
Networking and Internetworking
with Microcontrollers

By Fred Eady

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Networking and Internetworking
with Microcontrollers

Newnes is an imprint of Elsevier
200 Wheeler Road, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department
in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining
Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books
on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

 (Application submitted.)

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 0-7506-7698-1

For information on all Newnes publications
visit our website at www.newnespress.com

03 04 05 06 07 08 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Contents

v

Preface ... ix

A Quick Look at the Microcontrollers .. x
Atmel’s AVR ... x
Microchip’s PIC ... xii

What’s on the CD-ROM? .. xvi

Chapter 1: The Essence of Microcontroller Networking—RS-232 1

Some History .. 3
RS-232 Standard Operating Procedure .. 5
RS-232 Voltage Conversion Considerations ... 8

Chapter 2: Implementing RS-232 with a Microcontroller 11

Basic RS-232 Hardware .. 11
Building a Simple Microcontroller RS-232 Transceiver .. 14

RS-232 Interface Hardware .. 15
A Microcontroller DCE Device .. 16
Microchip’s PICkit 1 FLASH Starter Kit .. 16
Writing Some Simple RS-232 Firmware .. 20
A Bit of RS-232 Transmit Code ... 27
Some RS-232 Receive Code ... 32

Chapter 3: Writing RS-232 Microcontroller Routines in BASIC 37

BASIC RS-232 .. 37

Chapter 4: Building Some RS-232 Communications Hardware 43

A Few More BASIC RS-232 Instructions .. 43

vi

Contents

Chapter 5: Using Microcontroller USARTs ... 47

Some Interrupt-Driven USART Code ... 50
Applying What We Know about RS-232 to the Atmel AVR ... 70

Coding the AVR RS-232 Routines ... 73

Chapter 6: I2C…The Other Serial Protocol ... 81

Why use I²C? ... 83
The I²C bus .. 83

I²C ACKS and NAKS .. 86
More on Arbitration and Clock Synchronization ... 87
I²C Addressing ... 91
Some I²C Firmware .. 91
The AVR Master I²C Code .. 92
The AVR I²C Master-Receiver Mode Code .. 97
The PIC I²C Slave-Transmitter Mode Code .. 99
The AVR-to-PIC I²C Communications Ball ... 105

Chapter 7: Ethernet ... 121

What is Ethernet? .. 121
The CS8900A-CQ .. 122

CS8900A-CQ Reset Overview .. 123
CS8900A-CQ Media Interface Overview .. 123
CS8900A-CQ Transmit Process Overview ... 123
CS8900A-CQ Receive Process Overview ... 124
CS8900A-CQ External Storage Overview ... 125
CS8900A-CQ Status Indicators ... 126
The CS8900A-CQ MAC Engine .. 126

Easy Ethernet CS8900A Hardware .. 130
The PIC16F877 Microcontroller .. 130
The Microchip PIC18F452 .. 131

The CS8900A-CQ Ethernet Engine ... 131
Powering the CS8900A-CQ .. 132
The CS8900A-CQ Ethernet Magnetics .. 132
Designing in the Easy Ethernet CS8900A’s PIC16F877 Microcontroller 135
The ICSP (In-Circuit Serial Programming) Interface .. 136
Developing the Easy Ethernet CS8900A Firmware .. 139
Setting up the PIC16F877 Microcontroller ... 141
Carving up the PIC16F877’s Memory Resources .. 143

Function Prototypes ... 143
Defining the Variables .. 144

The Easy Ethernet CS8900A Macros ... 151
Defining the CS8900A-CQ PacketPage Register Set .. 156

CS8900A-CQ Bus Interface Registers ... 158
Product Identification Code .. 158

vii

Contents

CS8900A-CQ Status and Control Registers ... 159
Did It Register? .. 172

Chapter 8: Writing the CS8900A-CQ Firmware .. 173

The First Step ... 174
Reset the CS8900A-CQ .. 175
Load the CS8900A-CQ Basic Parameters .. 176
Load the CS8900A-CQ Individual Address Register Set ... 178
Enable the CS8900A-CQ Transmitter and Receiver .. 179
The Main Service Loop ... 180
A Frame Under the Microscope .. 182
The Art of ARP ... 189

