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PREFACE

Research Vessel Nathaniel B. Palmer

Southern Atlantic Ocean, 54� 470 S, 59� 150 W
On the Burdwood Banks

20 May 2004

Monte, Len, and I welcome you to two new volumes ofMethods in Cell Biology

devoted to The Zebrafish: Cellular and Developmental Biology and Genetics,

Genomics, and Informatics. In the five years since publication of the first pair of

volumes, The Zebrafish: Biology (Vol. 59) and The Zebrafish: Genetics and

Genomics (Vol. 60), revolutionary advances in techniques have greatly increased

the versatility of this system. At the Fifth Conference on Zebrafish Development

and Genetics, held at the University of Wisconsin in 2003, it was clear that many

new and compelling methods were maturing and justified the creation of the

present volumes. The zebrafish community responded enthusiastically to our

request for contributions, and we thank them for their tremendous efforts.

The new volumes present the post-2000 advances in molecular, cellular, and

embryological techniques (Vol. 76) and in genetic, genomic, and bioinformatic

methods (Vol. 77) for the zebrafish, Danio rerio. The latter volume also contains a

section devoted to critical infrastructure issues. Overlap with the prior volumes

has been minimized intentionally.

The first volume, Cellular and Developmental Biology, is divided into three

sections: Cell Biology, Developmental and Neural Biology, and Disease Models.

The first section focuses on microscopy and cell culture methodologies. New

microscopic modalities and fluorescent reporters are described, the cell cycle and

lipid metabolism in embryos are discussed, apoptosis assays are outlined, and the

isolation and culture of stem cells are presented. The second section covers

development of the nervous system, techniques for analysis of behavior and for

screening for behavioral mutants, and methods applicable to the study of major

organ systems. The volume concludes with a section on use of the zebrafish as a

model for several diseases.

The second volume, Genetics, Genomics, and Informatics, contains five sections:

Forward and Reverse Genetics, The Zebrafish Genome and Mapping Technol-

ogies, Transgenesis, Informatics and Comparative Genomics, and Infrastructure.

In the first, forward-genetic (insertional mutagenesis, maternal-effects screening),

reverse-genetic (antisense morpholino oligonucleotide and peptide nucleic acid

gene knockdown strategies, photoactivation of caged mRNAs), and hybrid

(target-selected screening for ENU-induced point mutations) technologies are

xix



described. Genetic applications of transposon-mediated transgenesis of zebrafish

are presented, and the status of the genetics and genomics of Medaka, the

honorary zebrafish, is updated. Section 2 covers the zebrafish genome project, the

cytogenetics of zebrafish chromosomes, several methods for mapping zebrafish

genes and mutations, and the recovery of mutated genes via positional cloning.

The third section presents multiple methods for transgenesis in zebrafish and

describes the application of nuclear transfer for cloning of zebrafish. Section 4

describes bioinformatic analysis of the zebrafish genome and of microarray data,

and emphasizes the importance of comparative analysis of genomes in gene

discovery and in the elucidation of gene regulatory elements. The final section

provides important, but difficult to find, information on small- and large-scale

infrastructure available to the zebrafish biologist.

The attentive reader will have noticed that this Preface was drafted by the first

editor, Bill Detrich, while he (I) was at sea leading the sub-Antarctic ICEFISH

Cruise (International Collaborative Expedition to collect and study Fish

Indigenous to Sub-antarctic Habitats; visit www.icefish.neu.edu). Wearing my

second biological hat, I study the adaptational biology of Antarctic fish and use

them as a system for comparative discovery of erythropoietic genes. Antarctic

fish embryos generally hatch after six months of development, and they reach

sexual maturity only after several years. Imagine attempting genetic studies on

these organisms! My point is that the zebrafish system and its many advantages

greatly inform my research on Antarctic fish, while at the same time I can move

genes discovered by study of the naturally evolved, but very unusual, phenotypes

of Antarctic fish into the zebrafish for functional analysis. We the editors

emphasize that comparative strategies applied to multiple organisms, including

the diverse fish taxa, are destined to play an increasing role in our understanding

of vertebrate development.

