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Preface

There are a variety of buildings in a city. Each building has its own natural period and
its original structural properties. When an earthquake occurs, a variety of ground motions
are induced in the city. The combination of the building natural period with the predom-
inant period of the induced ground motion may lead to disastrous phenomena in the city.
Many past earthquake observations demonstrated such phenomena. Once a big earthquake
occurs, some building codes are upgraded. However, it is true that this repetition never
resolves all the issues and new damage problems occur even recently. In order to overcome
this problem, a new paradigm has to be posed. To the author’s knowledge, the concept
of “critical excitation” and the structural design based on this concept can become one of
such new paradigms.

It is believed that earthquake has a bound on its magnitude. In other words, the earthquake
energy radiated from the fault has a bound. The problem is to find the most unfavorable
ground motion for a building or a group of buildings (see Fig. 0.1).
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Fig. 0.1. Critical excitation defined for each building.
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Fig. 0.2. Earthquake ground motion depending on fault rupture mechanism, wave propagation and
surface ground amplification, etc.

A ground motion displacement spectrum or acceleration spectrum has been proposed at the
rock surface depending on the seismic moment, distance from the fault, etc. (Fig. 0.2). Such
spectrum may have uncertainties. One possibility or approach is to specify the acceleration
or velocity power and allow the variability of the spectrum.

The problem of ground motion variability is very important and tough. Code-specified
design ground motions are usually constructed by taking into account the knowledge from
the past observation and the probabilistic insights. However, uncertainties in the occurrence
of earthquakes (or ground motions), the fault rupture mechanisms, the wave propagation
mechanisms, the ground properties, etc. cause much difficulty in defining reasonable
design ground motions especially for important buildings in which severe damage or
collapse has to be avoided absolutely (Singh 1984; Anderson and Bertero 1987; Geller
et al. 1997; Takewaki 2002; Stein 2003).

A long-period ground motion has been observed in Japan recently. This type of ground
motion is told to cause a large seismic demand to such structures as high-rise buildings,
base-isolated buildings, oil tanks, etc. This large seismic demand results from the resonance
between the long-period ground motion and the long natural period of these constructed
facilities.

A significance of critical excitation is supported by its broad perspective. There are two
classes of buildings in a city (see Fig. 0.3). One is the important buildings which play
an important role during disastrous earthquakes. The other one is ordinary buildings.
The former one should not have damage during earthquake and the latter one may be
damaged partially especially for critical excitation larger than code-specified design earth-
quakes. The concept of critical excitation may enable structural designers to make ordinary
buildings more seismic resistant.

The most critical issue in the seismic-resistant design is the resonance. The promising
approaches are to shift the natural period of the building through seismic control and
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Fig. 0.3. Relation of critical excitation with code-specified ground motion in public building and
ordinary building.

to add damping in the building. However it is also true that the seismic control is under
development and more sufficient time is necessary to respond to uncertain ground motions.
The author hopes that this book will help the development of new seismic-resistant design
methods of buildings for such unpredicted or unpredictable ground motions.

The author’s research was greatly motivated by the papers by Drenick (1970) and Shi-
nozuka (1970). The author communicated with Prof. Drenick (2002) and was informed that
the work by Prof. Drenick was motivated by his communication with Japanese researchers
in late 1960s. The author would like to express his appreciation to Profs. Drenick and
Shinozuka.
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