Chapter 9: PINGing the Easy Ethernet CS8900A... 203

Chapter 10: UDP and the Easy Ethernet CS8900A.. 221

A UDP Internet Test Panel ... 223

Chapter 11: TCP and the Easy Ethernet CS8900A... 239

The Physical Layer .. 241
The Data Link Layer .. 241
The Network Layer ... 242
The Transport Layer .. 242
The Application Layer ... 242
Coding TCP/IP for the Easy Ethernet CS8900A ... 244

Chapter 12: Let’s Do It Again.. 293

Easy Ethernet Whacked??? What the…? ... 293
The Realtek RTL8019AS ... 294
The Easy Ethernet W Hardware .. 302
The Easy Ethernet W Firmware ... 304
Initializing the Realtek RTL8019AS .. 307
Online with the Easy Ethernet W .. 324
Sending a Frame using the Easy Ethernet W ... 327
Tools for Work and Play .. 331

Chapter 13: Putting the Easy Ethernet AVR Online ... 337

Chapter 14: Finale ... 347

Obtaining Easy Ethernet Devices ... 348

About the Author .. 349
Index ... 351

Preface

ix

There are lots of philosophical things I could say here. However, I don’t claim to be a phi-
losopher or a poet. My days are spent designing microcontroller hardware, writing code to
drive that hardware and then writing about my adventures.

This book is a mean-business document designed to give you the knowledge needed to
network microcontroller-based devices successfully. Before you turn the last page of this
book, you’ll know how to integrate RS-232, I²C and Ethernet into a network device that can
be used to communicate via LAN, WAN or Internet. In addition to the knowledge you will
gain building the network devices, you’ll also walk away with in-depth knowledge of how the
code within those network devices works.

Our microcontroller-based network devices will be fabricated using microcontrollers from
Atmel and Microchip. To maintain consistency at the coding level, I’ll use ImageCraft’s
ICCAVR Pro C Compiler for the Atmel parts and Custom Computer Service’s CCS PIC C
Compiler for the PIC parts. Both of these C compilers are moderately priced and easily
obtainable via the Internet. You should be able to easily port the C source code from any
project in this book to other variants of C.

Our networking adventure will begin with RS-232. We’ll build on what we learn in the
RS-232 sections and ultimately implement both an I²C-bus and an Ethernet interface. No bit
will be left unturned. What you don’t see in the pages of this book can be found on the
companion CD-ROM. There’s also a support web site (http://www.edtp.com) where you can
get technical support and purchase parts, kits and assembled units that are discussed in this
book.

Both Atmel and Microchip provide a free IDE that you can get for a download from their
respective web sites. I’ll use Atmel’s AVR Studio and Microchip’s MPLAB exclusively when
working with these microcontrollers. To provide an extra layer of visibility into the
microcontrollers, I’ll employ the services of a Microchip MPLAB ICE 2000, a Microchip
MPLAB ICD 2 and an Atmel AVR JTAG ICE. On the networking side, I’ll use a Network
Associates Sniffer to show you what’s inside the Ethernet packets.

x

Preface

OK…now that you know what this book is about, let’s go build some microcontroller-
based network devices.

A Quick Look at the Microcontrollers
Atmel’s AVR
The Atmel AVR is a very capable and highly networkable microcontroller. There are a
number of AVR families, which include the standard AVR line, a low-power AVR
microcontroller set, the tinyAVR family and the ATmega AVR microcontrollers. I’ve chosen
to concentrate on networking the ATmega AVR microcontrollers for a number of reasons.
Many of the legacy AVRs are being replaced by faster and more powerful ATmega AVRs. For
instance, the ATmega16 has replaced the ATmega163 and the ATmega32 has shoved the
ATmega323 out. In addition to added functionality, the AVR upgrades fix bugs found in the
older silicon they are replacing.

