ADVANCED
 SYSTEMS DESIGN
- WITH JAVA

UML AND MDA

KEVIN LANO

Advanced Systems Design with
Java, UML and MDA

Kevin Lano

AMSTERDAM e BOSTON e HEIDELBERG e LONDON @ NEW YORK @ OXFORD
PARIS e SAN DIEGO e SAN FRANCISCO e SINGAPORE e SYDNEY e TOKYO

Elsevier Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Burlington MA 01803

First published 2005
Copyright © 2005, Kevin Lano. All rights reserved

The right of Kevin Lano to be identified as the author of this work has been
asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether

or not transiently or incidentally to some other use of this publication) without

the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of

a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed

to the publisher

Permissions may be sought directly from Elsevier's Science and Technology Rights
Department in Oxford, UK: phone: (+44) (0) 1865 843830; fax: (+44) (0) 1865 853333;
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the
Elsevier homepage (www.elsevier.com), by selecting ‘Customer Support’

and then ‘Obtaining Permissions’

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 6496 7

For information on all Elsevier Butterworth-Heinemann
publications visit our website at www.books.elsevier.com

Printed and bound in Great Britain

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID g, p0 Foundation

Contents

Preface

1 The Challenges of Software Design

1.1
1.2
1.3
1.4

Software development
Software development methods
Software development steps
Summary

2 The Unified Modelling Language

2.1
2.2
2.3
2.4
2.5
2.6

Introduction

Use case diagrams

Class diagrams

Object diagrams

Creating a platform-independent model
Exercises

3 The Object Constraint Language

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Using OCL and LOCA Constraints
OCL operations

Navigation expressions

Quantifiers

Association constraints

Recursion

Identity attributes

Association classes

Implicit and explicit associations
Interfaces and implementation inheritance
Packages, Subsystems and Models
Other class diagram elements
Exercises

iii

vii

Iy

13

14
14
15
18
30
32
36

40
40
46
48
52
53
55
58
61
62
63
66
68
69

iv

4 UML Dynamic Modelling Notations

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Statecharts

Interaction diagrams

The Scrabble system revisited

Consistency and completeness checking of UML models
UML tools

Summary

Exercises

5 Platform-Independent Design

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

The design process

Model transformations

Design patterns

System and subsystem design
Detailed design

Constructing a design architecture
User-interface design

Data repository design

Exception handling

5.10 Transforming a PIM to a PSM
5.11 Exercises

6 From Platform-Specific Models to Executable Code

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Production of a Java implementation

Synthesis of Java code

Synthesis case study: railway signalling system
Synthesis case study: inheritance example

Synthesis case study: derived attributes example
Data repository implementation: choosing a database
Production of an XML data repository

Summary

Exercises

7 Internet System Design

7.1
7.2
7.3
7.4
7.5

Fundamentals of internet systems
Design of internet systems

Design process for internet systems
Summary

Exercises

8 Web Services

8.1
8.2
8.3
8.4
8.5

Definitions of web services

J2EE

.Net

Communicating with web services
Examples of web services

Contents

72
72
81
83
90
94
95
95

97

97

98
100
113
115
117
118
121
125
125
128

132
132
135
138
142
145
148
148
155
155

158
158
162
209
210
211

215
215
217
222
223
225

Contents

10

11

8.6 Web service design guidelines

8.7 Implementing web services using J2EE
8.8 Mailing and Push technologies

8.9 The Semantic Web

8.10 Mobile computing and m-commerce
8.11 Summary

8.12 Exercises

Implementing the Model-Driven Architecture
9.1 MDA terminology

9.2 Model transformations

9.3 UML profiles

9.4 Transformations for internet systems
9.5 Implementing model transformations
9.6 MDA tools

9.7 Summary

9.8 Exercises

Case Studies of Web System Development

10.1 Property system specification

10.2 Web system generation

10.3 Interface components

10.4 Servlets

10.5 Database

10.6 JSP architecture example: Cat database
10.7 Summary

Catalogue of Model Transformations

11.1 Quality improvement transformations
11.2 Elaborations

11.3 Refinements

11.4 Design patterns

Bibliography

Appendices:

Scrabble History and Rules
A.1 The history of Scrabble
A.2 Official Scrabble rules

Web Application Development Support Package

Using Standard OCL
C.1 Why use LOCA?

