COMMUNICATIONS ENGINEERING SERIES

Cognitive Radio Technology

Cognitive Radio Technology

This page intentionally left blank

Cognitive Radio Technology

Edited by Bruce A. Fette

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newness is an important of Elsevier

Newnes is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2006, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: HYPERLINK "mailto:permissions@elsevier.com" permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Cognitive radio technology / edited by Bruce A. Fette.—1st ed. p. cm.—(Communications engineering series) Includes bibliographical references and index ISBN-13: 978-0-7506-7952-7 (alk. paper) ISBN-10: 0-7506-7952-2 (alk. paper)
1. Software radio. 2. Artificial intelligence. 3. Wireless communication systems. I. Fette, Bruce A. II. Series.

TK5103.4875.C64 2006 621.384—dc22

2006016824

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN 13: 978-0-7506-7952-7 ISBN 10: 0-7506-7952-2

For information on all Newnes publications visit our Web site at www.books.elsevier.com

 $06\ 07\ 08\ 09\ 10\quad 10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$

Typeset by Charon Tec Ltd, Chennai, India www.charontec.com Printed in the United States of America

Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

Contents

List of Contributors	xvii
Foreword	xxi
Chapter 1: History and Background of Cognitive Radio	
Technology Bruce A. Fette	
1.1 The Vision of Cognitive Radio	
1.2 History and Background Leading to Cognitive Radio	2
1.3 A Brief History of SDR	4
1.4 Basic SDR	
1.4.1 The Hardware Architecture of an SDR	8
1.4.2 Computational Processing Resources in an SDR	11
1.4.3 The Software Architecture of an SDR	13
1.4.4 Java Reflection in a Cognitive Radio	15
1.4.5 Smart Antennas in a Cognitive Radio	15
1.5 Spectrum Management	17
1.5.1 Managing Unlicensed Spectrum	18
1.5.2 Noise Aggregation	19
1.5.3 Aggregating Spectrum Demand and Use	
of Subleasing Methods	21
1.5.4 Priority Access	22
1.6 US Government Roles in Cognitive Radio	22
1.6.1 DARPA	22
1.6.2 FCC	23
1.6.3 NSF/CSTB Study	23
1.7 How Smart Is Useful?	24
1.8 Organization of this Book	

Chapter 2: Communications Policy and Spectrum	
Management Paul Kolodzy	29
2.1 Introduction	
2.2 Cognitive Radio Technology Enablers	30
2.3 New Opportunities in Spectrum Access	
2.3.1 Current Spectrum Access Techniques	
2.3.2 Opportunistic Spectrum Access	
2.3.3 Dynamic Frequency Selection	42
2.4 Policy Challenges for Cognitive Radios	42
2.4.1 Dynamic Spectrum Access	43
2.4.2 Security	46
2.4.3 Communications Policy before Cognitive Radio	
2.4.4 Cognitive Radio Impact on Communications Policy	49
2.4.5 US Telecommunications Policy, Beginning with	
the <i>Titanic</i>	49
2.4.6 US Telecommunications Policy: Keeping Pace	
with Technology	51
2.5 Telecommunications Policy and Technology Impact	
on Regulation	53
2.5.1 Basic Geometries	53
2.5.2 Introduction of Dynamic Policies	56
2.5.3 Introduction of Policy-Enabled Devices	58
2.5.4 Interference Avoidance	60
2.5.5 Overarching Impact	61
2.6 Global Policy Interest in Cognitive Radios	61
2.6.1 Global Interest	62
2.6.2 US Reviews of Cognitive Radios for Dynamic	
Spectrum Access	
2.7 Summary	69

Chapter 3: The Software Defined Radio as a Platform

for Cognitive Radio	Pablo Robert and Bruce A. Fette	73
3.1 Introduction		73
3.2 Hardware Archi	tecture	75
3.2.1 The Bl	ock Diagram	76
3.2.2 Baseba	and Processor Engines	82
3.2.3 Baseba	and Processing Deployment	87
3.2.4 Multic	ore Systems and System-on-Chip	89

3.3 Software Architecture	90
3.3.1 Design Philosophies and Patterns	91
3.4 SDR Development and Design	94
3.4.1 GNURadio	94
3.4.2 Software Communications Architecture	95
3.5 Applications	108
3.5.1 Application Software	108
3.6 Development	111
3.6.1 Component Development	112
3.6.2 Waveform Development	113
3.7 Cognitive Waveform Development	114
3.8 Summary	116

Chapter 4: Cognitive Radio: The Technologies

Required J	ohn Polson	119
4.1 Introdu	ction	119
4.2 Radio	Flexibility and Capability	120
4.2.	1 Continuum of Radio Flexibility and Capability	120
4.2.	2 Examples of Software Capable Radios	121
4.2.	3 Examples of Software Programmable Radios	126
4.2.	4 Examples of SDR	126
4.3 Aware,	Adaptive, and CRs	126
4.3.	1 Aware Radios	126
4.3.	2 Adaptive Radios	131
4.3.	3 Cognitive Radios	132
4.4 Compa	rison of Radio Capabilities and Properties	133
4.5 Availal	ble Technologies for CRs	133
4.5.	1 Geolocation	135
4.5.	2 Spectrum Awareness/Frequency Occupancy	135
4.5.	3 Biometrics	136
4.5.	4 Time	136
4.5.	5 Spatial Awareness or Situational Awareness	138
	6 Software Technology	138
4.5.	7 Spectrum Awareness and Potential for Sublease	
	or Borrow	
4.6 Fundin	g and Research in CRs	144
4.6.	1 Cognitive Geolocation Applications	146
4.6.	2 Dynamic Spectrum Access and Spectrum Awareness	148