I’m not going to get into internal differences found in the AVR versus other
microcontrollers that could be called AVR peers. That’s what datasheets are for. However, I
will give you my reasons for employing the ATmega AVRs as microcontrollers in network
devices. The ATmega AVRs that I will network all have a maximum clock speed of 16 MHz.
That may not sound “fast,” but the ATmega AVRs execute most instructions in a single cycle
and thus are capable of producing 16 MIPS with a 16MHz clock. Basically, the number in
the name of a ATmega AVR represents the amount of program Flash in kilobytes. The
ATmega16 contains 16K of program Flash while an ATmega32 has 32K words of program
flash. The largest ATmega AVR, the ATmega128, contains 128K of program Flash memory.
The large portions of program memory are supplemented by big slices of SRAM. The
ATmega16 is loaded with 1K of SRAM and the ATmega32 SRAM area doubles the
ATmega16 SRAM capacity. Even the ATmega8, the smallest of the ATmega AVRs, has 1K of
SRAM. Applying the logic to the rest of the ATmega AVR family reveals the ATmega64,
ATmega128 and ATmega8 with 64K, 128K and 8K of program Flash memory, respectively. I
think you can see why I’ve decided to go with Atmel’s ATmega AVR line as far as network-
ing is concerned. The high speed and large program Flash memory areas coupled with ample
SRAM and EEPROM memory make the ATmega AVR microcontroller a good choice for
networking projects.

Atmel’s AVR can be obtained from many of the mail order electronic part distributors.
AVRs are reasonably priced and come with a tub full of goodies just right for networking.
Two 8-bit timers and a 16-bit timer allow the creation of precision delays while an on-chip
USART (Universal Synchronous Asynchronous Receiver Transmitter) takes care of the
housekeeping chores needed to effect the RS-232 serial protocol. Twenty-one interrupt
vectors cover all of the AVR’s networking components including the two-wire interface
(Atmel’s name for I2C), the SPI subsystem and the USART.

xi

Preface

The AVR USART

The ATmega AVR USART is capable of full duplex operation. Like most every other USART
in existence, the ATmega AVRs USART supports 5, 6, 7, 8 or 9 data bits plus the standard 1
or 2 stop bits. The USART baud rate generator for the Atmel ATmega AVR is an integral part
of the USART hardware. A typical Atmel USART is depicted in the block diagram you see
inside Figure 1. All ATmega AVRs contain a USART and the ATmega128 is equipped with a
pair of USARTs.

UBRR[H:L]

BAUD RATE GENERATOR

PIN
CONTROL

TX CONTROL

PARITY
GENERATOR

CLOCK RECOVERY

DATA RECOVERY

PARITY CHECKER

RX CONTROL

PIN
CONTROL

XCK

TXD

RXD

UCSRA UCSRB USCRC

SYNC LOGIC

OSC

UDR (TRANSMIT)

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER

UDR (RECEIVE)

PIN
CONTROL

D
A

T
A

 B
U

S

Clock Generator

Transmitter

Receiver

AVR USART

Figure 1

Atmel USARTs allow the ATmega AVRs to enter MPCM (Multi-processor Communica-
tion Mode). This mode of operation uses addressing to allow multiple processors to
communicate over the same serial bus. MPCM uses the 9-bit character frame format in
conjunction with the master/slave paradigm.

The Two-wire Serial Interface

In the Atmel world, I2C is known as TWI, or Two-wire Interface. Other than a name change,
TWI looks like and smells like I2C. 128 devices can hang on the two-wire bus and are
addressed using the standard I2C 7-bit addressing scheme. Master and slave operation is
supported at speeds of up to 400 kHz. To help fight false triggering due to noise, the Atmel
TWI module includes noise suppression circuitry. You can even wake up the AVR from sleep
with a TWI.

Programming the ATmega AVR

Loading code into an ATmega AVR device is a breeze. There are many ways to accomplish
this. There’s the AVR ISP (In-System Programmer) programming module that costs less than
$40 and hooks up to a personal computer’s serial port. Or, AVR programming can be done
with the STK500 development board. ATmega AVRs with 16K or more of program memory
also support a JTAG interface, which can be used for programming the ATmega AVR pro-
gram Flash. No matter how you decide to load the code into your ATmega AVR, AVR Studio
supports all of the programming devices I’ve mentioned. AVR Studio is Atmel’s front-end
IDE software that runs on a personal computer.

I’ll complement AVR Studio with ImageCraft’s ICCAVR Pro C Compiler. ICCAVR Pro
is a true ANSI-based C compiler for the ATmega AVR. I particularly like the code generator
and the AVR calculator features of ICCAVR Pro.

Emulating the ATmega AVR

At the helm of emulation for AVRs is AVR Studio. AVR Studio interfaces to the many AVR
emulation devices. In this text, the emulation device of choice is the AVR JTAG ICE. The
AVR JTAG ICE communicates with an on-chip debug module embedded within the target
AVR. The OCD (On-Chip Debugger) module in the ATmega AVRs eliminates the need for a
special bondout emulation device.

