

Contents i

Embedded Systems Design

ii Contents

By the same author

VMEbus: a practical companion

Newnes UNIX™ Pocket Book

Microprocessor architectures: RISC, CISC and DSP

Effective PC networking

PowerPC: a practical companion

The PowerPC Programming Pocket Book

The PC and MAC handbook

The Newnes Windows NT Pocket Book

Multimedia Communications

Essential Linux

Migrating to Windows NT

All books published by Butterworth-Heinemann

About the author:

Through his work with Motorola Semiconductors, the author has been
involved in the design and development of microprocessor-based systems since 1982.
These designs have included VMEbus systems, microcontrollers, IBM PCs, Apple
Macintoshes, and both CISC- and RISC-based multiprocessor systems, while using
operating systems as varied as MS-DOS, UNIX, Macintosh OS and real-time kernels.

An avid user of computer systems, he has had over 60 articles and papers published
in the electronics press, as well as several books.

Embedded Systems Design
Second edition

Steve Heath

OXFORD AMSTERDAM BOSTON LONDON NEW YORK
PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

iv Contents

Newnes
An imprint of Elsevier Science
Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington MA 01803

First published 1997
Reprinted 2000, 2001
Second edition 2003

Copyright © 2003, Steve Heath. All rights reserved

The right of Steve Heath to be identified as the author of this work
has been asserted in accordance with the Copyright, Designs and

Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether or not
transiently or incidentally to some other use of this publication) without the
written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms
of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London, England W1T 4LP. Applications for the copyright
holder’s written permission to reproduce any part of this publication should be
addressed to the publisher

TRADEMARKS/REGISTERED TRADEMARKS
Computer hardware and software brand names mentioned in this book are
protected by their respective trademarks and are acknowledged

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 5546 1

Typeset by Steve Heath

Contents v

Contents

Preface xvii

Acknowledgements xix

1 What is an embedded system? 1
Replacement for discrete logic-based circuits 2
Provide functional upgrades 3
Provide easy maintenance upgrades 3
Improves mechanical performance 3
Protection of intellectual property 4
Replacement for analogue circuits 4

Inside the embedded system 8
Processor 8
Memory 8
Peripherals 9
Software 10
Algorithms 10
Microcontroller 11
Expanded microcontroller 13
Microprocessor based 14
Board based 14

2 Embedded processors 15
8 bit accumulator processors 16

Register models 16
8 bit data restrictions 17
Addressing memory 18
System integrity 19

Example 8 bit architectures 19
Z80 19
Z80 programming model 21
MC6800 22

Microcontrollers 23
MC68HC05 23
MC68HC11 23
Architecture 25

Data processors 25
Complex instructions, microcode and nanocode 25

INTEL 80286 28
Architecture 28
Interrupt facilities 29
Instruction set 30
80287 floating point support 30
Feature comparison 30

vi Contents

INTEL 80386DX 30
Architecture 30
Interrupt facilities 32
Instruction set 32
80387 floating point coprocessor 33
Feature comparison 33

INTEL 80486 34
Instruction set 35

Intel 486SX and overdrive processors 35
Intel Pentium 36

Multiple branch prediction 38
Data flow analysis 38
Speculative execution 38
The MMX instructions 39
The Pentium II 40

Motorola MC68000 40
The MC68000 hardware 41

Address bus 41
Data bus 41
Function codes 42
Interrupts 43
Error recovery and control signals 44

Motorola MC68020 44
The programmer’s model 46
Bus interfaces 49

Motorola MC68030 50
The MC68040 51

The programming model 53

Integrated processors 54
RISC processors 57

The 80/20 rule 57
The initial RISC research 58

The Berkeley RISC model 59
Sun SPARC RISC processor 60

Architecture 60
Interrupts 60
Instruction set 61

The Stanford RISC model 62
The MPC603 block diagram 63

The ARM register set 65
Exceptions 66
The Thumb instructions 67

Digital signal processors 68
DSP basic architecture 69

Choosing a processor 72

Contents vii

3 Memory systems 73
Memory technologies 74

DRAM technology 76
Video RAM 77

SRAM 77
Pseudo-static RAM 78
Battery backed-up SRAM 78

EPROM and OTP 78
Flash 79
EPROM 79

Memory organisation 79
By 1 organisation 80
By 4 organisation 81
By 8 and by 9 organisations 81
By 16 and greater organisations 81