153

Chapter 5	: Spectrum Awareness Preston Marshall	163
5.1	Introduction	163
5.2	The Interference Avoidance Problem	164
5.3	Cognitive Radio Role	165
5.4	Spectral Footprint Minimization	166
5.5	Creating Spectrum Awareness	168
	5.5.1 Spectrum Usage Reporting	168
	5.5.2 Spectrum Sensing	169
	5.5.3 Potential Interference Analysis	170
	5.5.4 Link Rendezvous	
	5.5.5 Distributed Sensing and Operation	173
5.6	Channel Awareness and Multiple Signals in Space	174
5.7	Spectrally Aware Networking	176
5.8	Overlay and Underlay Techniques	178
5.9	Adaptive Spectrum Implications for Cognitive	
	Radio Hardware	180
5.10	Summary: The Cognitive Radio Toolkit	182
	Appendix: Propagation Energy Loss	183
Chapter 6	: Cognitive Policy Engines Robert J. Wellington	185
6.1	The Promise of Policy Management for Radios	185
6.2	Background and Definitions	185
6.3	Spectrum Policy	187
	6.3.1 Management of Spectrum Policy	188

6.3.2 System Requirements for Spectrum Policy	
Management	189
6.4 Antecedents for Cognitive Policy Management	

+ Antecedents for Cognitive I oney Management	
6.4.1 Defense Advanced Research Projects Agency	
Policy Management Projects	190
	101

6.4.3 Commercial Applications of Policy Management	.194
6.4.4 Standardization Efforts for Policy Management	.195
6.5 Policy Engine Architectures for Radio	.198
6.5.1 Concept for Policy Engine Operations	.198
6.5.2 Technical Approaches for Policy Management	.200
6.5.3 Enabling Technologies	.202
6.6 Integration of Policy Engines into Cognitive Radio	204
6.6.1 Software Communications Architecture Integration	204
6.6.2 Policy Engine Design	206
6.6.3 Integration of the Radio into a Network Policy	
Management Architecture	209
6.7 The Future of Cognitive Policy Management	211
6.7.1 Military Opportunities for Cognitive Policy	
Management	211
6.7.2 Commercial Opportunities for Spectrum	
Management	212
6.7.3 Obstacles to Adoption of Policy Management	
	.213
6.8 Summary	.214

Chapter 7: Cognitive Techniques: Physical and Link

Layers Thomas W. Rondeau and Charles W. Bostian	219
7.1 Introduction	219
7.2 Optimizing PHY and Link Layers for Multiple-Objectives	
Under Current Channel Conditions	220
7.3 Defining the Cognitive Radio	222
7.4 Developing Radio Controls (Knobs) and Performance	
Measures (Meters)	223
7.4.1 PHY- and Link-Layer Parameters	223
7.4.2 Modeling Outcome as a Primary Objective	227
7.5 MODM Theory and Its Application to Cognitive Radio	230
7.5.1 Definition of MODM and Its Basic Formulation	230
7.5.2 Constraint Modeling	231
7.5.3 The Pareto-Optimal Front: Finding the Nondominated	
Solutions	231
7.5.4 Why the Radio Environment Is a MODM Problem	232
7.5.5 GA Approach to the MODM	233

7.6	The Multi-objective GA for Cognitive Radios	239
	7.6.1 Cognition Loop	239
	7.6.2 Representing Radio Parameters as Genes	
	in a Chromosome	244
	7.6.3 Multi-dimensional Analysis of the Chromosomes	245
	7.6.4 Relative Pooling Tournament Evaluation	249
	7.6.5 Example of the WSGA	249
7.7	Advanced GA Techniques	252
	7.7.1 Population Initialization	253
	7.7.2 Priming the GA with Previously Observed Solutions	254
	7.7.3 CBDT Initialization of GAs	255
7.8	Need for a Higher-Layer Intelligence	258
	7.8.1 Adjusting Parameters Autonomously to	
	Achieve Goals	258
	7.8.2 Rewards for Good Behavior and Punishments	
	for Poor Performance	258
7.9	How the Intelligent Computer Operates	260
	7.9.1 Sensing and Environmental Awareness	261
	7.9.2 Decision-Making and Optimization	262
	7.9.3 Case-Based Learning	262
	7.9.4 Weight Values and Objective Functions	263
	7.9.5 Distributed Learning	263
7.1	0 Summary	263
Chapter a	8: Cognitive Techniques: Position Awareness	
John F	Polson and Bruce A. Fette	. 269
8.1	Introduction	269
8.2	Radio Geolocation and Time Services	270
	8.2.1 GPS	271
	8.2.2 Coordinate System Transformations	275
	8.2.3 GPS Geolocation Summary	275
8.3	Network Localization	
	8.3.1 Spatially Variant Network Service Availability	276
	8.3.2 Geolocation-Enabled Routing	278
	8.3.3 Miscellaneous Functions	278
8.4	Additional Geolocation Approaches	278
	8.4.1 Time-Based Approaches	279
	8.4.2 AOA Approach	286

	207
8.4.3 RSS Approach	
8.5 Network-Based Approache	es
8.6 Boundary Decisions	
8.6.1 Regulatory Regio	n Selection
8.6.2 Policy Servers an	d Regions292
8.6.3 Other Uses of Bo	undary Decisions293
8.7 Example of Cellular Telepl	none 911 Geolocation for First
Responders	
8.8 Interfaces to Other Cogniti	ve Technologies294
8.8.1 Interface to Polic	y Engines
8.8.2 Interface to Netw	orking Functions295
8.8.3 Interface to Plann	ing Engines
8.8.4 Interface to User.	
8.9 Summary	
•	

Chapter 9: Cognitive Techniques: Network

Awareness Jonathan M. Smith	<i>299</i>
9.1 Introduction	299
9.2 Applications and their Requirements	300
9.3 Network Solutions to Requirements	302
9.4 Coping with the Complex Trade-Space	304
9.5 Cognition to the Rescue	306
9.6 The DARPA SAPIENT Program	308
9.7 Summary	
•	

Chapter 10: Cognitive Services for the User Joseph P.