We wish to express our gratitude to the series editors, Leslie Wilson and Paul

Matsudaira, and the staff of Elsevier/Academic Press, especially Kristi Savino, for

their diligent help, great patience, and strong encouragement as we developed

these volumes.

H. William Detrich, III

Monte Westerfield

Leonard I. Zon

xx Preface



These volumes are dedicated to Jose Campos-Ortega and Nigel Holder,
departed colleagues whose wisdom and friendship will be missed

by the zebrafish community

xxi
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CHAPTER 1

Use of the DsRed Fluorescent Reporter
in Zebrafish

Hao Zhu and Leonard I. Zon
Division of Hematology/Oncology
Children’s Hospital of Boston
Department of Pediatrics and Howard Hughes Medical Institute
Harvard Medical School
Boston, Massachusetts 02115

I. Introduction
II. DsRed: History and Properties
III. DsRed in Transgenic Zebrafish
IV. Use of Multiple Fluorescent Reporters in Transplantation Assays
V. Fusion Protein Reporters
VI. Conclusion

References

Green fluorescent protein (GFP) is firmly established as a fluorescent reporter

for the imaging of specific tissues in zebrafish. The employment of other reporters

such as DsRed in transgenic zebrafish has made multicolored labeling experi-

ments possible. To date, several DsRed transgenic lines have been generated for

lineage labeling, transplantation assays, and commercial applications. Advances

in multicolored labeling experiments will depend on the implementation of newly

engineered reporters and fusion proteins, as well as on innovative experiments that

exploit the power of direct visualization.

I. Introduction

Since the mid-1990s, there has been an explosion in the number of GFP

expressing transgenic zebrafish lines reported in the literature. This is primar-

ily true because the ‘‘know-how’’ necessary to make transgenics has become

METHODS IN CELL BIOLOGY, VOL. 76
Copyright 2004, Elsevier Inc. All rights reserved. 3
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widespread. In addition, transgenic zebrafish can be used in a wide range of

experiments. As a testament to this, nearly every organ system is now represented

by tissue-specific GFP transgenic lines. The transgenic catalog is comprehensive,

and includes cardiac and skeletal muscle, pancreas, erythrocytes and lymphocytes,

vessels, alimentary canal, notochord/floor plate, and central nervous system neu-

rons (Goldman et al., 2001; Higashijima et al., 2000; Huang et al., 2001; Ju et al.,

1999; Lawson and Weinstein, 2002; Long et al., 1997; Motoike et al., 2000;

Udvadia et al., 2001).

Fluorescent proteins have been utilized successfully in mammalian systems, but

they are especially useful in the zebrafish. Zebrafish embryos develop ex vivo and

thus do not require unwieldy culture conditions for microscopic investigation.

Furthermore, zebrafish embryos and larvae are optically clear, enabling the

observation of even anatomically deep organs throughout the first month of

development. These developing tissues are thin enough that they can be penetrated

by laser confocal microscopy even in late developmental stages.

Zebrafish expressing fluorescent reporters under the control of constitutive

and tissue-specific promoters have been featured in a wide range of experiments.

Fluorescent labeling of a specific subset of cells makes it possible to isolate that

subpopulation for a variety of purposes. For instance, cells isolated by fluores-

cence activated cell sorting (FACS) can be transplanted and subsequently fol-

lowed in living hosts. These cell populations have also been used to generate

cDNA libraries and can potentially be used to establish cell lines. In many

situations, fluorescent protein expression in living embryos can replace whole-

mount in situ hybridization of fixed specimens. Manipulations of gene levels by

ectopic overexpression and morpholino-mediated knockdown experiments can

be assayed in fluorescent embryos, a strategy that permits visualization of mor-

phological or gene expression changes in living animals. GFP can also be used as

a sentinel marker in genetic or chemical screens. On the most fundamental

level, fluorescence allows us to see morphogenetic processes that were previously

invisible.

While most of these advances have been made using GFP, there have been

attempts to introduce other fluorescent proteins such as DsRed into the zebrafish,

as discussed in this chapter. The combinatorial use of these reporters allows the

visualization of multiple tissues with multiple colors, making an already powerful

cell biological and genetic system more vibrant.

