

Software Design for

Engineers and Scientists

This page intentionally left blank

Software Design for
Engineers and Scientists

John A. Robinson
University of York

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes
An imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Burlington, MA 01803

First published 2004

Copyright © 2004, John A. Robinson
All rights reserved

The right of John A. Robinson to be identified as the author of this work has
been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether
or not transiently or incidentally to some other use of this publication) without
the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed
to the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (�44) (0) 1865 843830, fax: (�44) (0) 1865 853333,
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via
the Elsevier homepage (http://www.elsevier.com), by selecting ‘Customer Support’
and then ‘Obtaining Permissions’.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 7506 6080 5

Typeset by Charon Tec Pvt. Ltd, Chennai, India
Printed and bound in Great Britain

For information on all Newnes publications
visit our website www.newnespress.com

Contents

Preface xi
Acknowledgements xiii
Errors xiv

1.1 Theme 1
1.2 Audience 2
1.3 Three definitions and a controversy 2
1.4 Essential software design 3
1.5 Outline of the book 4

Foundations 4
Software technology 5
Applied software design 5
Case studies 6

1.6 Presentation conventions 6
1.7 Chapter end material 7

Bibliography 7

2.1 Introduction 8
2.2 The nature of software 8
2.3 Software as mathematics 10
2.4 Software as literature 14
2.5 Organic software 18
2.6 Software design as engineering 23
2.7 Putting the program in its place 27
2.8 User-centred design 33
2.9 The craft of program construction 35
2.10 Programmers’ programming 36
2.11 Living with ambiguity 37
2.12 Summary 38
2.13 Chapter end material 40

Bibliography 40

3.1 Introduction 43
3.2 Collaboration and imitation 43
3.3 Finishing 45
3.4 Tool building 45
3.5 Logbooks 46
3.6 The personal library 48
3.7 Chapter end material 50

Bibliography 50

1 Introduction

2 Fundamentals

3 The craft of software design

4.1 Introduction 51
4.2 The programming environment 52
4.3 Program shape, output, and the basic types 54
4.4 Variables and their types 59
4.5 Conditionals and compound statements 62
4.6 Loops 65
4.7 Random numbers, timing and an arithmetic game 67
4.8 Functions 70
4.9 Arrays and C-strings 74
4.10 Program example: A dice-rolling simulation 78
4.11 Bitwise operators 82
4.12 Pointers 84
4.13 Arrays of pointers and program arguments 89
4.14 Static and global variables 92
4.15 File input and output 93
4.16 Structures 97
4.17 Pointers to structures 100
4.18 Making the program more general 102
4.19 Loading structured data 104
4.20 Memory allocation 105
4.21 typedef 108
4.22 enum 108
4.23 Mechanisms that underlie the program 109
4.24 More on the C/C�� standard library 111
4.25 Chapter end material 114

Bibliography 114

5.1 The motivation for object-oriented programming 115
Objects localize information 115
In an object-oriented language, existing solutions

can be extended powerfully 117
5.2 Glossary of terms in object-oriented programming 119

Data structure 119
Abstract Data Type (ADT) 120
Class 121
Object 121
Method 122
Member function 122
Message 122
Base types and derived types 122
Inheritance 122
Polymorphism 122

5.3 C�� type definition, instantiation and using objects 123
Stack ADT example 123
Location ADT example 126
Vector ADT example 129

5.4 Overloading 132
Operator overloading 134

5.5 Building a String class 138
5.6 Derived types, inheritance and polymorphism 145

Locations and mountains example 145
Student marks example 151

vi Contents

5 Object-oriented programming
in C��

4 Beginning programming in C��

5.7 Exceptions 160
5.8 Templates 163
5.9 Streams 166
5.10 C�� and information localization 171
5.11 Chapter end material 171

Bibliography 171

6.1 Write fewer bugs! 172
6.2 Ten programming errors and how to avoid them 173

The invalid memory access error 174
The off-by-1 error 175
Incorrect initialization 176
Variable type errors 178
Loop errors 178
Incorrect code blocking 179
Returning a pointer or a reference to a local variable 180
Other problems with new and delete 181
Inadequate checking of input data 181
Different modules interpret shared items differently 183

6.3 Style for program clarity 184
File structure: a commentary introduction is essential 185
Explanatory structure: comment to reveal 185
Visual structure: make the program pretty 185
Verbal structure: make it possible to read

the code aloud 186
Logical structure: don’t be too clever 186
Replicated structure: kill the doppelgänger 187