Campbell, William M. Campbell, Scott M. Lewandowski		
and Clifford J. Weinstein		
10.1 Introduction		
10.2 Speech and Language Processing		
10.2.1 Speaker Recognition		
10.2.2 Language Identification		
10.2.3 Text-to-Speech Conversion		
10.2.4 Speech-to-Text Conversion		
10.2.5 Machine Translation		
10.2.6 Background Noise Suppression		
10.2.7 Speech Coding		
10.2.8 Speaker Stress Characterization		

10.2.9 Noise Characterization	329
10.3 Concierge Services	330
10.4 Summary	332
Chapter 11: Network Support: The Radio Environment	
Map Youping Zhao, Bin Le and Jeffrey H. Reed	
11.1 Introduction	
11.2 Internal and External Network Support	
11.3 Introduction to the REM	
11.4 REM Infrastructure Support to Cognitive Radios	341
11.4.1 The Role of the REM in Cognitive Radio	341
11.4.2 REM Design	341
11.4.3 Enabling Techniques for Implementing REM	343
11.5 Obtaining Awareness with the REM	345
11.5.1 Awareness: Prerequisite for Cognitive Radio	345
11.5.2 Classification of Awareness	347
11.5.3 Obtaining SA	349
11.6 Network Support Scenarios and Applications	353
11.6.1 Infrastructure-Based Network and Centralized	
Global REM	354
11.6.2 Ad hoc Mesh Networks and Distributed	
Local REMs	355
11.7 Supporting Elements to the REM	357
11.8 Summary and Open Issues	360
Chapter 12: Cognitive Research: Knowledge Representation	
and Learning Vincent J. Kovarik Jr	365
12.1 Introduction	365
12.2 Knowledge Representation and Reasoning	
12.2.1 Symbolic Representation	371
12.2.2 Ontologies and Frame Systems	372
12.2.3 Behavioral Representation	374
12.2.4 Case-Based Reasoning	375
12.2.5 Rule-Based Systems	377
12.2.6 Temporal Knowledge	
12.2.7 Knowledge Representation Summary	
12.3 Machine Learning	
12.3.1 Memorization	

12.3.2	Classifiers	
12.3.3	Bayesian Logic	
12.3.4	Decision Trees	
12.3.5	Reinforcement-Based Learning	
12.3.6	Temporal Difference	
12.3.7	Neural Networks	
12.3.8	Genetic Algorithms	
	Simulation and Gaming	
	entation Considerations	
-	Computational Requirements	
12.4.2	Brittleness and Edge Conditions	
12.4.3	Predictable Behavior	
12.5 Summar	у	

Chapter 13: Roles of Ontologies in Cognitive Radios

Mieczyslaw M. Kokar, David Brady and Kenneth Baclawski	401
13.1 Introduction to Ontology-Based Radio	401
13.2 Knowledge-Intensive Characteristics of Cognitive Radio	401
13.2.1 Knowledge of Constraints and Requirements	403
13.2.2 Information Collection and Fusion	404
13.2.3 Situation Awareness and Advice	404
13.2.4 Self-awareness	405
13.2.5 Query by User, Self, or Other Radio	405
13.2.6 Query Responsiveness and Command Execution	405
13.2.7 Negotiation for Resources	406
13.2.8 Dynamic Interoperability at Any Stack Layer	406
13.3 Ontologies and Their Roles in Cognitive Radio	407
13.3.1 Introduction	407
13.3.2 Role of Ontology in Knowledge-Intensive	
Applications	413
13.4 A Layered Ontology and Reference Model	414
13.4.1 Physical Layer Ontology	414
13.4.2 Data Link Layer Ontology	
13.5 Examples	421
13.5.1 Responding to Delays and Errors	421
13.5.2 Adaptation of Training Sequence Length	
13.5.3 Data Link Layer Protocol Consistency	
and Selection	425

13.6 Open Research Issues	
13.6.1 Ontology Development and Consensus	
13.6.2 Ontology Mapping	
13.6.3 Learning	
13.6.4 Efficiency of Reasoning	
13.7 Summary	431
Chapter 14: Cognitive Radio Architecture	
Joseph Mitola III	435
14.1 Introduction	
14.2 CRA I: Functions, Components, and Design Rules	
14.2.1 AACR Functional Component Architecture	
14.2.2 Design Rules Include Functional Component	
Interfaces	
14.2.3 Near-Term Implementations	
14.2.4 The Cognition Components	
14.2.5 Self-referential Components	
14.2.6 Flexible Functions of the Component Architecture.	
14.3 CRA II: The Cognition Cycle	
14.3.1 The Cognition Cycle	
14.3.2 Observe (Sense and Perceive)	
14.3.3 Orient	
14.3.4 Plan	
14.3.5 Decide	
14.3.6 Act	
14.3.7 Learning	
14.3.8 Self-monitoring	
14.4 CRA III: The Inference Hierarchy	
14.4.1 Atomic Stimuli	
14.4.2 Primitive Sequences: Words and Dead Time	
14.4.3 Basic Sequences	
14.4.4 NL in the CRA Inference Hierarchy	470
14.4.5 Observe–Orient Links for Scene Interpretation	472
14.4.6 Observe–Orient Links for Radio Skill Sets	

14.4.7 General World Knowledge	474
14.5 CRA IV: Architecture Maps	476
14.5.1 CRA Topological Maps	477
14.5.2 CRA Identifies Self, Owner, and Home Network	478

