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Preface

For over a hundred years from its conception, the lead–acid cell was normally
operated with unrestricted access between the surface of its electrolyte and the
external atmosphere so that, during periods of overcharge, hydrogen and oxygen
were lost from the cell via electrolysis. As a result, periodic additions of distilled
water were necessary. Since about 1970, an alternative to the traditional ‘flooded’
cell has been available — one that avoids the need for water maintenance. Moreover,
acid is immobilized in the new design and this endows the cell with the additional
advantages of being ‘spill-proof’ and able to operate in any orientation (upright, on
its side, or even upside down).
The change to the so-called ‘valve-regulated lead–acid’ (VRLA) technology has

not, however, been accomplished without some difficulty. Experience has demon-
strated forcibly the fundamental differences between the two systems, and the lead–
acid battery manufacturing industry has faced major challenges in investing the
VRLA version with a performance to match that of its flooded predecessor.
Nevertheless, research into understanding the electrochemisty, producing improved
cell components and optimizing charge strategies has resulted in VRLA batteries
becoming well-established and reliable devices. Operators now take advantage of the
particular properties of these batteries for the storage of electrical energy in a wide
variety of stationary applications.
Much of the recent advancement of VRLA technology has been achieved through

a co-operative research effort under the auspices of the Advanced Lead-Acid Battery
Consortium (ALABC). The main effort has been directed towards the development
of VRLA battery systems for new-generation road transportation — electric and
hybrid electric vehicles — that will reduce fuel consumption and lower emissions.
The progress gained in this endeavour will ultimately also benefit the enormously
important markets in telecommunications and remote-area power supplies.
This volume presents a detailed account of recent advances in the science and

technology of VRLA batteries. The expert contributors are from organizations
which have either been members of, or contractors to, the ALABC. In editing the
contributions, we have aimed to unify the style of the volume as far as possible, but
have allowed a little overlap between those chapters where there is a natural inter-
action between topics. It is hoped that this work will constitute a sound exposition of
the present status of VRLA batteries, and will provide a resource that will enable
technologists to deliver products with performances that surpass the requirements of
the major markets.
We wish to express our special appreciation of the dedication and expert skills

of Ms. Rita Spiteri (CSIRO) for producing the complete text for publication and
redrafting most of the illustrations.

D.A.J. Rand J. Garche
P.T. Moseley C.D. Parker
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BET Brunauer, Emmett, Teller method of measuring surface area

(J. Am. Chem. Soc., 60, (1938) 309)
BJT bipolar junction transistor
BMM battery management module
BMS battery management system
BoP balance-of-plant
1BS monobasic lead sulfate, PbO �PbSO4

3BS tribasic lead sulfate, 3PbO �PbSO4 �H2O
4BS tetrabasic lead sulfate, 4PbO �PbSO4

CAES compressed-air energy storage
CAFE corporate average fuel economy
CAN controller area network
CBEMA Computer and Business Equipment Manufacturers’ Association
CC constant current
CCA cold-cranking amps
CFMEA Concept Failure Modes and Effects Analysis
CI current interrupt
CMC carboxymethyl cellulose
CoP Conference of the Parties
COS cast-on-strap
CSIRO Commonwealth Scientific and Industrial Research Organisation
CSM copper-stretch-metal
CV constant voltage



d.c. direct current
DFMEA Design Failure Modes and Effects Analysis
DLC double layer capacitor
DoD depth-of-discharge
DST dynamic stress test
DVP design verification plan — plan to verify component/system design to

functional intent
DVPR design verification plan and report — program/product oriented

structured system to determine verification test requirements for a new
or modified part, component, or system

ECE Economic Commission for Europe
ECU engine control unit
EDI electronic data interchange — a protocol for the electronic exchange of

data and documents
EDS electrical distribution system
EMC Electric Membership Corporation
EMI electromagnetic interference
EN European Norm. (a standard)
EPA Environmental Protection Authority
EPRI Electric Power Research Institute
EOL end-of-life
EV electric vehicle

FM failure mechanism
FMEA failure modes and effects analysis
FUDS Federal Urban Drive Schedule

GE General Electric Company
GTO gate-turn-off (thyristor)

HEPA high efficiency particulate air
HEV hybrid electric vehicle
HMW high molecular weight
HRPSoC high-rate partial-state-of-charge
HVAC high-voltage alternating current
HVDC high-voltage direct current
HWFET Highway Fuel Economy Test