6.4 Multifile program structure 187
6.5 A program that automatically generates a multifile

structure 188
6.6 Chapter end material 192

Bibliography 192

7.1 Structuring data 194
7.2 Memory usage and pointers 194
7.3 Linked lists 196
7.4 Data structures for text editing 197

Arrays 197
Arrays of pointers 197
Linked lists 198

7.5 Array/Linked list hybrids 203
Hash tables 204

7.6 Trees 205
7.7 Elementary abstract data types 210

ADT Ordered List 210
ADT stack 210
ADT queue 211
ADT priority queue 213

7.8 The ADT table – definition 216
7.9 Implementing the ADT table with an unordered array 217
7.10 Alternative implementations 220

Contents vii

6 Program style and structure

7 Data structures

7.11 Chapter end material 221
Bibliography 221

8.1 Introduction 222
8.2 Searching algorithms 222

Unordered linked list – sequential search 222
Unordered array – sequential search 223
Ordered array – binary search 223

8.3 Expressing the efficiency of an algorithm 224
8.4 Search algorithm analysis 225

Unordered linked list – sequential search 225
Unordered array – sequential search 225
Ordered array – binary search 226

8.5 Sorting algorithms and their efficiency 226
Selection sort 227
Insertion sort 227
Mergesort 229
Quicksort 230
Heapsort 232

8.6 Exploiting existing solutions 233

9.1 Introduction 235
9.2 Generic design methodologies 235
9.3 Reliable steps to a solution? –

a sceptical interlude 236
Brainstorming 237
Sceptical design for designers 239

9.4 Design methodology for software 239
9.5 Design team organization 240
9.6 Documentation 241
9.7 Chapter end material 242

Bibliography 242

10.1 Problems 244
10.2 The problem statement 245

Examples 246
Some solutions 248

10.3 Researching the problem domain 248
Library research 248
Getting information from the network 250

10.4 Understanding users 250
10.5 Documenting a specification 253
10.6 Chapter end material 254

Bibliography 254
Users and user interfaces 254

11.1 Introduction 255
11.2 Basic analysis 255
11.3 Experiment 256

Example 256
11.4 Prototyping and simulation 257
11.5 Notations and languages for developing designs 257
11.6 Dataflow diagrams 258

viii Contents

9 Design methodology

10 Understanding the problem

11 Researching possible solutions

8 Algorithms

11.7 Specifying event-driven systems 259
11.8 Table-driven finite state machines 259

Example 262
11.9 Statecharts 263

Basic statechart syntax 264
11.10 Using statecharts – a clock radio example 266

Problem statement 266
Understanding the problem domain 266
Developing and specifying a solution 267

11.11 State sketches – using state diagrams to understand
algorithms 268

Example: binary search 271
11.12 Chapter end material 274

Bibliography 274

12.1 Introduction 276
12.2 Top-down design 277
12.3 Information hiding 278
12.4 A modularization example 279
12.5 Modularizing from a statechart 280
12.6 Object-oriented modularization 282

Example 282
12.7 Documenting the modularization 284
12.8 Chapter end material 287

Bibliography 287

13.1 Introduction 288
13.2 Implementing from a higher-level representation 288
13.3 Implementing with data structures and algorithms:

rules of representation selection 291
13.4 The ADT table (again) 291

A specific implementation 292
Other scenarios and their implications 296

14.1 Introduction 298
14.2 Finding faults 298
14.3 Static analysis 300

Code inspection 301
14.4 Dynamic testing: (deterministic) black box test 302

Example 1 303
Example 2 303

14.5 Statistical black box testing 304
14.6 White box testing 305

Example 306
Difficulties with white box testing 306

14.7 Final words on testing for finding faults 307
14.8 Assessing performance 307
14.9 Testing to discover 308
14.10 Release 309
14.11 Chapter end material 309

Bibliography 309

Contents ix

12 Modularization

13 Detailed design and
implementation

14 Testing

15.1 Introduction to the case studies 310
15.2 Introduction to this chapter 310
15.3 Background 311
15.4 Why use median filtering? 311
15.5 The application 312
15.6 Approaching the problem 312
15.7 Rapid prototyping 313
15.8 Exploit existing solutions 316
15.9 Finishing 323