14.5.3	CRA-Reinforced Hierarchical Sequences	478
14.5.4	Behaviors in the CRA	479
14.5.5	From Maps to APIs	481
14.5.6	Industrial-Strength Inference Hierarchy	481
14.6 CRA V:	Building the CRA on SDR Architectures	483
14.6.1	Review of SWR and SDR Principles	483
14.6.2	Radio Architecture	486
14.6.3	The SCA	487
14.6.4	Functions-Transforms Model of Radio	490
14.6.5	Architecture Migration: From SDR to AACR	491
14.6.6	Cognitive Electronics	491
14.6.7	When Should a Radio Transition toward Cognition?	492
14.6.8	Radio Evolution toward the CRA	494
14.7 Cognitio	n Architecture Research Topics	494
14.8 Industria	Il-Strength AACR Design Rules	495
14.9 Summar	y and Future Directions	497
	tive Radio Performance Analysis James O. Neel,	
		E 0 1
	nd Allen B. MacKenzie	
15.1 Introduc	tion	501
15.1 Introduc 15.2 The Ana	tion lysis Problem	501 505
15.1 Introduc 15.2 The Ana 15.2.1	tion lysis Problem Mathematical Preliminaries	501 505 505
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network	501 505 505 506
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives	501 505 505 506 509
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques	501 505 505 506 509 513
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach	501 505 505 506 509 513
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence	501 505 505 506 509 513 513
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem	501 505 505 506 509 513 513
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem Markov Models	501 505 505 506 509 513 513 518 524
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem	501 505 505 506 509 513 513 518 524
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3 15.4 Applying 15.4.1	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem Markov Models g Game Theory to the Analysis Problem Basic Elements of Game Theory	501 505 505 506 509 513 513 518 524 529
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3 15.4 Applying 15.4.1	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem Markov Models g Game Theory to the Analysis Problem	501 505 505 506 509 513 513 518 524 529
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3 15.4 Applying 15.4.1 15.4.2	tion lysis Problem A Formal Model of a Cognitive Radio Network A Formal Model of a Cognitive Radio Network Analysis Objectives al Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem Markov Models g Game Theory to the Analysis Problem Basic Elements of Game Theory Mapping the Basic Elements of a Game to the Cognition Cycle	501 505 506 509 513 513 518 524 529 530
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3 15.4 Applying 15.4.1 15.4.2 15.4.3	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem Markov Models Game Theory to the Analysis Problem Basic Elements of Game Theory Mapping the Basic Elements of a Game to the Cognition Cycle Basic Game Models	501 505 506 506 509 513 513 518 524 529 530 533 534
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3 15.4 Applying 15.4.1 15.4.2 15.4.3	tion lysis Problem A Formal Model of a Cognitive Radio Network A Formal Model of a Cognitive Radio Network Analysis Objectives al Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem Markov Models g Game Theory to the Analysis Problem Basic Elements of Game Theory Mapping the Basic Elements of a Game to the Cognition Cycle	501 505 506 506 509 513 513 518 524 529 530 533 534
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3 15.4 Applying 15.4.1 15.4.2 15.4.3 15.4.4	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem Markov Models Game Theory to the Analysis Problem Basic Elements of Game Theory Mapping the Basic Elements of a Game to the Cognition Cycle Basic Game Models	501 505 506 506 513 513 518 524 529 530 533 534 538
15.1 Introduc 15.2 The Ana 15.2.1 15.2.2 15.2.3 15.3 Tradition 15.3.1 15.3.2 15.3.3 15.4 Applying 15.4.1 15.4.2 15.4.3 15.4.4 15.5 Relevant	tion lysis Problem Mathematical Preliminaries A Formal Model of a Cognitive Radio Network Analysis Objectives nal Engineering Analysis Techniques A Dynamical Systems Approach Contraction Mappings and the General Convergence Theorem Markov Models g Game Theory to the Analysis Problem Basic Elements of Game Theory Mapping the Basic Elements of a Game to the Cognition Cycle Basic Game Models Basic Game Theory Analysis Techniques	501 505 506 506 509 513 513 518 524 529 530 533 534 534 538 544

15.6 Case Studies	563
15.6.1 Distributed Power Control	563
15.6.2 Dynamic Frequency Selection	568
15.6.3 Adaptive Interference Avoidance	
15.7 Summary and Conclusions	
15.8 Questions	

Chapter 16: The Really Hard Problems Bruce A. Fette	581
16.1 Introduction	581
16.2 Review of the Book	581
16.3 Services Offered to Wireless Networks through Infrastructure	587
16.3.1 Stand-Alone Radios with Cognition	588
16.3.2 Cellular Infrastructure Support to Cognition	589
16.3.3 Data Radios	590
16.3.4 Cognitive Services Offered through Infrastructure	591
16.3.5 The Remaining Hard Problems	593
Glossary	595
Index	609

List of Contributors

Kenneth Baclawski

Computer and Information Science Northeastern University 360 Huntington Avenue Boston, MA, 02115

Charles W. Bostian

Wireless @ Virginia Tech Bradley Department of Electrical and Computer Engineering Virginia Tech Mail Code 0111 Blacksburg, VA, 24060-0111 Email: bostian@vt.edu

David Brady

ECE Dept Northeastern University 360 Huntington Avenue Boston MA, 02115 Email: brady@ece.neu.edu

Joseph P. Campbell Senior MTS Information Systems Technology Group MIT Lincoln Laboratory 244 Wood Street, C-290A Lexington, MA, 02420-9185 Email: j.campbell@ieee.org

William M. Campbell

Information Systems Technology Group MIT Lincoln Laboratory 244 Wood Street, C-243 Lexington, MA, 02420-9185 Email: wmcampbell@ieee.org

Bruce A. Fette

Chief Scientist Communication Networks Division General Dynamics C4 Systems 8220 E Roosevelt Scottsdale, AZ, 85257 Email: brucefette@yahoo.com

Mieczyslaw M. Kokar

Department of Electrical and Computer Engineering Northeastern University 360 Huntington Avenue Boston, MA, 02115 Email: mkokar@ece.neu.edu

Paul Kolodzy Kolodzy Consulting P.O. Box 1443 Centerville, VA, 20120 Email: pkolodzy@kolodzy.com

Vincent J. Kovarik Jr.