Parity 81
Parity initialisation 82

Error detecting and correcting memory 82
Access times 83
Packages 83

Dual in line package 84
Zig–zag package 84
SIMM and DIMM 84
SIP 85

DRAM interfaces 85
The basic DRAM interface 85
Page mode operation 86
Page interleaving 86
Burst mode operation 87
EDO memory 87

DRAM refresh techniques 88
Distributed versus burst refresh 88
Software refresh 89
RAS only refresh 89
CAS before RAS (CBR) refresh 89
Hidden refresh 89
Memory management 90
Disadvantages of memory management 92
Segmentation and paging 93
Memory protection units 97
Cache memory 99
Cache size and organisation 100

Optimising line length and cache size 104
Logical versus physical caches 105
Unified versus Harvard caches 106
Cache coherency 106

viii Contents

Case 1: write through 108
Case 2: write back 109
Case 3: no caching of write cycles 110
Case 4: write buffer 110
Bus snooping 111
The MESI protocol 116
The MEI protocol 117

Burst interfaces 118
Meeting the interface needs 119

Big and little endian 121
Dual port and shared memory 122
Bank switching 123
Memory overlays 124
Shadowing 124
Example interfaces 125

MC68000 asynchronous bus 125
M6800 synchronous bus 127
The MC68040 burst interface 128

4 Basic peripherals 131
Parallel ports 131

Multi-function I/O ports 132
Pull-up resistors 133

Timer/counters 133
Types 134

8253 timer modes 134
Interrupt on terminal count 134
Programmable one-shot 134
Rate generator 136
Square wave rate generator 136
Software triggered strobe 136
Hardware triggered strobe 137
Generating interrupts 137

MC68230 modes 137
Timer processors 138
Real-time clocks 139

Simulating a real-time clock in software 140

Serial ports 140
Serial peripheral interface 142
I2C bus 143

Read and write access 145
Addressing peripherals 146
Sending an address index 147
Timing 148

Contents ix

Multi-master support 149

M-Bus (Motorola) 150
What is an RS232 serial port? 151
Asynchronous flow control 154

Modem cables 155
Null modem cables 155
XON-XOFF flow control 158

UART implementations 158
8250/16450/16550 158
The interface signals 159
The Motorola MC68681 162

DMA controllers 163
A generic DMA controller 164

Operation 164

DMA controller models 166
Single address model 166
Dual address model 167
1D model 168
2D model 168
3D model 169

Channels and control blocks 169
Sharing bus bandwidth 171
DMA implementations 173

Intel 8237 173
Motorola MC68300 series 173
Using another CPU with firmware 174

5 Interfacing to the analogue world 175
Analogue to digital conversion techniques 175

Quantisation errors 176

Sample rates and size 176
Irregular sampling errors 177
Nyquist’s theorem 179

Codecs 179
Linear 179
A-law and μ-law 179
PCM 180
DPCM 180
ADPCM 181

Power control 181
Matching the drive 181
Using H bridges 183
Driving LEDs 184
Interfacing to relays 184
Interfacing to DC motors 185
Software only 186
Using a single timer 187
Using multiple timers 188

x Contents

6 Interrupts and exceptions 189
What is an interrupt? 189

The spaghetti method 190
Using interrupts 191

Interrupt sources 192
Internal interrupts 192
External interrupts 192
Exceptions 192
Software interrupts 193
Non-maskable interrupts 193

Recognising an interrupt 194
Edge triggered 194
Level triggered 194
Maintaining the interrupt 194
Internal queuing 194

The interrupt mechanism 195
Stack-based processors 195

MC68000 interrupts 196
RISC exceptions 198

Synchronous precise 199
Synchronous imprecise 199
Asynchronous precise 199
Asynchronous imprecise 200
Recognising RISC exceptions 200
Enabling RISC exceptions 202
Returning from RISC exceptions 202
The vector table 202
Identifying the cause 203

Fast interrupts 203
Interrupt controllers 205
Instruction restart and continuation 205
Interrupt Latency 206
Do’s and Don’ts 209

Always expect the unexpected interrupt 209
Don't expect too much from an interrupt 209
Use handshaking 210
Control resource sharing 210
Beware false interrupts 211
Controlling interrupt levels 211
Controlling stacks 211

7 Real-time operating systems 212
What are operating systems? 212
Operating system internals 214
Multitasking operating systems 215