16.1 Numerical methods 329
16.2 The problem 331

Finding minima in 1D 331
Finding minima in multidimensions 331

16.3 Researching possible solutions 332
16.4 Nelder–Mead Simplex Optimization 334
16.5 Understanding the method with state sketches 335
16.6 Experiment-driven development 337

Basic working 337
Learning from experiments 338
Minimizing noisy functions 338

16.7 Program code 340

17.1 A perennial problem in data analysis 353
Collating one type of table into another type 353
Sifting and computing 353

17.2 Design approach 354
17.3 Rapid prototyping a framework 355
17.4 A quick fix 359
17.5 Reading and writing 359
17.6 Finding things 362
17.7 Matching the requirements 364
17.8 Generalizing stable to do more 366
17.9 Size flexibility 367
17.10 Yet more generality: using templates to store other

types in stable 367
17.11 A final program before refactoring 367
17.12 Refactoring 378

Appendix: Comparison of algorithms for standard
median filtering 398

Index 405

x Contents

16 Multidimensional minimization –
a case study in numerical
methods

17 stable – designing a string
table class

15 Case study: Median filtering

Preface

In 1990 I persuaded my colleagues in the Department of Systems
Design Engineering at the University of Waterloo to approve two
brave and exciting ideas. First, we’d upgrade all our boring old
MSDOS computers to NeXT machines. NeXT machines were black,
beautiful, and soon-to-be discontinued. We all enjoyed programming
them, so the cost in terms of obsolete software when we went back to
DOS/Windows computers must have been dozens of development-
years. My second, rather better, idea was to put a software design
course in our undergraduate programme.

Systems Design at Waterloo taught a wide-ranging curriculum in
engineering, with emphasis on systems theory and design, and our stu-
dents emerged as ‘superb generalists’. That was our claim, and the
careers of former students prove it was – and still is – true. But their
exposure to software amounted to an early programming course in
Pascal, then Matlab alongside Numerical Methods. In later courses they
might pick up FORTRAN or C. I argued for a course distilling the
insights of computer science (CS), without the depth of focused courses
in a full CS curriculum, but providing key methods and tools for
designing reliable, efficient, maintainable software. The new course
would be broad – from data structures to software engineering – but
selective, buttressed by a challenging, integrative software project.

I wanted to teach software design because I love to program, I’ve
done a lot of it on medium-sized industry projects, and I had something
to say about methodology. As an engineer I like systematic methodol-
ogy, but as a scientist I’ve been taught to look for evidence, and there
seemed to be surprisingly little evidence that the design processes and
techniques in software engineering are optimal. To convey a suitable
scepticism as well as give worthwhile advice and promote good practice
was a challenge I wanted to tackle.

The department approved a new core course in software design and
I taught it for the following five years. The framework of my lectures
and notes was: introduce with deduction, support with induction and
promote with abduction. First, the class would look at software from
a particular perspective, highlight the features that are prominent in
that way of seeing things, and deduce some rules for design (deduc-
tion). Next we’d review the experimental evidence testing those rules,
and in most cases supporting them, and demonstrate their application
in practical exercises (induction). Finally, I’d turn up the polemic,
using anecdote and the voice of experience to promote good practice,
and tales of doom of what happens when you neglect the rules.
(Abduction means reasoning by analogy from similar cases. It also
might mean kidnapping a person for a particular cause – in this case,
good software design.) This framework was, I thought, a refreshing

change from design approaches that merely tell you what to do and
don’t say why (maybe because they don’t know). But engineers can
only take so much scientific scepticism and balance. They want to get
on and make things, so the more searching inductive parts of the
course gradually gave way to added advice based on the collective
experience of programmers.

This book grew out of that course, and still reflects it. Chapter 2,
the book’s core, deduces principles and rules from nine perspectives
on what software is. Software Design for Engineers and Scientists is
unusual among books on software and programming in laying this
foundation. The chapters on applied software design include reflec-
tion on the empirical (inductive) evidence for how good methods
are. But the majority of the text is advice, supported inductively
and abductively by numerous examples. Much of this is straightfor-
ward information – on writing C�� or on the details of algorithms,
for example. But some advice is open to question, so I hope the book
also conveys how to challenge and test received ideas about software
design.