Harris Corporation Mail Stop W2-11F P.O. Box 37 Melbourne FL, 32902-0037 Email: vkovarik@acm.org

Bin Le

Center for Wireless Telecommunications Wireless @ Virginia Tech Bradley Department of Electrical and Computer Engineering Virginia Tech, Mail Code 0111 Blacksburg, VA, 24061-0111 Email: binle@vt.edu

Scott M. Lewandowski

Information Systems Technology Group MIT Lincoln Laboratory 244 Wood Street, C-256 Lexington, MA, 02420-9185 Email: scl@ll.mit.edu

Preston Marshall

Defense Advanced Research Projects Agency Email: pmarshall@darpa.mil

Allen B. MacKenzie

Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute and State University, Mail Code 0111 Blacksburg, VA, 24061-0111 Email: macenab@vt.edu Joseph Mitola III

Consulting Scientist Tampa, FL, 33604 Email: jmitola@tampabay.rr.com

James O. Neel

Mobile and Portable Radio Research Group Wireless @ Virginia Tech Bradley Department of Electrical and Computer Engineering Virginia Tech 432 Durham Hall, MS 0350 Blacksburg, VA, 24061 Email: janeel@vt.edu

John Polson

Principal Engineer Bell Helicopter, Textron Inc. P.O. Box 482 Fort Worth, TX, 76101 Email: jtpolson@bellhelicopter. textron.com

Jeffrey H. Reed

Mobile and Portable Radio Research Group Wireless @ Virginia Tech Bradley Department of Electrical and Computer Engineering Virginia Tech 432 Durham Hall, MS 350 Blacksburg, VA, 24061 Email: reedjh@vt.edu

Pablo Robert

Mobile and Protable Radio Research Group (MPRG) Bradley Department of Electrical and Computer Engineering Virginia Tech Blacksburg, VA, 24060-0111 Email: probert@vt.edu

Thomas W. Rondeau

Bradley Department of Electrical and Computer Engineering Virginia Tech Mail Code 0111 Blacksburg, VA, 24060-0111 Email: trondeau@vt.edu

Jonathan M. Smith

Defense Advanced Research Projects Agency Email: jmsmith@darpa.mil

Clifford J. Weinstein

Group Leader Information Systems Technology Group MIT Lincoln Laboratory 244 Wood Street, C-290A Lexington, MA, 02420-9185 Email: cjw@ll.mit.edu

Robert J. Wellington

University of Minnesota 9740 Russel Circle S. Bloomington MN, 55431 Email: rwellington@mn.rr.com

Youping Zhao

Mobile and Portable Radio Research Group Wireless @ Virginia Tech 432 Durham Hall, MS 350 Blacksburg, VA, 24061 Email:yozhao@vt.edu This page intentionally left blank

Foreword

This introduction takes a visionary look at ideal cognitive radios (CRs) that integrate advanced software-defined radios (SDR) with CR techniques to arrive at radios that learn to help their user using computer vision, high-performance speech understanding, global positioning system (GPS) navigation, sophisticated adaptive networking, adaptive physical layer radio waveforms, and a wide range of machine learning processes.

CRs Know Radio Like TellMe[®] Knows 800 Numbers

When you dial 1-800-555-1212, a speech synthesis algorithm says "Toll Free Directory Assistance powered by TellMe[®] Networks (www.tellme.com, Mountain View, CA, 2005). Please say the name of the listing you want." If you mumble it says, "OK, United Airlines. If that is not what you wanted press 9, otherwise wait while I look up the number." Reportedly, some 99 percent of the time TellMe gets it right, replacing the equivalent of thousands of directory assistance operators of yore. TellMe, a speech-understanding system, achieves a high degree of success by its focus on just one task: finding a toll-free telephone number. Narrow task focus is one key to algorithm successes.

The cognitive radio architecture (CRA) is the building block from which to build cognitive wireless networks (CWNs), the wireless mobile offspring of TellMe. CRs and networks are emerging as practical, real-time, highly focused applications of computational intelligence technology. CRs differ from the more general artificial intelligence (AI) based services like intelligent agents, computer speech, and computer vision in degree of focus. Like TellMe, CRs focus on very narrow tasks. For CRs, the task is to adapt radio-enabled information services to the specific needs of a specific user. TellMe, a network service, requires

Note: Adapted from J. Mitola III, *Aware, Adaptive and Cognitive Radio: The Engineering Foundations of Radio XML*, Wiley, 2006.

substantial network computing resources to serve thousands of users at once. CWNs, on the other hand, may start with a radio in your purse or on your belt, a cell phone on steroids, focused on the narrow task of creating from the myriad available wireless information networks and resources just what is needed by just one user: you. Each CR fanatically serves the needs and protects the personal information of just one owner via the CRA using its audio and visual sensory perception and automated machine learning (AML).

TellMe is here and now, while CRs are emerging in global wireless research centers and industry forums like the SDR Forum and Wireless World Research Forum (WWRF). This book introduces the technologies to bootstrap CR systems, introducing technical challenges and approaches, emphasizing CR as a technology enabler for rapidly emerging commercial CWN services.