Context switching, task tables, and kernels 215
Time slice 223

Contents xi

Pre-emption 224
Co-operative multitasking 224

Scheduler algorithms 225
Rate monotonic 225
Deadline monotonic scheduling 227
Priority guidelines 227

Priority inversion 227
Disabling interrupts 227
Message queues 228
Waiting for a resource 229
VMEbus interrupt messages 229
Fairness systems 231

Tasks, threads and processes 231
Exceptions 232
Memory model 233

Memory allocation 233
Memory characteristics 234
Example memory maps 235

Memory management address translation 239
Bank switching 242
Segmentation 243
Virtual memory 243
Chossoing an operating system 244
Assembler versus high level language 245
ROMable code 245
Scheduling algorithms 245
Pre-emptive scheduling 246
Modular approach 246
Re-entrant code 247
Cross-development platforms 247
Integrated networking 247
Multiprocessor support 247

Commercial operating systems 248
pSOS+ 248
pSOS+ kernel 248
pSOS+m multiprocessor kernel 249
pREPC+ runtime support 249
pHILE+ file system 250
pNA+ network manager 250
pROBE+ system level debugger 250
XRAY+ source level debugger 250
OS-9 250
VXWorks 251
VRTX-32 251
IFX 252
TNX 252
RTL 252
RTscope 252
MPV 252
LynxOS-Posix conformance 252
Windows NT 254

xii Contents

Windows NT characteristics 255
Process priorities 256
Interrupt priorities 257

Resource protection 258
Protecting memory 258
Protecting hardware 258
Coping with crashes 259
Multi-threaded software 259
Addressing space 260
Virtual memory 261
The internal architecture 261
Virtual memory manager 262
User and kernel modes 262
Local procedure call (LPC) 263
The kernel 263
File system 263
Network support 264
I/O support 264
HAL approach 264

Linux 265
Origins and beginnings 265
Inside Linux 268
The Linux file system 269
The physical file system 270
Building the file system 271
The file system 272

Disk partitioning 274
The /proc file system 277
Data Caching 277
Multi-tasking systems 278
Multi-user systems 278
Linux software structure 279
Processes and standard I/O 280
Executing commands 281
Physical I/O 282
Memory management 283
Linux limitations 283
eLinux 284

8 Writing software for embedded systems 288
The compilation process 288

Compiling code 289
The pre-processor 290
Compilation 293
as assembler 295
Linking and loading 296
Symbols, references and relocation 296
ld linker/loader 297

Native versus cross-compilers 298
Run-time libraries 298

Processor dependent 298
I/O dependent 299

Contents xiii

System calls 299
Exit routines 299

Writing a library 300
Creating a library 300
Device drivers 306
Debugger supplied I/O routines 306
Run-time libraries 307

Using alternative libraries 307
Linking additional libraries 307
Linking replacement libraries 307

Using a standard library 307
Porting kernels 308

Board support 308
Rebuilding kernels for new configurations 309
configAll.h 310
config.h 310
usrConfig.c 310
pSOSystem+ 312

C extensions for embedded systems 313
#pragma interrupt func2 313
#pragma pure_function func2 314
#pragma no_side_effects func2 314
#pragma no_return func2 314
#pragma mem_port int2 314
asm and _ _asm 314

Downloading 316
Serial lines 316
EPROM and FLASH 317
Parallel ports 317
From disk 317
Ethernet 318
Across a common bus 318

9 Emulation and debugging techniques 321
Debugging techniques 321

High level language simulation 321
Low level simulation 322
Onboard debugger 323
Task level debugging 325
Symbolic debug 325
Emulation 327
Optimisation problems 328
Xray 332

The role of the development system 335
Floating point and memory management functions 335

Emulation techniques 336
JTAG 337
OnCE 337
BDM 338

xiv Contents

10 Buffering and other data structures 339
What is a buffer? 339

Latency 341
Timing tolerance 341
Memory size 342
Code complexity 342

Linear buffers 342
Directional buffers 344

Single buffer implementation 344

Double buffering 346
Buffer exchange 348
Linked lists 349
FIFOs 350
Circular buffers 351
Buffer underrun and overrun 352
Allocating buffer memory 353

malloc() 353

Memory leakage 354
Stack frame errors 354
Failure to return memory to the memory pool 355
Housekeeping errors 355
Wrong memory specification 356

