running software
other than Windows and word processing software. It can be a
sophisticated multiprocessor design using the fastest processors
on the market today.

The common thread to embedded systems design is an
understanding of the interaction that the various components
within the system have with each other. It is important to under-
stand how the hardware works and the restraints that using a
certain peripheral may have on the rest of the system. It is essential
to know how to develop the software for such systems and the
effect that different hardware designs can have on the software
and vice versa. It is this system design knowledge that has been
captured in this book as a series of tutorials on the various aspects
of embedded systems design.

Chapter 1 defines what is meant by the term and in essence
defines the scope of the rest of the book. The second chapter
provides a set of tutorials on processor architectures explaining
the different philosophies that were used in their design and
creation. It covers many of the common processor architectures
ranging from 8 bit microcontrollers through CISC and RISC
processors and finally ending with digital signal processors and
includes information on the ARM processor family.

The third chapter discusses different memory types and
their uses.  This has been expanded in this edition to cover caches
in more detail and the challenges associated with them for embed-
ded design. The next chapter goes through basic peripherals such
as parallel and serial ports along with timers and DMA control-
lers. This theme is continued in the following chapter which
covers analogue to digital conversion and basic power control.

Interrupts are covered in great detail in the sixth chapter
because they are so essential to any embedded design. The differ-
ent types that are available and their associated software routines
are described with several examples of how to use them and,
perhaps more importantly, how not to use them.

The theme of software is continued in the next two chapters
which cover real-time operating systems and software develop-
ment. Again, these have a tremendous effect on embedded de-
signs but whose design implications are often not well understood
or explained. Chapter 9 discusses debugging and emulation tech-
niques.



xviii Contentsxviii Preface

The remaining five chapters are dedicated to design exam-
ples covering buffer and data structures, memory and processor
performance trade-offs and techniques, software design examples
including using a real-time operating system to create state ma-
chines and finally a couple of design examples. In this edition, an
example real-time system design is described that uses a non-real-
time system to create an embedded system. The C source code is
provided so that it can be run and experimented with on a PC
running MS-DOS.

Steve Heath
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What is an embedded system? 1

1 What is an embedded
system?

Whenever the word microprocessor is mentioned, it con-
jures up a picture of a desktop or laptop PC running an application
such as a word processor or a spreadsheet. While this is a popular
application for microprocessors, it is not the only one and the fact
is most people use them indirectly in common objects and appli-
ances without realising it. Without the microprocessor, these
products would not be as sophisticated or cheap as they are today.

The embedding of microprocessors into equipment and
consumer appliances started before the appearance of the PC and
consumes the majority of microprocessors that are made today. In
this way, embedded microprocessors are more deeply ingrained
into everyday life than any other electronic circuit that is made. A
large car may have over 50 microprocessors controlling functions
such as the engine through engine management systems, brakes
with electronic anti-lock brakes, transmission with traction con-
trol and electronically controlled gearboxes, safety with airbag
systems, electric windows, air-conditioning and so on. With a
well-equipped car, nearly every aspect has some form of elec-
tronic control associated with it and thus a need for a microproc-
essor within an embedded system.

A washing machine may have a microcontroller that con-
tains the different washing programs, provides the power control
for the various motors and pumps and even controls the display
that tells you how the wash cycles are proceeding.

Mobile phones contain more processing power than a desk-
top processor of a few years ago. Many toys contain microproces-
sors and there are even kitchen appliances such as bread machines
that use microprocessor-based control systems. The word control
is very apt for embedded systems because in virtually every
embedded system application, the goal is to control an aspect of a
physical system such as temperature, motion, and so on using a
variety of inputs. With the recent advent of the digital age replac-
ing many of the analogue technologies in the consumer world, the
dominance of the embedded system is ever greater. Each digital
consumer device such as a digital camera, DVD or MP3 player all
depend on an embedded system to realise the system. As a result,
the skills behind embedded systems design are as diverse as the
systems that have been built although they share a common
heritage.



2 Embedded systems design

What is an embedded system?
There are many definitions for this but the best way to

define it is to describe it in terms of what it is not and with examples
of how it is used.

An embedded system is a microprocessor-based system
that is built to control a function or range of functions and is not
designed to be programmed by the end user in the same way that
a PC is. Yes, a user can make choices concerning functionality but
cannot change the functionality of the system by adding/replac-
ing software. With a PC, this is exactly what a user can do: one
minute the PC is a word processor and the next it’s a games
machine simply by changing the software. An embedded system
is designed to perform one particular task albeit with choices and
different options. The last point is important because it differenti-
ates itself from the world of the PC where the end user does
reprogram it whenever a different software package is bought and
run. However, PCs have provided an easily accessible source of
hardware and software for embedded systems and it should be no
surprise that they form the basis of many embedded systems. To
reflect this, a very detailed design example is included at the end
of this book that uses a PC in this way to build a sophisticated data
logging system for a race car.

If this need to control the physical world is so great, what is
so special about embedded systems that has led to the widespread
use of microprocessors? There are several major reasons and these
have increased over the years as the technology has progressed
and developed.

Replacement for discrete logic-based circuits
The microprocessor came about almost by accident as a

programmable replacement for calculator chips in the 1970s. Up to
this point, most control systems using digital logic were imple-
mented using individual logic integrated circuits to create the
design and as more functionality became available, the number of
chips was reduced.

This was the original reason for a replacement for digital
systems constructed from logic circuits. The microprocessor was
originally developed to replace a mass of logic that was used to
create the first electronic calculators in the early 1970s. For exam-
ple, the early calculators were made from discrete logic chips and
many hundreds were needed just to create a simple four function
calculator. As the integrated circuit developed, the individual
logic functions were integrated to create higher level functions.
Instead of creating an adder from individual logic gates, a com-
plete adder could be bought in one package. It was not long before
complete calculators were integrated onto a single chip. This
enabled them to be built at a very low cost compared to the original
machines but any changes or improvements required that a new