CRs See What You See, Discovering Radio Frequency Uses, Needs, and Preferences

Although the common cell phone may have a camera, it lacks vision algorithms, so it does not know what it is seeing. It can send a video clip, but it has no perception of the visual scene in the clip. If it had vision-processing algorithms, it could perceive and understand the visual scene. It could tell whether it were at home, in the car, at work, shopping, or driving up the driveway on the way home. If vision algorithms show it that you are entering your driveway in your car, a CR could learn to open the garage door for you wirelessly. Thus, you would not need to fish for the garage door opener, yet another wireless gadget. In fact, you do not need a garage door opener anymore, once CRs enter the market. To open the car door, you will not need a key fob either. As you approach your car, your personal CR perceives the common scene and, as trained, synthesizes the fob radio frequency (RF) transmission and opens the car door for you.

CRs do not attempt everything. They learn about your radio use patterns because they know a lot about radio, generic users, and legitimate uses of radio. CRs have the a priori knowledge needed to detect opportunities to assist you with your use of the radio spectrum accurately, delivering that assistance with minimum intrusion.

Products realizing the visual perception of this vignette are demonstrated on laptop computers today. Reinforcement learning (RL) and case-based reasoning (CBR) are mature AML technologies with radio network applications now being demonstrated in academic and industrial research settings as technology pathfinders for CR¹ and CWN.² Two or three Moore's law cycles or 3 to 5 years from now, these vision and learning algorithms will fit in your cell phone. In the interim, CWNs will begin to offer such services, presenting consumers with new tradeoffs between privacy and ultra-personalized convenience.

CRs Hear What You Hear, Augmenting Your Personal Skills

The cell phone on your waist is deaf. Although your cell phone has a microphone, it lacks embedded speech-understanding technology, so it does not perceive what it hears. It can let you talk to your daughter, but it has no perception of your daughter, nor of the content of your conversation. If it had speech-understanding technology, it could perceive your speech dialog. It could detect that you and your daughter are talking about common subjects like homework or your favorite song. With CR, speech algorithms would detect your daughter saying that your favorite song is now playing on WDUV. As an SDR, not just a cell phone, your CR then could tune to FM 105.5 so that you can hear "The Rose."

With your CR, you no longer need a transistor radio. Your CR eliminates from your pocket, purse or backpack yet another RF gadget. In fact, you may not need iPOD[®], Game Boy[®] and similar products as high-end CRs enter the market (or iPODs or Game Boys with CR may become the single pocket pal instead: you never know how market demand will shape products toward the "killer app," do you?). Your CR could learn your radio listening and information use patterns, accessing songs, downloading games, snipping broadcast news, sports, and stock quotes as you like as the CR re-programs its internal SDR to better serve your needs and preferences. Combining vision and speech perception, as you approach your car your CR perceives this common scene and, as you had the morning before, tunes your car radio to WTOP for your favorite "Traffic and weather together on the eights."

¹Mitola's reference for CR pathfinders.

² Semantic Web: Researchers formulate CRs as sufficiently speech-capable to answer questions about <Self/> and the <Self/> use of <Radio/> in support of its <Owner/>. When an ordinary concept like "owner" has been translated into a comprehensive ontological structure of Computational primitives, for example, via Semantic Web technology, the concept becomes a computational primitive for autonomous reasoning and information exchange. Radio XML, an emerging CR derivative of the eXtensible Markup Language, XML, offers to standardize such radio-scene perception primitives. They are highlighted in this brief treatment by <Angle-brackets/>. All CR have a <Self/>, a <Name/>, and an <Owner/>. The <Self/> has capabilities like <GSM/> and <SDR/>, a self-referential computing architecture, which is guaranteed to crash unless its computing ability is limited to real-time response tasks; this is appropriate for CR but may be too limiting for general-purpose computing.

For AML, CRs need to save speech, RF, and visual cues, all of which may be recalled by the user, expanding the user's ability to remember details of conversations and snapshots of scenes, augmenting the skills of the <owner/>.³ Because of the brittleness of speech and vision technologies, CRs try to "remember every-thing" like a continuously running camcorder. Since CRs detect content, such as speakers' names, and keywords like "radio" and "song," they can retrieve some content asked for by the user, expanding the user's memory in a sense. CRs thus could enhance the personal skills of their users, such as memory for detail.

CRs Learn to Differentiate Speakers to Reduce Confusion

To further limit combinatorial explosion in speech, CR may form speaker models, statistical summaries of the speech patterns of speakers, particularly of the <Owner/>. Speaker modeling is particularly reliable when the <Owner/> uses the CR as a cell phone to place a phone call. Contemporary speaker recognition algorithms differentiate male from female speakers with high accuracy. With a few different speakers to be recognized (i.e., fewer than 10 in a family) and with reliable side information like the speaker's telephone number, today's state-of-the-art algorithms recognize individual speakers with better than 95 percent accuracy.

Over time, each CR learns the speech patterns of its <Owner/> in order to learn from the <Owner/> and not be confused by other speakers. CR thus leverages experience incrementally to achieve increasingly sophisticated dialog. Today, a 3 GHz laptop supports this level of speech understanding and dialog synthesis in real time, making it likely to be available in a cell phone in 3 to 5 years.

The CR must both know a lot about radio and learn a lot about you, the <Owner/>, recording and analyzing personal information and thus placing a premium on trustworthy privacy technologies. Increased autonomous customization of wireless service include secondary use of broadcast spectrum. Therefore, the CRA incorporates speech recognition to enable learning without requiring overwhelming amounts of training, allowing it to become sufficiently helpful without being a nuisance.