Microchip’s PIC
Most PIC microcontrollers have everything one would need to effect a network application.
Larger PICs have on-chip UARTS and USARTS for synchronous and asynchronous commu-
nications using the RS-232 protocol. A software UART function can also be implemented for
the smaller PICs that don’t have the sophistication of a built-in UART or USART module.

In networking, timing is everything. Up to three internal timers can be had on larger PIC
devices. Even the tiny 8-pin PIC12F675 has an 8-bit and a 16-bit timer. The timers can be
used for generating precision millisecond and microsecond delays or the time of day.

Fortunately, the CCS C Compiler for PIC and its native PIC peripheral routines makes it very
easy to assemble a working RS-232 PIC application. In fact, CCS C also has hooks for I2C. The
Microchip PIC family complements the CCS C peripheral routines by providing ample Flash
memory for program code, scratch pad SRAM and user data storage. The more SRAM the
better when it comes to creating buffer areas for interrupt-driven communications applications.

xii

Preface

All of our network coding and hardware design and fabrication time will be spent dealing
with the Flash-based series of the Microchip PIC family. I’ve chosen to work with the Flash-
based parts because they’re inexpensive and easily obtained and don’t require the support
hardware a standard windowed PIC needs. For instance, using Flash devices eliminates the
need for an ultraviolet EPROM eraser. And, since Flash parts can be programmed and
reprogrammed in-circuit using ICSP (In-Circuit Serial Programming), fewer microcontroller
parts are needed in the development cycle since there is no need to rotate a number of parts
through the ultraviolet eraser while you’re debugging your code.

For the purposes of networking, I’ve selected the largest part in the PIC16F87X crew, the
PIC16F877. The PIC16F877 can operate with a 20 MHz clock, which gives an instruction
cycle of 200 nsec. There are 8K words of program Flash and 368 bytes of SRAM or data
memory inside a PIC16F877. Should we decide it’s necessary, there is also a block of 256
bytes of EEPROM available for storing constants or whatever else we decide is important to
keep even after the power is removed from the part. As we move into putting an RS-232
serial port together on a PIC, you’ll see how important interrupts are when it comes to
microcontrollers like the PIC. The PIC16F877 can be interrupted in 15 different ways.

I/O pins are also very important in a networking application. Not only do we need enough I/O
to perform tasks like monitoring a voltage or turning an external device on or off, there have
to be some I/O pins dedicated to the networking task. For instance, a simple micro- controller
Ethernet driver application requires at least 16 I/O pins alone. The PIC16F877 has 33 I/O lines
we can put to work, which leaves some I/O for things that microcontroller do best—control.

The PIC16F877 offers quite a bit of functionality for things other than effecting networking.
However, I’m primarily concerned with giving you the ability to network the PIC16F877.
With that, let’s start with a look at one of my favorite networking modules, the PIC16F877
USART.

The PIC16F877 USART

USART is short for Universal Synchronous/Asynchronous Receiver/Transmitter. On the
PIC, the USART is also called the SCI or Serial Communications Interface. You probably
have heard the word UART (Universal Asynchronous Receiver/Transmitter) as for many
years that was the only IC used by serial ports in personal computers. Some of today’s
microcontrollers sport UARTs instead of USARTs.

The PIC16F877 USART takes much of the pain away when it’s required to communicate
with other serial-based devices. Instead of writing timing routines to produce a specific baud
rate, the PIC16F877 USART baud rate is generated by an internal baud rate generator. With a
USART or UART, it’s not necessary to code routines to look for incoming start bits or time
the inter-bit distances to pick up the incoming data. All of that work is done within the USART
itself. A USART makes it possible to communicate with other serial devices in full-duplex or
half-duplex mode. Full-duplex mode allows communications to flow in both receive and
transmit directions simultaneously between two serial devices. Half-duplex mode only allows
one device to transmit at a time while the other device listens.

xiii

Preface

The PIC16F877 MSSP Module

MSSP, or Master Synchronous Serial Port, is yet another PIC16F877 communications
subsystem. The MSSP is a serial interface used to bring I2C applications to life. Like the
USART, the MSSP is a register and status bit-oriented module.