After I left Waterloo, I continued to develop the material that’s now
this book. It has been tried, tested, augmented and enhanced in courses
at Memorial University of Newfoundland, Canada, and the University
of York, UK. Numerous graduate students have learned software design
through it, and provided candid, valuable feedback. But the world of
software design has changed significantly since the early drafts. Three
important things have happened that affected the shape of the book:

Important thing number 1: The tension between programming as
craft and traditional software engineering has been sharpened by the
introduction and advocacy of development paradigms like Extreme
Programming and Agile Programming. Extreme Programming doesn’t
just challenge traditional assumptions, it overturns them. As a revolu-
tionary approach, it is promoted with confident, sometimes bellicose
rhetoric. But some of the big ideas of Extreme Programming are as
lacking in empirical support as those of traditional software engineer-
ing. There’s no shortage of anecdotes about cutting development time
and happy programmers, but controlled experiments on design method-
ology are so difficult to do that we really don’t know the true benefits
and costs yet. What’s needed is to identify, or at least suggest, the best
elements of the competing paradigms. This I try to do here; admit-
tedly not through controlled experiments, but as a practising pro-
grammer, I take all the advice I can get and test it on real projects.
This book shares what I’ve learned.

An aside: because it contains so many code examples in the con-
text of the whole software design process, this book could claim to be
the first Extreme Programming text that really gives code the status it
should have – at the centre. Unfortunately it can’t claim that, because
it doesn’t buy into the whole Extreme Programming package.

See page 2 for more on this controversy.

Important thing number 2: The rise of the web has meant that
students are increasingly familiar with getting computers to do what
they want via an artificial language. Although their practical exposure

xii Preface

may amount only to HTML tweaking, the upshot is they are able to
launch into learning a ‘difficult’ programming language like C++
without a prior, gentle, introduction to programming and computers
in general. Consequently any science or engineering student ought to
be able to use this book, even if they have not had a first programming
course. To ensure this is possible, the tutorial introduction to C++ in
Chapters 4 and 5 is selective, but at first gentle.

Important thing number 3: The programming language landscape has
changed. Java emerged in the mid-1990s and is dominant in many fields.
C# could be the language of the future, at least for Windows-based
applications. The language used for this book, C++, has been standard-
ized. This environmental change has affected both the text and the pro-
gram examples, and it has meant that I will be providing code in other
languages on the companion website. Chapter 4 includes some com-
ments about the trade-offs between languages and idioms (page 51).

The testimonials I’ve had from Waterloo students who still use their
course notes suggest that the original idea of software design for engi-
neers (and scientists) was a good one – perhaps even good enough to
compensate for the NeXT machine debacle. I think it still is.

Software Design for Engineers and Scientists explains how many dif-
ferent perspectives there are on what software is, and how we can learn
from them all. But there’s no doubt that the greatest benefit to a designer
comes from working with people who are better designers. I’ve been
lucky to work alongside some great programmers and learn from them.
Chronologically, rather than in order of importance (which I couldn’t
even estimate), these are the people who have left a permanent stamp on
my thinking and ability as a software designer: Jürgen Foldenauer, Tim
Dennis, Chris Toulson, Guy Vonderweidt, Charles Nahas, Lawrence Croft,
Michael Chambers, Jason Fischl, Steffen Lindner, Mehran Farimani,
Li-Te Cheng. Thank you all – wherever you are.

My Waterloo students had to provide feedback on the notes that
became this book. Among those writing helpful critiques, the most
important was Todd Veldhuizen, and I also learned a lot from Don
Bowman. Many graduate students read later drafts and provided their
corrections and comments. Thanks to my colleagues at Waterloo for
approving the software design course, particularly Ed Jernigan,
Shekar, and the TAs who were so encouraging about the course when
the project was driving the students (and us) mad.

Thanks to my colleagues in the Electrical and Computer Engineering
discipline at Memorial for providing the most supportive working
environment I’ve experienced: particularly (in the context of this
book) to Theo Norvell for letting me pontificate on software design
during his courses, and to John Quaicoe for wise management and
inspiring teaching quality.

Thanks to the staff and students of the Department of Electronics
at York, especially Stuart Porter and the students in Data Structures
and Algorithms who have experienced some of this book as it went
through yet more iterations.

Finally, my thanks to Gill, Luke and Stephen for everything else.

Preface xiii

Acknowledgements

Errors are my responsibility. If you find them I’d like to know, and I’ll
ensure that you’re acknowledged in any future edition. You can con-
tact me by writing to the publisher.