More Flexible Secondary Use of Radio Spectrum

In 2004, the US Federal Communications Commission (FCC) issued a Report and Order that radio spectrum allocated to TV, but unused in a particular broadcast

³Ibid.

market, such as a rural area, could be used by CR as secondary users under Part 15 rules for low-power devices—for example, to create ad hoc networks. SDR Forum member companies have demonstrated CR products with these elementary spectrum perception and use capabilities. Wireless products—both military and commercial—are realizing that the FCC vignettes already exist.

Complete visual and speech perception capabilities are not many years distant. Productization is underway. Thus, many chapters of Bruce's outstanding book emphasize CR spectrum agility, suggesting pathways toward enhanced perception technologies, with new long-term growth paths for the wireless industry. This book's contributors hope that it will help you understand and create new opportunities for CR technologies.

> Dr. Joseph Mitola III Tampa, Florida

This page intentionally left blank

CHAPTER 1

History and Background of Cognitive Radio Technology

Bruce A. Fette

Communications Networks Division General Dynamics C4 Systems Scottsdale, AZ, USA

1.1 The Vision of Cognitive Radio

Just imagine if your cellular telephone, personal digital assistant (PDA), laptop, automobile, and TV were as smart as "Radar" O'Reilly from the popular TV series M*A*S*H.¹ They would know your daily routine as well as you do. They would have things ready for you as soon as you ask, almost in anticipation of your need. They would help you find people, things, and opportunities; translate languages; and complete tasks on time. Similarly, if a radio were smart, it could learn services available in locally accessible wireless computer networks, and could interact with those networks in their preferred protocols, so you would have no confusion in finding the right wireless network for a video download or a printout. Additionally, it could use the frequencies and choose waveforms that minimize and avoid interference with existing radio communication systems. It might be like having a friend in everything that's important to your daily life, or like you were a movie director with hundreds of specialists running around to help you with each task, or like you were an executive with hundred assistants to find documents, summarize them into reports, and then synopsize the reports into an integrated picture. A cognitive radio is the convergence of the many pagers, PDAs, cell phones, and many other

¹"Radar" O'Reilly is a character in the popular TV series M*A*S*H, which ran from 1972 to 1983. He always knew what the colonel needed before the colonel knew he needed it.

single-purpose gadgets we use today. They will come together over the next decade to surprise us with services previously available to only a small select group of people, all made easier by wireless connectivity and the Internet.

1.2 History and Background Leading to Cognitive Radio

The sophistication possible in a software-defined radio (SDR) has now reached the level where each radio can conceivably perform beneficial tasks that help the user, help the network, and help minimize spectral congestion. Radios are already demonstrating one or more of these capabilities in limited ways. A simple example is the adaptive digital European cordless telephone (DECT) wireless phone, which finds and uses a frequency within its allowed plan with the least noise and interference on that channel and time slot. Of these capabilities, conservation of spectrum is already a national priority in international regulatory planning. This book leads the reader through the technologies and regulatory considerations to support three major applications that raise an SDR's capabilities and make it a cognitive radio:

- 1. Spectrum management and optimizations.
- 2. Interface with a wide variety of networks and optimization of network resources.
- 3. Interface with a human and providing electromagnetic resources to aid the human in his or her activities.

Many technologies have come together to result in the spectrum efficiency and cognitive radio technologies that are described in this book. This chapter gives the reader the background context of the remaining chapters of this book. These technologies represent a wide swath of contributions upon which cognitive technologies may be considered as an application on top of a basic SDR platform.

To truly recognize how many technologies have come together to drive cognitive radio techniques, we begin with a few of the major contributions that have led up to today's cognitive radio developments. The development of digital signal processing (DSP) techniques arose due to the efforts of such leaders as Alan Oppenheim [1], Lawrence Rabiner [2, 3], Ronald Schaefer [3], Ben Gold, Thomas Parks [4], James McClellen [4], James Flanagan [5], fred harris [6], and James Kaiser. These pioneers² recognized the potential for digital filtering and DSP, and prepared the seminal textbooks, innovative papers, and breakthrough signal

²This list of contributors is only a partial representative listing of the pioneers with whom the author is personally familiar, and not an exhaustive one.

processing techniques to teach an entire industry how to convert analog signal processes to digital processes. They guided the industry in implementing new processes that were entirely impractical in analog signal processing.

Somewhat independently, Cleve Moler, Jack Little, John Markel, Augustine Gray, and others began to develop software tools that would eventually converge with the DSP industry to enable efficient representation of the DSP techniques, and would provide rapid and efficient modeling of these complex algorithms [7, 8].

Meanwhile, the semiconductor industry, continuing to follow Moore's law [9], evolved to the point where the computational performance required to implement digital signal processes used in radio modulation and demodulation were not only practical, but resulted in improved radio communication performance, reliability, flexibility, and increased value to the customer. This meant that analog functions implemented with large discrete components were replaced with digital functions implemented in silicon, and consequently were more producible, less expensive, more reliable, smaller, and of lower power [10].

During this same period, researchers all over the globe explored various techniques to achieve machine learning and related methods for improved machine behavior. Among these were analog threshold logic, which lead to fuzzy logic and neural networks, a field founded by Frank Rosenblatt [11]. Similarly, languages to express knowledge and to understand knowledge databases evolved from list processing (LISP) and Smalltalk and from massive databases with associated probability statistics. Under funding from the Defense Advanced Research Projects Agency (DARPA), many researchers worked diligently on understanding natural language and understanding spoken speech. Among the most successful speech-understanding systems were those developed by Janet and Jim Baker (who subsequently founded Dragon Systems) [12], and Kai Fu Lee et al. [13]. Both of these systems were developed under the mentoring of Raj Reddy at Carnegie Mellon. Today, we see Internet search engines reflecting the advanced state of artificial intelligence (AI).

