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NEW DIRECTIONS IN THE STUDY OF PEPTIDE H‐BONDS
AND PEPTIDE SOLVATION

There are two main reasons for the rapid growth of research into the
energetics of peptide H‐bonds and peptide solvation: to help solve the
problem of protein structure prediction and to complete the quantitation
of the energetics of folding. For a long time protein chemists have
accepted that the hydrophobic interaction (burial of nonpolar surface
area through folding) is the major source of free energy driving folding, as
proposed by Kauzmann (1959), but there has always been a nagging doubt
about the role of peptide H‐bonds. Even if each H‐bond contributes only
0 � 1 kcal/mol, which is sometimes used as a guesstimate, approximately
70% of the peptide groups in globular proteins make H‐bonds (Stickle
et al., 1992 ) and a contribution of �70 kcal/mol to�G for folding of a 100
residue protein would make an enormous difference to its stability. The
�H for forming an alanine peptide helix (�0.9 � 0.1 kcal/mol per resi-
due) has been measured accurately by titration calorimetry and it must
arise from the peptide H‐bond, not from burial of nonpolar surface,
because of its very small �Cp (see chapter by Makhatadze). Thus, peptide
H‐bonds may make a substantial favorable contribution to the enthalpy of
protein folding. Moreover, every H‐bonding group must make a H‐bond,
either within the folded protein or else to water, because the penalty for
burying a free H‐bonding group is large (�6 kcal/mol; Fleming and Rose,
2005). Thus, the drive for continued rapid progress in protein structure
prediction (Kuhlman et al., 2003), which requires a fuller understanding of
protein‐folding energetics, brings peptide H‐bonds and peptide solvation
into central focus.
Three chapters of this volume, by Dannenberg, Morozov and Kor-

temme, and Weinhold, deal with the problem of using quantum mechan-
ics to represent H‐bonds. Dannenberg reviews the lessons learned from
analyzing chains of H‐bonds in molecular crystals of small molecules such
as formamide and urea. Morozov and Kortemme discuss the properties of
H‐bonds seen in protein structures and compare them to properties
predicted by quantum mechanics. Weinhold tackles the structure of
water by performing quantum mechanics on defined clusters of water
molecules. These three chapters reach a common conclusion, namely
that the long‐standing electrostatic model of H‐bond formation, which
predicts linear H‐bonds that are formed noncooperatively, is too simple
and the H‐bonds found in proteins, as well as in water clusters, are partly
bent. The molecular mechanics force fields used commonly to simulate
protein structures and dynamic behavior have fixed partial atomic charges
ix



x NEW DIRECTIONS
consistent with the older electrostatic model of H‐bonds. Friesner tackles
the problem of making a force field that can adjust to the newer view of
H‐bonds by allowing the partial charges on atoms to vary through induced
polarization. He reports that the first results of using this force field to
represent protein docking reactions are promising as regards the H‐bonds
formed. Hermans comments on the recent development of a method for
performing quantum mechanics on an entire protein and discusses issues
raised in the three other chapters, such as whether Weinhold’s ‘‘new view’’
of water structure can be reconciled with the older view of water–water
H‐bonds resembling those found in ice. Im, Chen, and Brooks provide a
tool for rapid calculation of peptide solvation in proteins as they review
computation of protein electrostatics by use of generalized Born methods.
Solvation of the polar peptide group is electrostatic in character and may
be predicted by electrostatic algorithms, provided the protein or peptide
structure is known accurately.

Each of three experimental chapters deals with a recent experimen-
tal method of investigating peptide H‐bonds and peptide solvation.
Powers, Deechongkit, and Kelly review the first energetic results of making
mutations (amide to ester) that eliminate peptide H‐bonds. Makhatadze
summarizes recent calorimetric studies of peptide helix formation and
considers their implications for the energetics of protein folding. White
discusses the energetics of shaping membrane proteins based on the
results of inserting peptides into lipid bilayers. The twin problems of
making H‐bonds and accounting for any free H‐bonding groups take on
a new character when the newly formed protein resides in a nonaqueous
environment. Valuable lessons can be learned about the nature of folding
energetics in aqueous solution.