II. DsRed: History and Properties

The introduction of GFP from Aequorea jellyfish in 1994 revolutionized cell

biology. The applications of GFP have ranged widely, from tracking gene expres-

sion and subcellular labeling to monkey transgenesis (Chan et al., 2001) and

transgenic artwork (Eduardo Kac’s ‘‘GFP Bunny’’), capturing the imagination

of the scientific and public worlds.

4 Hao Zhu and Leonard I. Zon



In an eVort to widen the spectrum of fluorescent proteins, DsRed (originally

designated drFP583) was one of several GFP homologs cloned from reef corals

(Matz et al., 1999). Though the protein is only 23% homologous to GFP, it has

several conserved residues in the vicinity of a virtually identical chromophore

(Yarbrough et al., 2001). With easily separable emission wavelengths of 509 and

583 nm, respectively, enhanced green fluorescent protein (EGFP) and DsRed are

suited for dual-color labeling with minimal crossover interference. The original

DsRed protein was mutagenized to yield a somewhat faster maturing and more

soluble variant that is oVered commercially as DsRed2 (Clontech Laboratories,

Inc., Palo Alto, CA).

GFP is an optimal genetic fusion tag because of its properties of fast matura-

tion, solubility, and existence as a monomer. In contrast, the obligate tetrameriza-

tion and slow maturation of DsRed posed formidable obstacles to its employment

in fusion protein and gene expression experiments (Baird et al., 2000). Also,

DsRed maintains high levels of fluorescence for long periods of time after it is

produced because of its high extinction coeYcient, a property that is both advan-

tageous and yet problematic for short-term gene expression applications. In our

experience with DsRed2 in zebrafish embryos, it is detectable approximately

12 hours after the initiation of transcription. As a consequence, we have not been

able to use DsRed for the observation or isolation of cells that have activated

DsRed transgene expression within a restricted time window. Because DsRed

exists predominantly as a stable homotetramer, attempts at using it as a genetic

fusion tag have failed. Fortunately, eVorts by several groups to develop faster

maturing, monomeric DsRed variants have led to the creation of mRFP1, a

rapidly maturing (detectable in less than 1 hr) monomeric red fluorescent protein

with excitation at 584 nm and emission at 607 nm (Campbell et al., 2002). Al-

though mRPF1 has a lower extinction coeYcient, quantum yield, and photo-

stability than DsRed, all of which results in lower signal intensity, it represents a

significant improvement over DsRed that can and will be further refined. The use

of mRFP1 in zebrafish has not yet been reported.

Even before DsRed was widely used in zebrafish for scientific purposes, DsRed

fluorescent zebrafish were marketed commercially as pets. These ‘‘GloFishTM,’’

originally designed to monitor environmental pollution (Knight, 2003), generated

considerable controversy because of the potential risks of releasing transgenic

animals into the environment. Nevertheless, GloFishTM catapulted zebrafish into

the national spotlight and, for better or worse, stretched the boundaries of utility

for fluorescent proteins in fish.

III. DsRed in Transgenic Zebrafish

To date, only a handful of transgenic lines have utilized fluorescent reporters

other than GFP. This may be attributed to the drawbacks of DsRed or a relative

lack of experience using reporters other than GFP in transgenesis. The earliest
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report of such use investigated the eYcacy of three fluorescent proteins for multi-

labeling in zebrafish (Finley et al., 2001). Single-, double-, or triple-labeled tran-

siently expressing embryos were produced by injecting GFP, blue-shifted GFP

variant (BFP), or DsRed DNA constructs. Finley et al. found that simultaneously

expressed fluorescent proteins could be detected independently within the same

cells, showing that it would be eVective to label zebrafish tissues with these

markers. Subsequently, this group generated germline transgenic lines that ubiq-

uitously express GFP, BFP, and DsRed in order to demonstrate that the Sleeping

Beauty transposase can enhance transgenesis eYciency (Davidson et al., 2003).