I’m happy to hear about any kind of error, from missing evidence
about the merits of a particular method, to program bugs. However,
there is one kind of code error that you don’t need to tell me about.

char buf[80];
cin >> buf;

probably is a bug, whereas

string buf;
cin >> buf;

probably isn’t. By the end of Chapter 6, all readers will know that.
But I’ve left things like the first example in Chapters 4 and 5 (suitably
flagged as bug-spotting exercises), because they are classic examples
of a programming error you must grapple with to be forearmed
against (see page 174).

xiv Preface

Errors

1 Introduction

This book is about:

� how to design good software
� how to program in C��
� data structures and algorithms
� scientific and engineering programming.

The book is modular but integrated. On its four themes it says both
less and more than specialized texts.

� Software design is not only a big subject, it’s also fast-changing and
controversial. Current debates include: traditional software engi-
neering versus extreme programming, UML versus ad hoc notation,
C�� versus Java versus C#. This book outlines the issues, summa-
rizes advice from both sides, then plumps for a particular approach
to show practical real examples. A lot gets left out. But by starting
with why we design software the way we do, the book doesn’t just
prescribe, it explains too.

� C�� is a big language now. Some people say the way to learn is
by full immersion in the standard library. We take a much more
modest and traditional approach. The book could, in principle,
have featured Java, C#, or some other language (but see page 51).
C�� is here, with a tutorial, because the essence of software is the
program code, so a book like this has to give a central place to real
programs in a real programming language.

� Data structures and algorithms are a fundamental and relatively
unchanging part of software design, so we need to talk about them,
giving lots of standard examples. But full coverage would demand a
full book and there are plenty of good ones already. We focus on how
the software designer uses data structures and algorithms to solve
practical problems.

� This book includes a few recipes for scientific programming: case
studies in Chapters 15 to 17, and examples of programs elsewhere
that might be useful for practical science and engineering applica-
tions. But I hope you’ll leave the book as a designer, not just with
more knowledge about particular applications. Indeed, one message
of the book is to treat recipes with care. Although Chapter 2 includes
the rule ‘Exploit existing solutions’, it also emphasizes that ‘Every
program has surprises’. Uncovering and understanding any surprises
in existing solutions, including other people’s software recipes, is a
vital skill.

The book’s overriding purpose is to help you to think and act as a
good software designer.

1.1 Theme

Computer programs manage society, enable every kind of telecommu-
nication, mediate almost all impersonal business tasks. In engineering
and science, they conduct experiments, analyse data, simulate complex
phenomena and control complex systems. Every engineer and scientist
can understand the way these programs are designed. Software Design
for Engineers and Scientists is written to explain how. It brings together
important ideas about what software is and how it is made, building
from fundamentals to principles and practices. It overviews all the
important aspects of software technology and the key steps in design.
It shows how to program well, design substantial pieces of software
correctly and efficiently, and apply the tools of computer science in an
effective way. It provides copious examples and exercises to help you
learn by doing. And if, having read it, you want to pursue further
directed learning in computer science, the book provides a broad and
reliable foundation for advanced software studies.

Software design also provides opportunities for creative problem
solving, elegant crafting, and the conversion of imaginative ideas into
real systems – it is stimulating and enjoyable, as well as important. As
author, I have to come clean and admit that I’m excited by the subject:
I enjoy writing programs and I want to make them as good as pos-
sible. I’m not in the business of trying to convert you, but I hope
you’ll capture at least some of the delight of software design through
this book!

In this book three terms appear many times: software design, software
engineering and programming.

Software design means everything to do with creating a computer
program for a particular purpose. It includes any needs analysis, speci-
fication, high-level and low-level design, modularization, coding (i.e.
writing a program in a programming language), integration, debug-
ging, testing, verification and validation, maintenance. It isn’t neces-
sary to worry about all those steps right now, just to know that software
design encompasses them. Now comes a terminological difficulty: the
term software engineering also includes all the steps, and, depending on
who you talk to, programming does too! There are differences of mean-
ing, but they aren’t always shared by different people. So here is an
explanation of how the three terms are used in this book.

Software design itself is a generic term with no implication about
scale or standards. It applies to the whole process of creating the small-
est ‘Hello, world’ program and to the whole process of creating a
20 million line operating system.

Software engineering means using systematic methodologies in
the design process. It emphasizes that the non-coding steps of design
become more important as the project gets larger and it draws on other
engineering disciplines (and management) for planning techniques,
processes, and standards that organize and control those steps. It also
applies to coding techniques that enforce good practice and protection
against errors. Software engineering takes the big picture and looks
inwards, with coding as just one step in the process.