234
234
239
243
244
247
247

249
249
252
260
261
263
266
267
267

269
269
271
273
281
287
291
296

297
297
310
311
320

323
325
325
325
325
329

331
334

vi

D Exercise Solutions

D.1
D.2
D3
D4
D.5
D.6
D.7
D.8

Index

Solutions:
Solutions:
Solutions:
Solutions:
Solutions:
Solutions:
Solutions:
Solutions:

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

Contents

335
335
340
343
346
353
356
367
372

373

Preface

The world of software development is experiencing dramatic growth and di-
versification, with a multitude of new languages and technologies continually
being introduced and elaborated: XML, .Net, web services, mobile computing,
etc. It therefore becomes increasingly difficult to keep up to date with even the
technologies in one particular area.

At the same time, important steps towards unification and standardisation
of notations and methods are taking place — the new UML 2.0 standard is the
prime example of these, and provides a common notation and set of concepts
which can be used in any object-oriented development for any kind of system.
The MDA! (Model-driven Architecture) likewise provides a general strategy for
separating platform-independent specifications of systems from their platform-
specific implementations.

In this book we cover the key languages and techniques for object-oriented
software design of a wide range of systems:

e UML 2.0: we introduce the core concepts and notations of UML, and
show how they can be used in practice.

e MDA: we describe the key elements of this approach, and transformations
of models using UML Profiles, XSLT, JMI and REL

e Internet system design: how to use JavaScript, Flash, XHTML, JSP
and Servlets to produce modular, usable, portable and accessable web
systems.

e Web Services: including technologies such as J2EE, JavaMail, .Net, SOAP,
WSDL and streaming.

e E-commerce: including the Semantic Web, FTP, WML and Bluetooth.

A catalogue of UML model transformations is also provided. The supporting
website contains the UML-RSDS tool to support the MDA process, and the
UML2Web tool for the synthesis of web applications from UML descriptions.

Examples of the use of these techniques are given throughout the book,
with three large case studies being used:

IMDA is a registered trademark of the OMG.

vii

viii Preface

e A system to play Scrabble.
e An internet jukebox using data streaming.
e An online estate-agent system.

Acknowledgements

Kelly Androutsopoulos, David Clark and Pauline Kan contributed to the pro-
gram synthesis concepts used in the book. Runa Jesmin contributed the ma-
terial on usability design of web systems. The internet jukebox case study is
due to Ruth O’Dowd, Taherah Ansari contributed the case study of XSLT and
REI transformations, and numerous other students at King’s College have also
helped in providing feedback on courses in which the material presented here
has been taught.

Chapter 1

The Challenges of Software Design

This chapter surveys current issues in software construction, the problems
caused by the pace of technological change, and the need for improved main-
tainability and portability of software. In particular we consider the need
for software development to focus more resources on construction of platform-
independent models to reduce the effort in recreating a system for a new plat-
form or technology.

1.1 Software development

The purpose of software! remains the same today as it was at the beginning of
computing in the 1940s: to automate the solution of complex problems, using
computers. However the nature of the problems to be solved has changed
dramatically, and so have the programming techniques employed: the first
computers were used for highly critical and specialised tasks such as decryption,
and ‘programming’ them meant reconfiguring the hardware (vacuum tubes or
‘valves’) of these huge and massively expensive devices.

Today, the variety of tasks for which computational power is used spans the
whole range of business, social and creative endeavours. Increasingly, instead of
performing some isolated computation, software systems form active or passive
elements in a communicating network of services and agents, each new system
depending essentially on existing capabilities of previously developed systems,
whose services it uses.

Programming techniques have also advanced in the decades that followed
the 1940s, through the use of languages of increasing power and abstraction:
Assembly languages, FORTRAN, C, C++, and now Java and C#. Instead of
manipulating instructions at the level of the hardware, programmers specify
data and algorithms in terms of the problem domain. The rise of object-
orientation as a language for problem description and solution is the prime

I The name ‘software’ for computer programs seems to have been used for the first time
by John Tukey in the January 1958 edition of the American Mathematical Monthly journal
[50].

2 Chapter 1. The Challenges of Software Design

present-day example of this progression. Object-oriented languages have be-
come the dominant trend in software development, and even archaic languages
such as FORTRAN, BASIC and COBOL have been extended with object-
oriented facilities.

The software development activities undertaken by companies today have
also changed. Instead of building new stand-alone systems, software develop-
ment is often used to enhance a company’s enterprise information capabilities
by building new functions into an already existing infrastructure, or by gluing
together existing systems to carry out new services. In general, the emphasis
in software development is increasingly on systems as components in larger
systems, components which interact and combine with each other, perhaps in
ways that were not envisaged by their original developers.