The first lines expressing DsRed or yellow-shifted GFP (YFP) under tissue-

specific control were made for ornamental and industrial purposes. Gong et al.

(2003) used a muscle-specific mylz2 promoter to drive GFP, YFP, and DsRed

expression in zebrafish. These fish were considered suitable for ornamentation

because the promoter drove such strong expression that fluorescence was visible

without the aid of ultraviolet (UV) light. The authors proposed that the fish might

also be used as a source of recombinant proteins because of the high levels of

protein production. Experimentally speaking, these and other commercially avail-

able lines might also function as markers in transplant or explant assays since

donor-derived cells with high levels of fluorescence would be easily identified.

Recently, the lmo2 promoter was used to create two transgenic lines,

Tg(lmo2:EGFP) and Tg(lmo2:DsRed) (Fig. 1A,B), which both exhibit embryonic

blood and endothelial expression (Zhu and Zon, unpublished data). To distin-

guish hematopoietic from vascular cell populations in living embryos,

Tg(lmo2:DsRed) was mated to Tg(fli1:EGFP), a line that labels endothelial cells

(Lawson and Weinstein, 2002). In these double transgenic embryos, the vascula-

ture was labeled with EGFP, while the vasculature and blood were labeled with

DsRed (Fig. 1C). Tg(lmo2:DsRed) was also mated to Tg(gata1:EGFP), an

erythrocyte-specific line (Long et al., 1997). Since erythroid progenitors and their

progeny coexpress gata1 and lmo2, these cells expressed both EGFP and DsRed in

this double transgenic embryo (Fig. 1D). Endothelial cells were DsRedþ/EGFP�,

and could thus be distinguished from fluorescent yellow erythroid cells that

expressed both proteins.

From these examples, several points can be made about the combinatorial use

of fluorescent proteins. First, an examination of Tg(lmo2:DsRed) in the back-

ground of GFP expressing vascular and erythroid transgenics demonstrates that

lineage-specific cells can be distinguished by fluorescent gene expression even if

they are morphologically indistinct. Second, it is theoretically possible to identify

or isolate cell populations that are marked by the overlap of gene expression

domains similar to a Venn diagram. Third, the interplay between cell types in

close physical association can be examined using time-lapse video microscopy. In

essence, the techniques that have been used to analyze the interactions between

subcellular components within individual cells can be translated onto whole

organisms.
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IV. Use of Multiple Fluorescent Reporters in
Transplantation Assays

Transplant and chimeric experiments in mice have traditionally taken advan-

tage of Y-chromosomes and the lacZ reporter to identify donor cells in recipients.

In zebrafish, it is preferable to employ fluorescent markers because they can

be used to identify donor-derived cells without sacrificing the recipients. Also

Fig. 1 Visualization of hematopoietic and vascular tissues using DsRed and EGFP transgenic

embryos. (A) In Tg(lmo2:DsRed) embryos (abbreviated LR), DsRed protein is initially detected at

20 hpf (inset); 2 dpf LR embryos labeling hematopoietic and endothelial cells in the ducts of Cuvier

(DofC). (B) Labeling of the vascular endothelial network of a 3 dpf LR embryo. (C) LR;

Tg(fli1:EGFP) embryos distinctly label hematopoietic (arrowheads) and endothelial cells (arrow) in 3

dpf embryos. (D) In LR; Tg(gata1:EGFP) transgenic embryos, green/red erythrocytes (arrowheads)

circulate through vessels (arrow) labeled by DsRed in 2 dpf embryos. (Zhu and Zon, unpublished data)

(See Color Insert.)
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consider that GFP or DsRed expressing tissues can be identified by immunohis-

tochemistry if, for example, visualization of deeper tissues is required. The lack of

cell-type specific surface antibodies in the zebrafish has made tissue-restricted

fluorescent markers important for the isolation of these subpopulations that

would be otherwise inaccessible. Another advantage of using fluorescent genetic

tags in zebrafish is that breeding multi-labeled animals is easy, making it possible

to devise and create sophisticated reagents in a relatively short amount of time.