Programming looks outwards from coding and sees planning,
specification, testing, etc. all through the lens of the program text. This

2 Software Design for Engineers and Scientists

1.2 Audience

1.3 Three definitions
and a controversy

is not to say that programming is just coding, but that is its core, and
many perspectives on programming use the coding process as the
organizing mechanism for all other parts of the design.

If this all seems a little abstract, let’s see how software engineering
and programming contrast. A ‘software engineer’ might criticize ‘pro-
gramming’ by saying that code-centric design does not put enough
emphasis on being defensive, allowing safety factors in performance
estimation, and considering the implications of specification changes.
For example, many books have been written on the analysis and design
of data structures and algorithms. But some forget to tell the reader the
most certain fact about a specification: it will change. (Chapter 13 of
this book demonstrates how completely proper reasoning from a speci-
fication to a data structure and algorithm implementation can be blown
apart by a minor change to the specification.) To a ‘software engineer’,
this sort of oversight typifies the danger of focusing on the code.

On the other hand, a ‘programmer’ might protest that some
approaches to software engineering neglect coding all together. At
best, they emphasize what a small part coding has in the total software
development task. At worst, they give the impression that the important
jobs in software system design can be done without knowing anything
of the code-writing dirty work. And yet the code is the final essential
product – the place where the difference between good and bad design
really counts.

Since the mid-1990s, programming has been challenging the trad-
itional software engineering view by providing, through methodolo-
gies like extreme programming, a framework for the design of big
systems in which the code is central. (This challenge could be seen as
redefining software engineering to encompass code-centric views, but
I am going to stick with using software engineering in the traditional
way.) Software engineering promotes systematic organization at every
level of a project, but now programming (bearing uncompromising
tags like extreme) is blatantly advocating design in ways that seem to
traditionalists chaotic and unmanageable. This book flags the major
tensions, and tries to find insights from both sides wherever possible.
Software engineering is made essential to programming by treating
modularization, data structure design and program style from a proj-
ect-wide problem-solving viewpoint. Programming is made essential
to software engineering by a high view of the code, summed up in the
‘textual principle’ that the essence of the software product is in the
source code text. Particular practices are compared, selected or rejected
on their own merits.

Software Design for Engineers and Scientists is pragmatic when it
comes to deciding between traditional software engineering and extreme
programming. But it does have an underlying view on the fundamen-
tals. The book is unusual in the central role it gives to a way of looking
at software pioneered by noted computer scientist, Fred Brooks. In the
April 1987 issue of IEEE Computer magazine, Brooks wrote an art-
icle which has become a classic of software design: ‘No silver bullet:
essence and accidents of software engineering’. Brooks said that to
find good strategies for designing software, we must first understand

Introduction 3

The Association for Computing
Machinery (the professional body
that represents programmers in the
USA and develops curriculum guide-
lines for computer science programs)
recommends that software engineer-
ing concepts be taught even in the
earliest programming courses. One
valuable consequence is an empha-
sis on good testing methods (which
everyone agrees are important). One
questionable consequence is the
early introduction of loop invariants,
which then tend to be forgotten (see
page 14).

The extreme programming FAQ at
www.jera.com/techinfo/xpfaq.html
gives a summary of the extreme phil-
osophy and methods.

1.4 Essential software design

what software really is. His own understanding of software’s essential
nature, and the implications for design, are summarized in the organic
software section of Chapter 2 (page 18). But the most important
insight of Brooks’ paper is that ‘How should we design software?’
only makes sense if we first ask ‘What is software?’ Brooks inspired
the underlying philosophy of this book: principles, rules, practices,
methods, application should all be built on an understanding of soft-
ware’s essential properties. This paradigm is called essential software
design – design that engages with the essence of software.

It turns out that there are many perspectives on what software is.
We will examine nine in detail. For each, we begin with an appropri-
ate definition for ‘program’, review the development of insights from
that perspective, and derive principles about the nature of software
and rules for its design. Although this approach does not identify a
single essence for software, it demarcates the subject. Everything that
comes after is built on this integrated understanding of the nature of soft-
ware. And where there are controversies about methods and design
choices, we refer back to the principles and rules to inform our decision.

The structure of the book is illustrated in Figure 1.1. The earlier chap-
ters are lower in the diagram because they form the foundation for
what comes after.

