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Preface

Volume 59 of Annual Reports on NMR contains current accounts of some of the
many active and exciting areas of scientific research, which have a crucial depend-
ence on NMR measurements. I am very happy to take the opportunity of intro-
ducing the following contributions.

The volume opens with a report by L.D. Field on Multiple Quantum NMR of
Partially Aligned Molecules; following this is an account on Solid-State NMR
Studies of Molecular Motion by M.J. Duler; C. Odin reviews NMR Studies of
Phase Transitions; Application of Multi-way Analysis to 2D NMR Data is covered
by H.T. Pedersen, M. Dyrby, S.B. Engelsen and R. Bro; the final contribution is on
High Resolution Protein Structure Determination by NMR and it is provided by H.
Takashima. My sincere thanks go to all of these reporters and to the production
staff at Elsevier for their assistance in the creation of this volume.

Royal Society of Chemistry

Burlington House

Piccadilly

London, UK

G. A. WEBB
February 2006
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The NMR spectra of solutes partially aligned in liquid crystalline solution

are significantly more complex than the spectra obtained in isotropic so-

lution because dipolar couplings and other spectral parameters are

not averaged to zero by rapid is otropic tumbling. Whereas conventional

single quantum NMR spectroscopy involves the excitation and detection of
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individual spins embedded in a spin system, multiple quantum NMR

(MQNMR) involves the excitation and detection of coherence in groups of

coupled spins. MQNMR spectra contain fewer transitions than single

quantum spectra and, in principle, MQNMR spectra are significantly eas-

ier to analyse than single quantum spectra.This chapter describes the

methods available to excite multiple quantum coherence, both selectively

and non-selectively and methods available to detect, extract and analyse

multiple quantum spectra. The chapter also describes the use of selective

and random deuteration, combined with multiple quantum spectroscopy, to

analyse the complex spectra of larger spin systems as well as applications of

multiple quantum spectra in: (i) obtaining dipolar coupling constants (and

hence accessing information about the shape of the spin system); (ii)

studying molecular diffusion; (iii) accessing relaxation parameters which

then provide information about molecular motion and mobility; and (iv)

counting spins in domains and clusters.The chapter concludes with a com-

prehensive review of molecules, aligned in liquid crystalline solution, where

MQNMR spectra have been obtained and analysed to provide information

about their spin systems.

1. INTRODUCTION

Since the first reports of the use of liquid crystalline materials as solvents for
NMR spectroscopy, high-resolution NMR of partially aligned molecules
has become an important area of NMR spectroscopy.1 Liquid crystals are
mesophases – their properties are intermediate between the liquid and solid
phase. In the liquid crystalline phase, there is still molecular mobility (as in a
liquid), but there is a degree of molecular alignment so the molecules are not
oriented randomly with respect to each other and tend to align preferentially
in some direction making the ‘‘liquid’’ anisotropic. Most compounds that
form a liquid crystalline phase can act as solvents and can take up solutes
without destroying the structure of the mesophase. The freedom of solute
molecules to move and rotate in partially aligned solvents is restricted by the
orientation of the mesophase, so the solute molecules themselves are par-
tially oriented by the medium.
NMR spectroscopy in isotropic solution is characterised by the fact that

free and random molecular reorientation averages many parameters that
have a directional dependence, e.g. dipolar-coupling constants, chemical
shifts, etc. Some parameters, such as dipolar-coupling constants, average to
zero in isotropic solution; so once the ability of a molecule to rotate and
move freely and isotropically is removed, its NMR spectra immediately
become more complex.