Traver and colleagues (2003) pioneered the use of multicolored transgenic

zebrafish in the setting of hematopoietic cell transplantation. They used whole

kidney marrow (WKM), which is the primary site of adult hematopoiesis and

bone marrow equivalent in teleost fish, from double-labeled fluorescent fish

to follow multilineage, donor-derived hematopoiesis and early homing events

(Fig. 2A–D). Two transgenic lines were used to independently label erythro-

cytes and leukocytes. The first line, Tg(gata1:DsRed), expresses DsRed under

the control of the gata1 promoter and marks the erythroid lineage over an

animal’s lifetime (Long et al., 1997; Traver et al., 2003). The second,

Tg(�-acting:EGFP), expresses GFP in virtually all blood lineages except ery-

throid, and was used to mark myeloid, precursor, and lymphoid cells. WKM

was collected from Tg(gata1:DsRed); Tg(�-actin:EGFP) double transgenic

adults and injected into the circulation of wild-type embryos, resulting in the

appearance of DsRed or GFP positive cells in the hosts. The red fluorescent cells

were erythrocytes. Two morphologically distinct types of green fluorescent

cells, seen rolling along vessel lumens, were likely lymphocytes and myelomono-

cytic cells. GFP expressing cells also homed to the sites of the developing thymus

and kidney, whereas DsRed cells were only seen in circulation, suggesting that

the GFP fraction contains lymphocyte and progenitor cells. A single fluores-

cent marker, GFP, was able to resolve two distinct cell types by outlining the

shape of small round cells, identified as lymphocytes, and amoeboid cells with

pseudopodia, identified as myelomonocytic cells.

The double transgenic kidney marrow was also transplanted into vlad tepes (vlt),

a gata1�/� mutant lacking erythrocytes (Lyons et al., 2002), and bloodless (bls), a

mutant with an absence of primitive blood cells (Fig. 2B–D) (Liao et al., 2002).

While transplantation into vlt resulted in robust reconstitution of DsRed erythro-

cytes, the reconstitution of GFPþ leukocytes occurred at levels comparable to the

wild-type recipient setting. In bls, the appearance of both DsRedþ erythrocytes

and GFPþ cells in the developing thymus and pronephros was fast and robust,

suggesting that there was a relative lack of competing host cells during the first few

days of bls development. In this context, the independent labeling of two cell types

with diVerent colors helped to resolve the diVerences in engraftment kinetics

between two mutant recipients. These results demonstrate an elegant way to

identify donor cell types in the context of living transplant recipients. This type

of experiment provides a bird’s eye view of post transplantation hematopoietic cell

homing, proliferation, and diVerentiation, a view that is impossible to obtain in

any other system.
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Fig. 2 Use of multiple fluorescent reporters in transplantation assays. Left panel: Transplantation of whole kidney marrow from double transgenic

donors allows independent visualization of leukocytes and erythrocytes in recipient embryos. (A) Scatter profile of ungated WKM in a representative

Tg(gata1:DsRed); Tg(�-actin:EGFP) double transgenic adult (left). DsRedþ cells were contained only within the erythrocyte gate (middle), whereas

GFPþ cells were non-erythroid (right). (B–C) Transplantation of 48 hpf recipients showed transient reconstitution of donor-derived erythrocytes and

leukocytes. (B) Visualization of the tail vessels in a gata1�/� transplant recipient showed a slow-moving, round leukocyte (arrowhead), a larger leukocyte

displaying an end-over-end tumbling migration (arrow), and a rapidly circulating erythrocyte (red arrowhead) at 1 day post-transplantation. Each frame is

separated by 300ms (20� magnification, anterior to the left). (C)Dorsal views comparing untransplanted (upper) and transplanted bloodless (bls) recipients

(lower). bls recipients showed rapid and robust engraftment of the pronephros (arrows) and bilateral thymi (arrowheads) by GFPþ leukocytes by day 5

post-transplantation. Asterisks denote autofluorescence of the eyes and swim bladder in the DsRed channel. (D) bls recipients display sustained, multilineage

hematopoiesis from donor-derived cells.Upper panel shows robust reconstitution of DsRedþ erythrocytes (red arrowheads) and GFPþ leukocytes (white

arrowhead) as observed in the dermal capillaries of a bloodless recipient at 8 weeks post-transplantation. Lower panel shows similar multilineage

reconstitution as observed in the tail capillaries of another bls recipient at 8 weeks (20� magnification). From Traver et al., 2003.