IC intermittent charging
ICE internal-combustion engine
IEC International Electrotechnical Commission
IGBT insulated gate bipolar transistor
IPTV incidents per thousand vehicles
ISA integrated starter alternator
ISG integrated starter generator
ISO International Standards Organization
IU current-limited constant voltage (charging)
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IUI current-limited constant voltage (charging) with constant-current
finishing step

JIS Japanese Industrial Standard
JEVs Japan Electric Vehicle Society

KST Kochis Stress Test

LMT Lead Metal Technologies (Mexico)
LMW low average molecular weight

MCE mixed cellulose ester
MP&L Metlakatla Power and Light
MOSFET metal-oxide-semiconductor field effect transistor
MSDS material safety data sheet

NAM negative active mass
NERC National Energy Reliability Council
NVH noise, vibration, and harshness — the acoustic and tactile stimuli

generated by the vehicle that are perceived by the customer as
indicators of product quality

OCV open-circuit voltage
OCSM CSM (copper-stretch-metal)-technology battery
OEM original equipment manufacturer
OSHA Occupational Safety & Health Administration

PAM positive active mass
PCL premature capacity loss
PCM phase-change material
PCS power-conditioning system
PFMEA process failure modes and effects analysis
PG&E Pacific Gas & Electric
POB power-optimized battery
PowerNet vehicle electrical system
PREPA Puerto Rico Electric Power Authority
PSoC partial-state-of-charge
PSoR partial-state-of-recharge
PTFE polytetrafluoroethene
PV photovoltaic

also: process validation — production validation (PV) — program
of engineering tests and evaluations conducted to assure that initial
production parts meet the design intent

PVC polyvinyl chloride
PWM pulse-width modulation

RAPS remote-area power supply
RBSM recombinant-battery separator mat (same as AGM)
RC reserve capacity
rel. dens relative density
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RFI radio frequency interference
RFQ request for quotation
RFV resistance-free voltage
RIMU relaxable insufficient mass utilization
RMS root mean square
rpm revolutions per minute

SAE Society of Automotive Engineers
SCE Southern California Edison
SCR silicon controlled rectifier
SDG&E San Diego Gas & Electric
SDS system design specification
SEM scanning electron microscopy
SHE standard hydrogen electrode
SLGM silica-loaded glass mat
SLI starting, lighting and ignition
SMES superconducting magnetic energy storage
SNL Sandia National Laboratory
SoC state-of-charge
SoH state-of-health
SPC statistical process control — the process which uses statistical

techniques such as control charts to analyze a process output
SGTP strap-grid tubular plate
SWP synthetic wood pulp

T&D transmission and distribution
TC taper current
TCLP toxic characteristic leaching procedure
TGR things gone right
TGW things gone wrong
ToCV top-of-charge voltage

UL Underwriters Laboratory
ULAB used lead–acid batteries
UPS uninterruptible power supply
USDOE US Department of Energy

VAR volt-ampere reactive
VC vehicle controller
VPC volts per cell
VRLA valve-regulated lead–acid (battery)
VS-A Vanisperse A (negative-plate expander)
XRD X-ray diffraction

Symbols and units — Roman letters

a activity of species which is usually specified as a subscript
(e.g., HSO�4 )
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A ampere
Ah ampere hour (¼ 3600 coulombs)

�C degree Celsius
C capacity (symbol also used for capacitance)
Cb heat capacity of materials in battery
Cp(i) heat capacity of component i
CX/t discharge rate (current) of a battery, where C is the rated capacity;

X is the hour rate; t is the specified discharge time, usually in hours
cm centimeter

d interplanar spacing in crystal
DH2

diffusion constant for hydrogen
DO2

diffusion constant for oxygen
nG Gibbs free energy of reaction

e� electron
E electrode potential under load
Ea activation energy
EM mixed potential
E 0 standard electrode potential
Er reversible electrode potential
F faraday (96,485 coulombs per mole)

also: farad (1 coulomb per volt)

g gram
GW gigawatt

h hour
H henry (1 volt second per ampere)
nH enthalpy of reaction
Hz hertz (¼ 1 cycle per second)
i current density
I current
Ich current on charge
Icorr grid corrosion current
Id current on discharge
Ifloat float current
IH2

hydrogen evolution current
IO2

oxygen evolution current
IO2-red

oxygen reduction current
in inch

J joule

kg kilogram
kJ kilojoule (¼ 238.85 calories)
km kilometer
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kPa kilopascal
kW kilowatt
kWh kilowatt hour