11 Memory and performance trade-offs 357
The effect of memory wait states 357
Scenario 1 — Single cycle processor with
large external memory 358
Scenario 2 — Reducing the cost of memory access 360

Using registers 360
Using caches 361
Preloading caches 362
Using on-chip memory 363
Using DMA 363

Making the right decisions 363

12 Software examples 365
Benchmark example 365
Creating software state machines 368

Priority levels 372
Explicit locks 373
Interrupt service routines 373
Setting priorities 375

Contents xv

Task A highest priority 375
Task C highest priority 376
Using explicit locks 376
Round-robin 376
Using an ISR routine 377

13 Design examples 379
Burglar alarm system 379

Design goals 379
Development strategy 380
Software development 380
Cross-compilation and code generation 383
Porting to the final target system 385
Generation of test modules 385
Target hardware testing 385
Future techniques 385
Relevance to more complex designs 386
The need for emulation 386

Digital echo unit 387
Creating echo and reverb 387
Design requirements 390
Designing the codecs 391
Designing the memory structures 391
The software design 392
Multiple delays 394
Digital or analogue adding 395
Microprocessor selection 396
The overall system design 396

14 Real-time without a RTOS 398
Choosing the software environment 398
Deriving real time performance from a non-real time system 400

Choosing the hardware 401

Scheduling the data sampling 402
Sampling the data 405
Controlling from an external switch 406

Driving an external LED display 408
Testing 408

Problems 410
Saving to hard disk 410
Data size restrictions and the use of a RAM disk 410
Timer calculations and the compiler 411
Data corruption and the need for buffer flushing. 411

Program listing 413

Index 422

xvi Contents

.This Page Intentionally Left Blank

Contents xvii

Preface

The term embedded systems design covers a very wide
range of microprocessor designs and does not simply start and
end with a simple microcontroller. It can be a PC running software
other than Windows and word processing software. It can be a
sophisticated multiprocessor design using the fastest processors
on the market today.

The common thread to embedded systems design is an
understanding of the interaction that the various components
within the system have with each other. It is important to under-
stand how the hardware works and the restraints that using a
certain peripheral may have on the rest of the system. It is essential
to know how to develop the software for such systems and the
effect that different hardware designs can have on the software
and vice versa. It is this system design knowledge that has been
captured in this book as a series of tutorials on the various aspects
of embedded systems design.

Chapter 1 defines what is meant by the term and in essence
defines the scope of the rest of the book. The second chapter
provides a set of tutorials on processor architectures explaining
the different philosophies that were used in their design and
creation. It covers many of the common processor architectures
ranging from 8 bit microcontrollers through CISC and RISC
processors and finally ending with digital signal processors and
includes information on the ARM processor family.

The third chapter discusses different memory types and
their uses. This has been expanded in this edition to cover caches
in more detail and the challenges associated with them for embed-
ded design. The next chapter goes through basic peripherals such
as parallel and serial ports along with timers and DMA control-
lers. This theme is continued in the following chapter which
covers analogue to digital conversion and basic power control.

Interrupts are covered in great detail in the sixth chapter
because they are so essential to any embedded design. The differ-
ent types that are available and their associated software routines
are described with several examples of how to use them and,
perhaps more importantly, how not to use them.

The theme of software is continued in the next two chapters
which cover real-time operating systems and software develop-
ment. Again, these have a tremendous effect on embedded de-
signs but whose design implications are often not well understood
or explained. Chapter 9 discusses debugging and emulation tech-
niques.

xviii Contentsxviii Preface

The remaining five chapters are dedicated to design exam-
ples covering buffer and data structures, memory and processor
performance trade-offs and techniques, software design examples
including using a real-time operating system to create state ma-
chines and finally a couple of design examples. In this edition, an
example real-time system design is described that uses a non-real-
time system to create an embedded system. The C source code is
provided so that it can be run and experimented with on a PC
running MS-DOS.

Steve Heath

Contents xix

Acknowledgements
By the nature of this book, many hardware and software

products are identified by their tradenames. In these cases, these
designations are claimed as legally protected trademarks by the
companies that make these products. It is not the author’s nor the
publisher’s intention to use these names generically, and the
reader is cautioned to investigate a trademark before using it as a
generic term, rather than a reference to a specific product to which
it is attached.