Right Panel: Transplantation of primitive wave hematopoietic progenitors fromTg(lmo2:EGFP) embryos into vlad tepes (vlt) recipients. (E) The EGFP

expressing population from 10–12 somite Tg(lmo2:EGFP); Tg(gata1:DsRed) transgenic embryos were isolated by FACS and transplanted into 48 hpf vlt

embryos. One day post transplantation, circulating donor-derived cells could be identified by DsRed and EGFP fluorescence (arrowhead points to GFPþ
circulating cell). By 3 days post transplantation, most circulating cells were DsRedþ, suggesting that the EGFPþ donor progenitors had diVerentiated into

Gata1þ erythrocytes. One month after transplantation, each of the surviving recipients carried approximately 10–200 DsRedþ circulating cells

(arrowheads). (Zhu and Zon, unpublished data.) (See Color Insert.)



The transplantation of fluorescently labeled cells can also be used to assay the

cell fate of a specific population. For example, the Tg(gata1:DsRed) fish were

used to evaluate lmo2 and EGFP expressing primitive hematopoietic progenitors

(Zhu and Zon, unpublished data). In this experiment, EGFPþ donor cells were

FACS sorted from 10- to 12-somite staged Tg(lmo2:EGFP); Tg(gata1:DsRed)

embryos and injected into the circulation of 48 hpf vlt embryos that normally die

within 14 days (Fig. 2E). One day after transplantation, circulating donor-derived

erythrocytes could be identified by DsRed and EGFP fluorescence (Fig. 2E). By

three days post transplantation, few EGFPþ circulating cells were present and

virtually all observable fluorescence was in the DsRed channel, suggesting that the

EGFP+ donor progenitors had diVerentiated into Gata1/DsRed expressing ery-

throcytes. One month after transplantation, surviving fish contained between 10

and 200 DsRedþ circulating cells. This transplantation experiment showed that

donor-derived primitive wave hematopoietic cells and their progeny could be

detected in the circulation of vlt recipients for more than one month. This experi-

ment demonstrated how one fluorescent label can be used for donor isolation,

while another can be used as a marker of donor cells. It follows that the inclusion

of even more reporters within a single transgenic animal will increase the versatility

of possible experiments.

V. Fusion Protein Reporters

The number of novel fluorescent proteins is rapidly increasing. Thus, a thor-

ough account of these developments is beyond the scope of this chapter. In

addition to novel fluorescent proteins, fluorescent fusion proteins that label sub-

cellular structures are being applied to fish. The first example was a transgenic line

that labels cell nuclei with a histone-GFP fusion protein (Pauls et al., 2001). It is

only a matter of time before the tools that had been developed for other animal

models are transferred to zebrafish. In Drosophila, GFP fused to the C-terminal

end of moesin, a protein that localizes to the cortical actin-cytoskeleton, has been

used for the analysis of cell shape changes during morphogenesis (Edwards et al.,

1997). GFP-moesin can potentially be used in zebrafish in order to analyze cell

shape changes in processes that have specific relevance to vertebrate organogene-

sis. Now that red fluorescent fusion proteins can be made using mRFP1, multiple

subcellular components can be labeled with several colors in the context of the

whole organism.

Fluorescent fusion proteins have also played a role in zebrafish disease models.

Recently, a zebrafish model of T-cell acute lymphoblastic leukemia was made by

driving the expression of a mouse c-Myc-GFP fusion transgene under the control

of the zebrafish Rag2 promoter (Langenau et al., 2003). The GFP fusion protein

was integral in showing that the leukemia arose in the thymus and spread to the

gills, retroorbital soft tissue, skeletal muscle and abdominal organs. In this leuke-

mia model, it would be advantageous to ectopically express other genes that can
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