l litre

m metre
m(i) mass of component i
M molar
mA milliampere
mAh milliampere hour
min minute
mm millimeter
MPa megapascal
mol mole
mV millivolt
MV megavolt
mW milliwatt
MW megawatt
mWh milliwatt hour
MWh megawatt hour
mm micrometer

pH negative value of logarithm of hydrogen ion concentration

Qg heat generated
Qd heat dissipated

r Sn:Ca ratio in lead alloys
R gas constant (8.3145 joules per degree per mole)

s second
nS entropy of reaction

t time
T temperature

U voltage (see also V)
UTS ultimate tensile strength

V volt
nV shift in voltage
Vp total pore volume
Vmp volume of micropores

W watt
Wh watt hour
wt.% percentage by weight

x distance variable

YS yield strength
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Symbols and units — Greek letters

e Stefan-Boltzmann constant
Z overpotential (symbol also used for viscosity)
l thermal conductivity
y phase angle
r density
s emissivity (with respect to an ideal emitter)
� ohm
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—CHAPTER 1—

THE VALVE-REGULATED BATTERY — A

PARADIGM SHIFT IN LEAD–ACID TECHNOLOGY

P.T. Moseley and D.A.J. Rand

1.1. Lead–Acid Batteries — A Key Technology for Energy Sustainability

A ready and affordable supply of energy is essential for maintaining the standard-of-
living of the developed world and for markedly improving that of the less-developed
countries. Coal, mineral oil, and natural gas (the ‘fossil fuels’), together with uranium
(‘nuclear energy’), have long been exploited as major sources of primary energy. The
most important, versatile, and useful means of distributing such energy to where
it is needed is through conversion to electricity. Unfortunately, the cumulative
environmental effects of burning fossil fuels, the profligate consumption of these
fuels, and concerns over the safety of nuclear power and radioactive wastes, have
placed Planet Earth in jeopardy.

One strategy for safeguarding the future is to move away from the traditional fuels
towards so-called ‘renewable’ sources of energy which are of a non-polluting nature
and are sustainable. The harnessing of renewable energies — hydro, solar, wind,
geothermal, wave, tidal, biomass — presents, however, a further set of technical and
economic problems. Unlike fossil and nuclear fuels, which are concentrated sources
of energy that can be easily stored and transported, renewable forms of energy are,
for the most part, highly dilute and diffuse. Moreover, their supply can be extremely
intermittent and unreliable. It is therefore not surprising that, except for hydro-
electric power, renewable energy sources have made little contribution to world
electricity supplies. In 1999, for example, renewables provided only 1.6% of the
energy required for world electricity generation; the remainder came from: coal,
38.1%; hydroelectric power, 17.5%; nuclear power, 17.2%; natural gas, 17.1%;
oil, 8.5% [1].

Irrespective of the source, an effective storage system is critical for the efficient
use of the energy, and for the good stewardship of its supply. The development
of effective and affordable means to store electrical energy for an ever-increasing
number of applications of great variety continues to present a major challenge to
scientists, technologists, and engineers.

The scale of energy-storage systems ranges from minuscule elements on integrated
circuits to pumped hydroelectric reservoirs that store the equivalent of giga watt-
hours of electrical energy. The needs of small electrical appliances can be supplied
by primary (single-use and discard) batteries, or by a rapidly developing range of
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rechargeable types which are principally based on the use of lithium or nickel. To
date, however, batteries based on these two metals have failed to become
economically viable for larger energy-storage applications. Examples of this category
include systems designed to cope with diurnal fluctuations in electricity demand. In
small communities remote from a grid supply, electricity generated during the day
by photovoltaic (‘solar’) installations must be stored for use during the hours of
darkness. In electricity utility systems, there is often a need to store surplus energy
generated during the night for use at peak periods on the following day. When
electric power is used for transport, it is often necessary for a vehicle to move free
from the source of power and for the electricity to be stored ‘in a box’. In most
medium- and large-scale energy-storage functions, lead–acid batteries, in one form
or another, have been the technology of choice.

Lead–acid batteries are employed in a wide variety of different tasks, each with
its own distinctive duty cycle. In internal-combustion engined vehicles, the battery
provides a quick pulse of high current for starting and a lower, sustained current for
other purposes; the battery remains at a high state-of-charge for most of the time.
The same is true of batteries used for back-up power in telecommunications and in
other uninterruptible power supplies, although in such service (so-called ‘float duty’)
the battery should seldom be called upon to discharge. Electric vehicle (EV)
batteries, on the other hand, are expected to undergo deep discharges and recharges
over periods of a few hours repeatedly (so-called ‘deep-discharge duty’). In between
the extreme cases of float duty and deep discharge, the batteries in hybrid electric
vehicles (HEVs) and in storage units for remote-area power supply (RAPS) systems
spend most of the time cycling about an intermediate state-of-charge, often near
50% (so-called ‘partial-state-of-discharge duty’).