Foundations

Chapter 2 is the book’s foundation, where principles about the nature
of software and appropriate design rules are derived from nine differ-
ent perspectives. Some of the rules are about accelerating your develop-
ment as a software designer, and these are discussed in Chapter 3. The
rest of the book is about the construction of programs based on the two
legs of technology and application. Methods and practices are developed
based on the core set of principles and rules, which themselves rest on
the definitions or understandings of what software is.

4 Software Design for Engineers and Scientists

Objects, components, or
what?

One of Brookes’ arguments was that,
for all the hype, object-oriented pro-
gramming (OOP) is not a silver bullet –
it doesn’t change the essential prob-
lems of software design. Many people
disagree. OOP does two very import-
ant things: it provides a strong model
for modularity, and it allows old code to
call new code. These two mean that
OO code is reusable more effectively
than other kinds of code. But Brookes
is probably right: even together these
don’t make a silver bullet to slay the
software werewolf.

1.5 Outline of the book

Software
technology

Chapters 4–8

Programming in C��
Style and debugging

Data structures
Algorithms

Applied
software
design

Chapters 9–14

Design methodology
Understanding problems
Researching solutions

Modularization
Detailed design

TestingPerspectives on
software and

software design
Chapter 2

Programs
(Case studies: Chapters 15–17)

Practising
software design

Chapter 3
Principles and rules of software design

Chapter 2

Figure 1.1 Structure of the book

Software technology

One of the principles developed in Chapter 2 guides the book’s approach
to program examples. The choice of programming language is an acci-
dent rather than an essential of the design. But ‘The textual principle’
says that the program code (in whatever language it happens to be writ-
ten) is the essence of software. It would be contradictory therefore not to
have profuse code examples in a book on software design. And why not
give real programs in a real language? C�� is therefore introduced in
Chapters 4 and 5 and used heavily in examples thereafter. C�� was cho-
sen because of its wide availability and importance. Indeed, it is arguable
that another principle, ‘Embrace standards’, is served by using C��.

Chapters 4 and 5 provide a tutorial introduction to C��. They can
be used in front of a computer with a C�� compiler running, and the
compiler documentation at hand. They do not document all the details
of C��, and they are not big enough to be a complete survey, but
they will equip you to program intelligently in the language. Chapter
6 discusses program structure, style and debugging. In particular it
surveys the most common programming errors, and gives advice
about program clarity and how to split a program into files.

Chapters 7 and 8 are about low-level program design. Chapter 7
introduces elementary data structures, and by looking at Abstract Data
Type (ADT) implementation, raises the issues in choosing data struc-
tures and algorithms. To provide tools for analysing implementation
alternatives, Chapter 8 discusses algorithm analysis. On the way it gives
C�� implementations for popular searching and sorting algorithms.

Applied software design

Chapters 9 to 14 cover the steps in software problem solving. Chapter 9
introduces design methodology with generic design, and develops a
minimalist methodology for software. It includes overviews of design
team organization and documentation for medium-sized projects. It
also includes a sceptical critique of some solution generation methods,
to alert you to open questions in problem solving.

Chapter 10 is about defining and understanding problems. It gives
a simple recipe for writing a problem statement. The problem domain
is understood by background research. This is task specific but there
are some generally useful procedures that help in learning as much as
possible about the problem domain. The chapter includes material on
understanding human users, since they are the common element of
most major software systems.

Chapter 11 deals with researching possible solutions to problems.
It provides advice on quantitative analysis, experiment and simulation,
then introduces diagrammatic notation techniques. Concentrating
on state diagrams and statecharts, it shows how these characterize
event-driven systems economically, and lead to good event-driven
code. It also explains how state sketching can be useful in notating
and understanding ordinary algorithms and procedures.

Modularization is increasingly important as program size grows. The
treatment in Chapter 12 is founded on the principle of information
hiding, and applied to both medium-sized and small programs. It includes
discussion of object-oriented design and the use of state diagrams.

Introduction 5

Accident is used here in the tech-
nical sense of those attributes that
are not fundamental to a thing’s exist-
ence. Some people have felt that soft-
ware is just one big accident.That is a
different meaning of accident … and
probably not true.

Many of C��’s foremost practition-
ers advocate learning it in a way
that emphasizes the full range of its
standard capabilities. The kind of
C�� taught here is much closer to
the machine than that taught, for
example by Stroustrup and Deitel.
The reasons for this are discussed in
Chapter 4.