This list of chapters raises some questions, the most evident one being:
why are peptide H‐bonds treated here by quantum mechanics or by
introducing a new force field while peptide solvation is handled as a
problem in electrostatics? Why is not peptide solvation treated as the
problem of making H‐bonds between water molecules and free peptide
�NH and �C kO groups? There are various answers to this question,
the first being that probably quantummechanics will soon be used to study
H‐bonds between water and peptide�NH and�C kO groups. Weinhold
looks ahead to possible methods of tackling this problem. A second answer
is that if liquid water is considered to be a giant network of H‐bonded water
molecules, then it is just too big for present methods of performing
quantum mechanics. Weinhold suggests one approach for breaking this
problem into parts. A third answer is that backbone electrostatics, which
result from the large partial charges on the atoms of the peptide �NH
and �C kO groups, are important in other problems besides peptide



NEW DIRECTIONS xi
solvation, notably in the docking reactions of proteins with small ligands,
other proteins, and nucleic acids. Note that amide solvation is a directly
measurable quantity for small amides, as demonstrated by the pioneering
work of Wolfenden (1978), and the solvation of polar groups in small
molecules has been treated successfully as an electrostatic problem. The
parameters of the electrostatic algorithm DelPhi are calibrated specifically
to reproduce the solvation free energies of polar small molecules (Sitkoff
et al., 1994). When DelPhi is used to investigate how peptide solvation
depends on backbone conformation and on the presence of specific
neighboring residues in short peptides, surprising and interesting results
are found (Avbelj and Baldwin, 2004).
As noted earlier, the theoretical chapters on representing H‐bonds in

proteins, as well as in water clusters, agree that a paradigm shift is under
way. Morozov and Kortemme trace the evolution of the change in view-
point. Linear electrostatic H‐bonds, formed by atoms with fixed partial
charges, are very convenient for rapid computation using standard force
fields and the paradigm shift will not take place without a struggle. That
peptide H‐bonds are linear was assumed by Pauling and co‐workers (1951)
in their landmark paper predicting the structure of the a‐helix. It is
sometimes said that the business of a scientist is to introduce new ideas
into the field. Readers of this volume will find that long‐standing and basic
assumptions of structural biology are being challenged.
Acknowledgment
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Abstract

Hydrogen bonds are an important contributor to free energies of
biological macromolecules and macromolecular complexes, and hence
an accurate description of these interactions is important for progress in
biomolecular modeling. A simple description of the hydrogen bond is
based on an electrostatic dipole–dipole interaction involving hydrogen‐
donor and acceptor–acceptor base dipoles, but the physical nature of
hydrogen bond formation is more complex. At the most fundamental
level, hydrogen bonding is a quantum mechanical phenomenon with
contributions from covalent effects, polarization, and charge transfer.
Recent experiments and theoretical calculations suggest that both electro-
static and covalent components determine the properties of hydrogen
bonds. Likely, the level of rigor required to describe hydrogen bonding
will depend on the problem posed. Current approaches to modeling hy-
drogen bonds include knowledge‐based descriptions based on surveys of
hydrogen bond geometries in structural databases of proteins and small
r Inc.
rved.
35.00



2 MOROZOV AND KORTEMME
molecules, empirical molecular mechanics models, and quantum me-
chanics‐based electronic structure calculations. Ab initio calculations of
hydrogen bonding energies and geometries accurately reproduce energy
landscapes obtained from the distributions of hydrogen bond geometries
observed in protein structures. Orientation‐dependent hydrogen bonding
potentials were found to improve the quality of protein structure predic-
tion and refinement, protein–protein docking, and protein design.
I. Introduction