In all cases, the battery must be able to provide adequate power for the task in
hand. This may be a more severe requirement for batteries in EVs and HEVs than
for batteries in solar-based RAPS systems. For mobile applications, the energy-
storage capability should be provided with a minimum weight penalty. In essence,
the battery should have a high ‘specific energy’, i.e., a high energy output per unit
weight, Whkg�1. Generally, a high coulombic efficiency (charge out : charge in)
is also an asset as this preserves primary energy.

Finally, a sine qua non is acceptable cost. The factors to be considered are the
initial price of the battery, the operational life of the battery, and the associated
maintenance costs. Lead–acid batteries are eminently suitable for medium- and
large-scale energy-storage operations because they offer an acceptable combination
of performance parameters at a cost which is substantially below that of alternative
systems.

1.2. The Lead–Acid Battery

The fundamental elements of the lead–acid battery were set in place over 100 years
ago. Gaston Planté [2] was the first to report that a useful discharge current could
be drawn from a pair of lead plates that had been immersed in sulfuric acid and
subjected to a charging current. Later, Camille Fauré [3] proposed the concept of
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the pasted plate. In the subsequent hundred yeasrs or so, the principal elements of
the battery have not undergone any further radical change. The most commonly
employed design has ‘flat plates’. These are prepared by coating pastes of lead oxides
and sulfuric acid on to conductive lead or lead-alloy ‘grids’, which act as current-
collectors. The plates are then ‘formed’ electrolytically into ‘active’ materials. One
alternative cell design uses positive plates in which the active material is contained
in tubes, each fitted with a coaxial current-collector. Such ‘tubular plates’ serve to
prevent shedding of the material during battery service (v.i.). A more recent cell
design, aimed at high-power applications, has a single pair of positive and negative
plates which are interleaved with microfibre-glass mat separators and wound
together in a cylindrical can (the ‘spirally wound’ or ‘jellyroll’ design). Ironically, this
arrangement mimics that invented originally by Planté. Schematics of the various
plate types are given in Fig. 1.1.

The discharge reactions of the lead–acid cell are as follows:

Positive plate: PbO2 þ 3Hþ þHSO�4 þ 2e� ! PbSO4 þ 2H2O ð1:1Þ
Negative plate: PbþHSO�4 ! PbSO4 þHþ þ 2e� ð1:2Þ

In both cases, a solid conductor of electrons (semi-conducting lead dioxide, PbO2, in
the positive plate; metallic lead, Pb, in the negative) reacts with sulfuric acid to form
a non-conductive, solid product of lead sulfate, PbSO4. Both discharge reactions are
accompanied by an increase in volume of the solid phase. The volume increase for
the transformation of PbO2 to PbSO4 (shown in Fig. 1.2) is 92%, while that for Pb
to PbSO4 is 164%.

The key technical challenge to be met in maximizing battery performance involves
facilitating continuity of supply, contact and interaction of reactants. In principal,
this requires an adequate supply of acid, solid reactants of high surface-area,
maintenance of good contact between the particles of the active material
(particularly in positive plates that show a tendency to expand during charge–
discharge service, v.i.), and minimization of the insulating effects of PbSO4.

After each discharge, the above set of optimum conditions is to be restored by
charge reactions, which are the reverse of those expressed by eqns. (1.1) and (1.2).
In the ideal case, the discharge capacity would be constant during cycling of the cell
(or during time on float). For even the most advanced design of commercial battery,
however, the practical utilization of the active materials is generally limited to
considerably less than 50% when discharge is performed at a rate of five hours, or
less. As cycling (or life) proceeds, a number of processes (‘failure mechanisms’) can
degrade further this limited performance. Conventional batteries (i.e., those with
free electrolyte, so-called ‘flooded’ designs) commonly suffer from one or more of
the following five failure mechanisms.

FM1. Positive-plate expansion. This can occur both in the plane of the plate (if the
grid is stretched by a growing corrosion layer) and in the direction normal to the
plate (through expansion of the active material itself). Repetitive discharge and
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Fig. 1.1. (a) Gaston Planté’s cell and battery; (b) flat plate; (c) tubular positive plate;

(d) spiral-wound cell.
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