For example, in the jukebox audio streaming case study of Chapter 8, ex-
isting web services specialised for streaming audio data need to be combined
with a playlist database, control unit and a device for playing the downloaded
data.

Another factor has arisen, of profound significance for the software industry,
which is the pace of change and introduction of new technologies. Although the
rate of progress in the computer industry has always been rapid compared to
other fields, since the advent of the internet, the dissemination and uptake of
new languages and techniques has reached a level that seems to put any system
more than a year old in danger of obsolescence, and requires continual revision
in education and training of developers.

For example, it took over a decade for object-orientation to emerge from
research and niche application areas to become the pervasive feature of modern
programming languages, yet more recently XML [53] has made the same scale
of transition in under five years.

The rapid change and introduction of new software technologies and lan-
guages, whilst obviously bringing benefits in enhanced capabilities, has also
resulted in expense and disruption to companies using software, due to the
need to continually upgrade and migrate applications.

The concept of Model-driven Architecture (MDA) [28] aims to alleviate
this problem by focusing developer effort at higher levels of abstraction, in
the creation of platform-independent models (PIMs) from which versions of
the system appropriate to particular technologies/languages can be generated,
semi-automatically, using platform-specific models (PSMs). This means that
companies can retain the key elements of their software, especially the business
rules or logical decision-making code, in a form that is independent of changes
in technology, and that can be used to generate, at relatively low cost, new
implemented systems for particular technologies.

The MDA approach (Figure 1.1) can be seen as a continuation of the trend
towards greater abstraction in programming languages. In this case, the ‘pro-
gramming’ is intended to take place at the level of diagrammatic UML models
and constraints on these models. Executable versions of the system are then
generated, as an extension of the compilation process.

This book will describe one approach for making this vision of reusable

1.2. Software development methods 3

Platform Independent
Model

Transformations

Platform Specific Model
(Platform A)

Platform Specific Model
(Platform B)

Code Generation

Implemented System
(Platform B)

Implemented System
(Platform A)

Figure 1.1: The MDA process

software a practical reality. In the remainder of the chapter we survey existing
software development methods and the key concepts of software development
processes, and discuss how these relate to the MDA.

1.2 Software development methods

A software development method is a systematic means of organising the pro-
cess and products of a software construction project. A software development
method typically consists of:

e Notations or languages to describe the artifacts being produced, for ex-
ample UML [51] can be used to describe requirements, analysis or design
models.

o A process, defining the sequence of steps taken to construct and validate
artifacts in the method.

e Tools to support the method.

Some popular development methods are the spiral model, the waterfall model,
the rational unified process, and extreme programming.

1.2.1 The Waterfall model

In the waterfall model [41], the stages of development such as requirements
definition, design and implementation are separated into complete tasks which
must be fully carried out and ‘signed off’ before the next task can be started
(Figure 1.2). Each stage produces a deliverable (eg, a complete requirements
specification, complete system design) which is intended to not need much
further revision.

4 Chapter 1. The Challenges of Software Design

Requirements
Definition
System and

Software Design

Implementation &

unit testing

Integration &

system testing

Operation and
maintenance

Feedback

Figure 1.2: Waterfall model process

1.2.2 The Spiral model

The spiral model [5] is based on an iteration of incremental development steps
(Figure 1.3). Each iteration (cycle of the spiral) produces a deliverable, such as
an enhanced set of models of a system, or an enhanced prototype of a system.
In each iteration a review stage is carried out to check that the development is
progressing correctly and that the deliverables meet their requirements. Unlike
the waterfall model, the deliverables produced may be partial and incomplete,
and can be refined by further iterations.

1.2.3 The Rational Unified Process (RUP)

The Rational Unified Process [43] defines four phases in the development
process:

1. Inception: definition of project scope, goals of the system, evaluation of
its feasibility and general estimates of project cost and time. A prototype
may be built to assist in checking if the project is viable. The main process
in this phase is requirements definition, producing initial use cases in
agreement with the users.

2. FElaboration: requirements analysis and definition of architectural design.
The use cases are elaborated and structured, forming a starting point for
the design of the overall architecture of the system.

3. Construction: design and implementation through the development of
prototypes, culminating in the delivery of a beta version of the system to
user sites.

4. Transition: testing, correction of defects detected by users, rollout of new
versions until a production version is reached.