Accurate modeling of hydrogen bonding interactions is critical for prog-
ress in protein structure prediction, protein–protein docking, and protein
design. While the large number of hydrogen bonds in proteins and protein
interfaces underlines their importance, there may be no net gain in free
energy for hydrogen bond formation in protein folding and binding; the
formation of hydrogen bonds between protein atoms results in the loss of
hydrogen bonds made with water. Most polar groups in the protein interior
form hydrogen bonds to satisfy their hydrogen bonding potential (Baker
and Hubbard, 1984; McDonald and Thornton, 1994). These requirements
result in considerable energetic and structural constraints and are in part
responsible for the regular backbone–backbone hydrogen bonding pat-
terns of a‐helix and b‐sheet regular secondary structure elements (Pauling
and Corey, 1951). Similarly, hydrogen bonds, particularly side chain–
side chain hydrogen bonds, are thought to play important roles in the
specificity of macromolecular interactions (Lumb and Kim, 1995; Petrey
and Honig, 2000) and need to be taken into account in the prediction of
protein interaction preferences. Hydrogen bonds may be crucial for en-
abling a unique three‐dimensional protein conformation or binding mode
in protein design applications (Looger et al., 2003; Lumb and Kim, 1995).

What is needed for an accurate description of hydrogen bonding inter-
actions within and between proteins? The physical nature of hydrogen
bonds is complex, and calculation of electrostatics, polarization, exchange
repulsion, charge‐transfer, and coupling contributions to hydrogen bond-
ing energetics (Kollman, 1977; Morokuma, 1971; Singh and Kollman,
1985; Umeyana and Morokuma, 1977) from first principles is not straight-
forward for biological macromolecules. Likely, the level of rigor required
to explain certain molecular properties in question will depend on the
problem posed. Which simplifications can be made in which context? An
example discussed in detail in this chapter is the orientation dependence
of hydrogen bonds, which has been a subject of considerable debate. An
electrostatic dipole–dipole model of a hydrogen bond would predict a
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linear arrangement of the donor and acceptor dipoles. However, a ‘‘lone
pair’’ concept would imply directionality of the hydrogen bond (Fig. 1a).
What are the structural and energetic characteristics of hydrogen bonds in
protein structures and how can a model be devised that reproduces them?
Any simplified description of hydrogen bonds in biological molecules

needs to be tested by comparing its predictions against a large body of
experimental data, preferably obtained from macromolecules. A direct
comparison of predicted and observed hydrogen bonding energies in
biological macromolecules is not straightforward because the individual
components of the free energy cannot readily be measured independently
in experiments. More feasible but less direct strategies rely on the vast
information available on protein sequences and structures and use con-
cepts from computational protein design, protein structure prediction,
and protein–protein docking. The structure prediction and docking tests
Fig. 1. Mechanism and orientation dependence of hydrogen bond formation. A,
acceptor; D, donor; H, hydrogen; AB, acceptor base. (a) Orientation dependence of
hydrogen bond formation. Hydrogen bond formation along lone‐pair directions would
predict hydrogen bonding geometries such as the one shown on the left, whereas an
electrostatically dominated mechanism based on a dipole–dipole interaction (see b)
would favor the linear arrangement on the right. (b) Simple description of hydrogen
bonding interactions as the interaction of two dipoles with atom‐centered partial point
charges. Shaded spheres represent electron density at H and AB shifted along the H–D
and AB–A covalent bonds toward more electronegative atoms, resulting in the appear-
ance of partial charges on all four atoms. (c) Schematic representation of hydrogen
bond geometry. D, donor atom; H, hydrogen atom; A, acceptor atom; AB, acceptor base;
R1, R2, atoms bound to the acceptor base. Geometric parameters used here to describe
hydrogen bonds are as follows: dHA (Å), distance between hydrogen and acceptor atoms;
C (degree), angle at the acceptor atom; y (degree), angle at the hydrogen atom; X
(degree), dihedral angle around the A–AB axis.