Chapter 13 on detailed design uses the insights developed in the
Technology Chapters (4–8) to show how higher level representations
(problem statement, specification, statechart, modularization descrip-
tion) can be turned into code. It includes discussion on ADT imple-
mentation and an example design illustrating how a good specification
can lend its structure directly to a program.

Chapter 14 discusses testing, both static and dynamic. Code inspec-
tion, white box and black box testing are included. The final section of
this chapter deals with the final section of the design methodology –
release of the product.

Case studies

Three case studies are included at the end of the book.
Chapter 15 considers a signal-processing application – median fil-

tering. Signal processing crops up in many data analysis applications,
and median filters are handy for signal conditioning and enhancement.
This is, however, a case study, not a recipe, and its purpose is to show
how the steps of design fit together in a practical example that is typical
of research computing.

The second case study in Chapter 16 tackles another scientific appli-
cation: multidimensional optimization. Again, we’ll see how the pro-
gram develops as the problem and the method are better understood.

The final case study (Chapter 17) illustrates the development of a
text table class that is useful for analysing the data output from experi-
ments or simulations but can also be used more generally for manipu-
lating textual databases. In this example, the growth of the program at
many stages is illustrated, showing the interplay of specification, coding
and testing. Some of the intermediate code presented contains bugs.
But the finished version is heavily tested and is believed to be bug free.

There are five different styles of presentation for textual material in
this book.

The running text in Times Roman font is tutorial. It is the backbone
that carries the other types of material.

Program examples are in Rockwell font like this and illustrate
the concepts being developed in the running text.

Some programs include line numbers like this:

1: // Null program to illustrate line numbering
2: int main() { return 0; }

The line numbers are not part of the text of the program.

6 Software Design for Engineers and Scientists

1.6 Presentation conventions

Table 1.1 An example table

Presentation type Purpose

Table To supplement the running text

⇒ An arrow symbol, located in the left-hand column of a table shows the most
used or most important cases. Not all tables have the arrow symbol column.

Bibliography

All sources alluded to in this chapter, including extreme programming
texts and Brooks’ Silver bullet paper are included in the references list
for Chapter 2.

Introduction 7

Exercises are shown in boxes like this one. They are placed with
the material they exercise. You are encouraged to do the exer-
cises as you go along. Outline solutions are sometimes given at
the ends of chapters.

A disaster

With the book deadline only weeks away, a research idea diverted me from its demanding, accusing, unfinished
chapters. Immediately I wanted to test a new extension of work I’d done just six months ago. So I pulled up the
programs to work out where to add new code. I scanned files, functions, class definitions and comments, written
by me, for work that I know intimately. After searching analysis, I expressed my understanding of the old code in
the following comprehensive thought: ‘What?’

Six months ago, just like today, I had a great idea and the important thing was implementing it and testing it.
In a flurry of creative activity, I did good science with a program that grew big, ugly and poorly documented. It was
fully comprehensible to me then, because it was growing under my hands, urgent and vital.Trouble is, six months
on, it’s unreadable.

I had no excuse. First, I’ve been writing programs for a long time, and some of my best are widely used, read
and even (among people who like that sort of thing) admired. But second, and more embarrassingly, I’d already
written (and taught) drafts of this book where I’d given lots of advice about designing software. If I’d heeded it, my
research code would have been much easier to read and modify.

How could I have avoided going wrong? This book will tell you. But with that kind of record, am I the right per-
son to offer advice? Strangely enough, yes. For although I’m responsible for the software disaster I’ve just con-
fessed, for ignoring my own best advice, I had followed other advice that allowed me to get my old code into
comprehensible, usable, shape in ninety minutes. Nothing to be proud of, but not that much of a disaster after all.

The advice I hadn’t followed was to do with finishing and documentation. But the advice I had followed was
systematic construction of test cases and logbook writing. I was able to decipher my old code by going through
the tests I developed and reading the contents of test logs against their timestamps. This allowed me to trace the
evolution of features and recall my thought processes.

Reasoning backwards from the results of testing is not the recommended way to interpret an old program. But
the moral is that even if we’re not the great programmers we could be all the time, good habits give us safety nets.
This book will not make you a perfect programmer, but will guide you towards habits and practices that, even
when you’re imperfect, like me, help you to be better.

1.7 Chapter end material

An explanatory principle or a design rule

A paragraph in Helvetica like this is a statement of a Principle
or a Rule.There are 13 principles and 21 rules, all developed in
Chapter 2. Later in the book, they are placed as flags to show

which principle is being developed or which rule applies.