Many of the techniques within this book can destroy data
and such techniques must be used with extreme caution. Again,
neither author nor publisher assume any responsibility or liability
for their use or any results.

While the information contained in this book has been
carefully checked for accuracy, the author assumes no responsibil-
ity or liability for its use, or any infringement of patents or other
rights of third parties which would result.

As technical characteristics are subject to rapid change, the
data contained are presented for guidance and education only. For
exact detail, consult the relevant standard or manufacturers’ data
and specification.

xx Contents

.This Page Intentionally Left Blank

What is an embedded system? 1

1 What is an embedded
system?

Whenever the word microprocessor is mentioned, it con-
jures up a picture of a desktop or laptop PC running an application
such as a word processor or a spreadsheet. While this is a popular
application for microprocessors, it is not the only one and the fact
is most people use them indirectly in common objects and appli-
ances without realising it. Without the microprocessor, these
products would not be as sophisticated or cheap as they are today.

The embedding of microprocessors into equipment and
consumer appliances started before the appearance of the PC and
consumes the majority of microprocessors that are made today. In
this way, embedded microprocessors are more deeply ingrained
into everyday life than any other electronic circuit that is made. A
large car may have over 50 microprocessors controlling functions
such as the engine through engine management systems, brakes
with electronic anti-lock brakes, transmission with traction con-
trol and electronically controlled gearboxes, safety with airbag
systems, electric windows, air-conditioning and so on. With a
well-equipped car, nearly every aspect has some form of elec-
tronic control associated with it and thus a need for a microproc-
essor within an embedded system.

A washing machine may have a microcontroller that con-
tains the different washing programs, provides the power control
for the various motors and pumps and even controls the display
that tells you how the wash cycles are proceeding.

Mobile phones contain more processing power than a desk-
top processor of a few years ago. Many toys contain microproces-
sors and there are even kitchen appliances such as bread machines
that use microprocessor-based control systems. The word control
is very apt for embedded systems because in virtually every
embedded system application, the goal is to control an aspect of a
physical system such as temperature, motion, and so on using a
variety of inputs. With the recent advent of the digital age replac-
ing many of the analogue technologies in the consumer world, the
dominance of the embedded system is ever greater. Each digital
consumer device such as a digital camera, DVD or MP3 player all
depend on an embedded system to realise the system. As a result,
the skills behind embedded systems design are as diverse as the
systems that have been built although they share a common
heritage.

2 Embedded systems design

What is an embedded system?
There are many definitions for this but the best way to

define it is to describe it in terms of what it is not and with examples
of how it is used.

An embedded system is a microprocessor-based system
that is built to control a function or range of functions and is not
designed to be programmed by the end user in the same way that
a PC is. Yes, a user can make choices concerning functionality but
cannot change the functionality of the system by adding/replac-
ing software. With a PC, this is exactly what a user can do: one
minute the PC is a word processor and the next it’s a games
machine simply by changing the software. An embedded system
is designed to perform one particular task albeit with choices and
different options. The last point is important because it differenti-
ates itself from the world of the PC where the end user does
reprogram it whenever a different software package is bought and
run. However, PCs have provided an easily accessible source of
hardware and software for embedded systems and it should be no
surprise that they form the basis of many embedded systems. To
reflect this, a very detailed design example is included at the end
of this book that uses a PC in this way to build a sophisticated data
logging system for a race car.

If this need to control the physical world is so great, what is
so special about embedded systems that has led to the widespread
use of microprocessors? There are several major reasons and these
have increased over the years as the technology has progressed
and developed.

Replacement for discrete logic-based circuits
The microprocessor came about almost by accident as a

programmable replacement for calculator chips in the 1970s. Up to
this point, most control systems using digital logic were imple-
mented using individual logic integrated circuits to create the
design and as more functionality became available, the number of
chips was reduced.

This was the original reason for a replacement for digital
systems constructed from logic circuits. The microprocessor was
originally developed to replace a mass of logic that was used to
create the first electronic calculators in the early 1970s. For exam-
ple, the early calculators were made from discrete logic chips and
many hundreds were needed just to create a simple four function
calculator. As the integrated circuit developed, the individual
logic functions were integrated to create higher level functions.
Instead of creating an adder from individual logic gates, a com-
plete adder could be bought in one package. It was not long before
complete calculators were integrated onto a single chip. This
enabled them to be built at a very low cost compared to the original
machines but any changes or improvements required that a new