2 LESLIE D. FIELD



2. NMR OF PARTIALLY ALIGNED MOLECULES

The NMR spectra of solutes oriented in mesophases are significantly more
complex than the spectra obtained in isotropic solution because: (i) the non-
zero averaging of dipolar couplings results in many more coupling constants
(splittings) being expressed in the spectrum – there is a non-zero dipolar
coupling constant for every pair of interacting nuclei and (ii) the magnitude
of the dipole coupling constants (Dij) between a pair of interacting nuclei is
generally large (up to a few kilohertz) compared to the magnitude of indirect
coupling constant (typically a few hertz).
One of the main uses of NMR of partially aligned molecules has been to

gain access to the dipolar coupling constants (Dij), because these can be
related directly to the internuclear distances (rij) between each pair of in-
teracting nuclei i and j. The Dij values are obtained by spectral analysis, most
usually by computer simulation of experimental spectra. The Dij are in-
versely proportional to the cube of the internuclear distances (rij) (Eq. (1)).
Providing sufficient independent Dij values can be measured and the relative
positions of the nuclei in the spin system can be determined then the shape
of the molecule as well as its average orientation in the magnetic field can be
deduced.

Dij ¼ �
hg2H
4p2

� �
Sij

r3ij
(1)

where gH is the proton magnetogyric ratio, rij the internuclear distance be-
tween protons i and j and Sij the order of the internuclear vector between i
and j.2

The order parameter Sij derives from the Saupe order matrix S, which is a
symmetric traceless 3 � 3 tensor where the diagonal order parameters (Sxx,
Syy and Szz) can have values between �0.5 and 1.0, and the off-diagonal
order parameters (Sxy, Syz and Sxz) vary between �0.75 and +0.75.3 The
higher the symmetry of the molecule, the lower the number of independent
non-zero-order parameters that are required to completely describe the
orientation of the spin system. Sij is 0 when the the i,j axis is completely
non-aligned (as in an isotropic solution). Sij is �0.5, where the i,j axis is
orthogonal to the magnetic field and Sij is 1.0 where the i,j axis is aligned
perfectly with the magnetic field. Room temperature Sij values between 0.6
and 0.8 are typical for many liquid crystalline materials.
The induced alignment of solutes oriented in liquid crystalline solution is

very sensitive to small variations in temperature. Sij values are temperature
sensitive and since Dij is proportional to Sij, care must be exercised if spectra

MULTIPLE QUANTUM NMR 3



are to be compared directly since these must be recorded sequentially under
identical conditions.

3. MULTIPLE QUANTUM NMR AND SPECTRAL

SIMPLIFICATION

For a system of coupled I ¼ 1/2 nuclei, the transition frequencies in the
multiple quantum spectra are determined by the dipolar coupling constants,
the scalar coupling constants and the chemical shifts of the nuclei. In theory,
the spectra of order N�1 and N�2 contain sufficient transitions to measure
all of the dipolar coupling constants and chemical shifts in an N-spin system.
For additional accuracy and confidence, the N�3 quantum spectrum can
also be analysed to provide redundancy and more reliable estimates of the
Dij.
The number of transitions in an NMR spectrum increases dramatically as

the number of interacting nuclei in the spin system increases. The number of
transitions appearing in a 1–quantum spectrum of a spin system (without
any simplifying symmetry) partially oriented in a nematic phase is expressed
by Eq. (2), with some examples shown in Table 1.

Number of transitions ¼
ð2NÞ!

½ðN � 1Þ! ðN þ 1Þ!�
(2)

where N is the number of interacting spins in the spin system.
If there is some element of symmetry in the spin system, the number of

transitions is reduced. For a 6–spin system with no simplifying symmetry,
aligned in an anisotropic solution, there would be 792 transitions in an 1H
1–quantum spectrum. However in the spectrum of benzene, C6H6 (a planar
hexagonal 6–spin proton spin system) aligned in anisotropic solution there
are only 72 transitions in the 1–quantum proton spectrum.
Severe overlap between transitions in spin systems containing more than

about 7 or 8 spins (without simplifying symmetry) makes analysis of the
1–quantum spectra a virtually intractable problem. In larger spin systems, it
becomes impossible to resolve or assign individual transitions for an iter-
ative computer analysis.

Table 1. The number of transitions in a 1-quantum spectrum of a partially
oriented spin system as a function of the number of spin 1/2 nuclei

Number of spins 1 2 3 4 5 6 7 8 9 10
Transitions 1 4 15 56 210 792 3003 1.1� 104 4.4� 104 1.7� 105
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