In networking, DARPA and industrial developers at Xerox, BBN Technologies, IBM, ATT, and Cisco each developed computer-networking techniques, which evolved into the standard Ethernet and Internet we all benefit from today. The Internet Engineering Task Force (IETF), and many wireless-networking researchers continue to evolve networking technologies with a specific focus on making radio networking as ubiquitous as our wired Internet. These researchers are exploring wireless networks that range from access directly via a radio access point to more advanced techniques in which intermediate radio nodes serve as repeaters to forward data packets toward their eventual destination in an ad hoc network topology.

All of these threads come together as we arrive today at the cognitive radio era (see Figure 1.1). Cognitive radios are nearly always applications that sit on top of an SDR, which in turn is implemented largely from digital signal processors and general-purpose processors (GPPs) built in silicon. In many cases, the spectral efficiency and other intelligent support to the user arises by sophisticated networking of many radios to achieve the end behavior, which provides added capability and other benefits to the user.

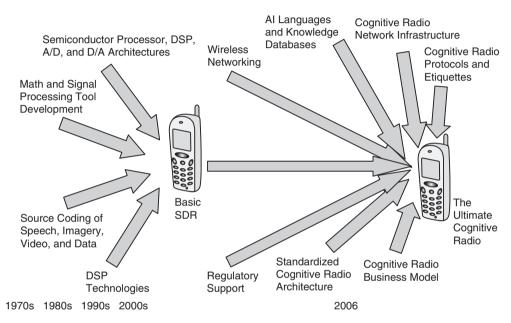


Figure 1.1: Technology timeline. Synergy among many technologies converge to enable the SDR. In turn, the SDR becomes the platform of choice for the cognitive radio.

1.3 A Brief History of SDR

An SDR is a radio in which the properties of carrier frequency, signal bandwidth, modulation, and network access are defined by software. Today's modern SDR also implements any necessary cryptography; forward error correction (FEC) coding; and source coding of voice, video, or data in software as well. As shown in the timeline of Figure 1.2, the roots of SDR design go back to 1987, when Air Force Rome Labs (AFRL) funded the development of a programmable modem as an evolutionary step beyond the architecture of the integrated communications, navigation, and identification architecture (ICNIA). ICNIA was a federated design of multiple radios, that is, a collection of several single-purpose radios in one box.

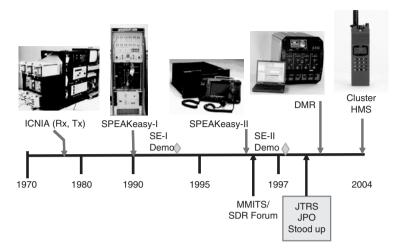


Figure 1.2: SDR timeline. Images of ICNIA, SPEAKeasy I (SE-I), SPEAKeasy II (SE-II), and Digital Modular Ratio (DMR) on their contract award timelines and corresponding demonstrations. These radios are the early evolutionary steps that lead to today's SDR.

Today's SDR, in contrast, is a general-purpose device in which the same radio tuner and processors are used to implement many waveforms at many frequencies. The advantage of this approach is that the equipment is more versatile and costeffective. Additionally, it can be upgraded with new software for new waveforms and new applications after sale, delivery, and installation. Following the programmable modem, AFRL and DARPA joined forces to fund the SPEAKeasy I and SPEAKeasy II programs.

SPEAKeasy I was a six-foot-tall rack of equipment (not easily portable), but it did demonstrate that a completely software-programmable radio could be built, and included a software-programmable cryptography chip called Cypress, with software cryptography developed by Motorola (subsequently purchased by General Dynamics). SPEAKeasy II was a complete radio packaged in a practical radio size (the size of a stack of two pizza boxes), and was the first SDR to include programmable voice coder (vocoder), and sufficient analog and DSP resources to handle many different kinds of waveforms. It was subsequently tested in field conditions at Ft. Irwin, California, where its ability to handle many waveforms underlined its extreme usefulness, and its construction from standardized commercial off-the-shelf (COTS) components was a very important asset in defense equipment. SPEAKeasy II subsequently evolved into the US Navy's digital modular radio (DMR), becoming a four-channel full duplex SDR, with many waveforms and many modes, able to

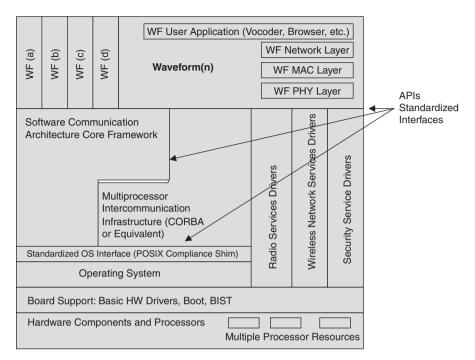


Figure 1.3: Basic software architecture of a modern SDR.³ Standardized APIs are defined for the major interfaces to assure software portability across many very different hardware platform implementations. The software has the ability to allocate computational resources to specific waveforms. It is normal for an SDR to support many waveforms in order to interface to many networks, and thus to have a library of waveforms and protocols.

be remotely controlled over an Ethernet interface using Simple Network Management Protocol (SNMP).

These SPEAKeasy II and DMR products evolved not only to define these radio waveform features in software, but also to develop an appropriate software architecture to enable porting the software to an arbitrary hardware platform, and thus to achieve hardware independence of the waveform software specification. This critical step allows the hardware to separately evolve its architecture independently from the software, and thus frees the hardware to continue to evolve and improve after delivery of the initial product.

The basic hardware architecture of a modern SDR (Figure 1.3) provides sufficient resources to define the carrier frequency, bandwidth, modulation, any

³BIST: built-in self-test; CORBA: Common Object Request Broker Architecture; HW: hardware; MAC: medium access control; OS: operating system; PHY: physical (layer); POSIX: Portable Operating System Interface; WF: waveform.