I2C uses six MSSP registers for control, status and buffering. Two PIC16F877 I/O pins
are dedicated to I2C, RC3 for SCL (clock) and RC4 for SDA (data). Like the USART’s
synchronous function, I2C is a master/slave communications configuration. Figure 4 is a
graphic example of how the MSSP allocates the registers, I/O pins and buffers for I2C
operation.

I2C is a Philips invention that was designed as a clever way to allow integrated circuits in
television sets and stereo rigs to talk to each other. We’ll cover I2C as it pertains to PIC
microcontrollers thoroughly in this book. Thanks to Philips, there are hundreds of I2C-
capable devices for us to play with from various manufacturers.

The PIC16F877 lends itself to oddball networking solutions. Using the PIC16F877
precision timers, we can put together a homebrew protocol and bit bang between devices. For
instance, in the past I once coded a PIC application that required the PIC to clock data to and
from a personal computer’s parallel port pin. In addition, in the early days of PIC there were
no UARTs or USARTs on the 18-pin PIC16C5X microcontrollers. Therefore, I had to code a
“software” UART to emulate the task that today’s hardware USARTs perform. You’ll find
that the software UART is still a good thing to have in your coding toolbox when designing
networking and communications applications with the tiny USART-less 8-pin PICs.

The PIC18F452

Another PIC device I’ll base networking code on in this book is the PIC18F452. The
PIC18F452 is pin-compatible with the PIC16F877. The PIC18F452 is loaded with 16K of
on-chip program memory backed up by 1.5K of SRAM. This makes the PIC18F452 a
candidate for Ethernet LAN applications. In addition to the increased internal memory area,
the PIC18F452 can run twice as fast as the PIC16F877 (40 MHz). All of the PIC16F877
communications peripherals we talked about earlier operate in the same manner on the
PIC18F452 and the CCS PIC C Compiler has the capability to generate code for them as
well.

The PIC12F675

Sometimes it’s more fun to push an economy car to its limits and not drive that performance
hot rod with all of the bells and whistles. That’s how I feel about the little 8-pin PIC12F675.
In comparison, it’s as tiny physically as it is logically. The PIC12F675 only has 1K words of
program Flash and 64 bytes of SRAM. There are only six I/O pins but inside the PIC12F675
you’ll find a couple of timers, an A/D (Analog to Digital) converter and a comparator. Like
the big guys, there is on-chip EEPROM but only 128 bytes of it. With some tricky coding,
we’ll make the tiny PIC do RS-232 with the best of them.

xiv

Preface

xv

Programming the PIC

The Flash-based PICs that will be featured in this book are all programmed using the ICSP
(In-Circuit Serial Programming) method. As this book is focused on microcontroller commu-
nications and networking, I won’t offer up any made-in-the-garage PIC programming
hardware or software. I’m going to stick to the Microchip factory programmers and software.
You can use the Microchip MPLAB ICD 2 (In-Circuit Debugger) or the Microchip PRO
MATE II for programming the PIC Flash parts.

Emulating the PIC

The Microchip MPLAB ICD 2 and the MPLAB ICE 2000 will be used to debug and display
the inner-workings of the PIC code that will be presented in this book. I’ll be able to show
you all of the code, internal registers and memory areas using the Microchip MPLAB ICE
2000 PIC emulator system. Like the CCS C Compiler and the Microchip PRO MATE II
device programmer, the MPLAB ICE 2000 and Microchip MPLAB ICD 2 are natively
supported by Microchip’s MPLAB. The merger of the Microchip PRO MATE II, the Micro-
chip MPLAB ICE 2000, the Microchip MPLAB ICD 2 and the CCS PIC C Compiler will
allow me to show you how things are done inside and outside the PIC using only a single
MPLAB IDE screen.

Preface

What’s on the CD-ROM?

All of the source code and the executable code discussed in this book are on the companion
CD-ROM. In addition, all of the Easy Ethernet device schematics are provided in PDF format.
Printed circuit board layouts are also part of the CD-ROM package and are included for those
readers who wish to build the Easy Ethernet devices from scratch.

xvi

1

C H A P T E R 1

Let’s begin by exploring the RS-232 protocol. Knowing how to manipulate data with RS-232
will help you master more complex communications protocols. You’ll also find RS-232
techniques to be invaluable in the development phase of your projects.

Figure 1.1: Effecting RS-232 communications with a microcontroller is a snap. As you
continue reading this book, you will find that knowing how to implement simple
RS-232 with a microcontroller can assist you in building and debugging more complex
microcontroller projects.

The information you see in the terminal emulator window in Figure 1.1 was generated by
some very simple firmware and a not-so-complicated off-the-shelf, two-buck microcontroller.
I used a tiny 8-bit microcontroller that does not contain a built-in hardware USART (Univer-
sal Synchronous/Asynchronous Receiver/Transmitter), to transfer the ASCII characters you
see in Figure 1.1 from one of its I/O pins to an RS-232 converter IC. A serial cable connected
between the microcontroller/RS-232 converter IC circuitry and my personal computer’s serial
port allowed the ASCII characters to flow from the little microcontroller’s firmware out of the
microcontroller’s I/O pin, through the RS-232 converter IC, across the serial cable to the
personal computer’s USART/RS-232 circuitry and finally end up in the terminal emulator
window you see in Figure 1.1.

The Essence of Microcontroller
Networking—RS-232

Chapter 1

2

What I’ve just described is one of the simplest forms of microcontroller networking. It is
commonly known as serial or RS-232 communications. As you can see in Figure 1.2, RS-232
was designed to tie DTE (Data Terminal Equipment) and DCE (Data Communications
Equipment) devices together electronically to effect bidirectional data communications
between the devices.

An example of a DTE device is the serial port on your personal computer. Under normal
conditions, the DTE interface on your personal computer asserts DTR (Data Terminal Ready)
and RTS (Request To Send). DTR and RTS are called modem control signals. A typical DCE
device interface responds to the assertion of DTR by activating a signal called DSR (Data Set
Ready). The DTE RTS signal is answered by CTS (Clear To Send) from the DCE device. A
standard external modem that you would connect to your personal computer serial port is a
perfect example of a DCE device.

Figure 1.2: The DTE and DCE interfaces usually consist of some sort of voltage-conversion
circuitry to translate RS-232 voltage levels to voltage levels that are compatible with
the computing equipment on each end of the communications link. The simplest form
of an RS-232 link uses only the TXD and RXD signals with a common ground.

The Essence of Microcontroller Networking—RS-232

3

Some History
In May of 1960, it was evident that a standard was needed to identify the electrical interface
between computers and modems. It was decided to establish a standard voltage with standard
signal parameters and a standard nomenclature to identify the conductors in the cable that
connected computers and data sets. Even today, you will sometimes hear the term data set
applied to modems and DCE equipment.

To compete as well as exist in the current communications environment, telecommunica-
tions vendors needed common ground to assure that each vendor’s equipment set could talk
to any other vendor’s telecommunications equipment set. In other words, the industry needed
a working standard. Without a standard, the whole teleprocessing industry could come to a
grinding, nonstandardized halt.

To help establish some harmony, a committee named the Electronic Industries Associa-
tion was formed. The EIA drafted a standard known as EIA RS-232(X). Though it was a
great idea, the original specification was broad in meaning and didn’t guarantee compatibil-
ity. The new RS-232 specification also had a competitor outside the United States, known as
the CCITT, or Consultative Committee on International Telegraphy and Telephony, recom-
mendation V.24.

The RS-232 proposal defined a logical and physical interface between DTE equipment
and DCE equipment. The computer’s DTE serial port presents both a physical and a logical
interface to a modem or data set’s DCE port and consists of several conductors for control-
ling, transmitting and receiving data. Timing and clocking signals are also intermixed within
the RS-232 interface. The logical and physical attributes of the RS-232 proposal eventually
became a set of standards known today as the EIA RS-232 interface.

Once the signals reach the DCE device, a second interface provides a physical path to the
communication channel (RF link, telephone line, fiber-optic link, satellite link, and so forth).
For most of you, that second interface is a standard two-conductor analog telephone line,
which is terminated inside your modem.

The EIA standard originally identified seven interface conductors and no specific connec-
tor. Signal voltages were defined as at least 3 volts but not greater than 20 volts with respect
to ground.

In October 1963, RS-232 became RS-232-A and was modified to include a 25-pin
connector with a maximum cable length of 50 feet. This revision established fixed relation-
ships between a circuit and specific pin numbers on the 25-pin connector. Also, an alphabetic
coding system for each type of interface circuit was presented. The first character of the
coding system designated A for ground, B for data, C for control and D for clocking. Table
1.1 lays out the pinout and various names for each RS-232 signal.