1.2. Software development methods b)

DETERMINE OBJECTIVES, Cumulative cost EVALUATE ALTERNATIVES,
ALTERNATIVES, CONSTRAINTS IDENTIFY & RESOLVE RISKS

Risk Analysis

Risk Analysis

[

Requirements Plan _
Life Cycle Plan Concept of
Operation

Operational

Prototype

REVIEW

Software
Requirements

Software
Product
Design

Detailed
Design

Development _
Plan Requirements

Validation

Integration
and Test Plan

Unit >
.\ Test

Design Validation and
Verification

N
Integration \
T | and Test
\ Acceptance '\

Imple- 1 Test \

mentation)

DEVELOP, VERIFY

NEXT LEVEL PRODUCT
\

PLAN NEXT PHASES T

~N~—k1Wr -~

Progress through steps

Figure 1.3: Spiral model process

The major milestones in development are the progression from one phase to
another: the decision to commit to the project in the Inception — Elaboration
progression, an accepted first revision of the requirements document in the
Elaboration — Construction progression, and a beta release in the
Construction — Transition progression.

The process is use-case driven: each design module should identify what
use cases it implements, and every use case must be implemented by one or
more modules.

1.2.4 Extreme Programming (XP)

Extreme programming tries to minimise the complexity of following a particular
development process [4]. Instead of prescribing a rigid set of development steps
and milestones, it emphasises a number of practices:

o Realistic planning: customers make the business decisions about a system,
the developers make the technical decisions. Plans are reviewed and
revised as necessary.

o Small releases: release a useful system quickly, and release updates at
frequent intervals.

e Metaphor: all programmers should share an understanding of the purpose
and global strategy of the system being developed.

6 Chapter 1. The Challenges of Software Design

o Simplicity: design everything to be as simple as possible instead of pre-
paring for future complexity.

o Testing: both customers and programmers write tests. The system should
be frequently tested.

e Refactoring: the system should be restructured whenever necessary to
improve the code and eliminate duplication.

o Pair programming: put programmers together in pairs, each pair writes
code on the same computer.

o Collective ownership: all programmers have permission to change any
code as necessary.

e (Continuous integration: whenever a task is completed, build a complete
system containing this part and test it.

o J0-hour week: don’t work extreme hours to try to compensate for plan-
ning errors.

o On-site customer: an actual customer of the system should be available
at all times.

o Coding standards: follow standards for self-documenting code.

XP is a lightweight development approach which aims to avoid the time-
consuming documentation and structures of other methods. Code can be writ-
ten immediately after definition of use cases (together with test plans for each
use case). The code produced can then be refactored and restructured to pro-
duce a more efficient and maintainable implementation.

1.2.5 Which method to choose?

The waterfall model has often been criticised for its rigid progression from one
task to the next, which can lead to a progressive build-up of delays, as one
task cannot begin until its predecessor has completed. On the other hand,
it imposes greater discipline than more evolutionary incremental approaches,
where ‘completion’ of a task is left open-ended, and indeed, may not end.

The cumulative iterations and reviews of the spiral model can lead to earlier
detections of errors, and therefore lower costs and reduced risks of failure than
monolithic methods such as the waterfall model.

The Rational Unified Process, like the waterfall model, also has an em-
phasis on development phases with milestones as the progressions between
them. Some software engineers believe that, in contrast, an architecture-driven
approach is necessary for object-oriented development, whereby global phases
are replaced as the focus by the modular construction of systems, component
by component and layer by layer. For each layer there are separate specific-
ation, design and implementation activities. XP may be a better fit for this
approach than phase-centred methods.

In principle, any of the above development methods can be used in a MDA
development, although the end product of the process may be a PIM or a
PIM plus PSMs, instead of executable code. With the MDA, the progression

1.3. Software development steps 7

from specification to design, and from design to implementation, may be partly
automated. This enables developer effort to be concentrated on producing high-
quality and correct PIMs. Refactoring transformations and design patterns are
of particular importance in this respect, and we describe how these can be used
for PIM to PIM mapping and PIM to PSM mapping in Chapter 5.

1.3 Software development steps

A number of stages are typically present in any software development project,
regardless of the development model and methods chosen. We will illustrate
these stages for two different projects: (i) a system to play Scrabble against
human players, and (ii) a system to stream music from a server to a home
entertainment system.

1.3.1 Feasibility analysis

This stage evaluates the technical options for implementing the system,
determining if it is feasible to implement it, and if so, if there is a cost-effective
implementation. Background research may be needed to investigate similar
systems that already exist, and what services are available to carry out parts
of the required functionality. Trial implementation/prototyping could also be
carried out, or mathematical estimation (eg, of bandwidth or data storage
requirements).

This stage can be carried out as part of the risk analysis phase in the earliest
iteration of the spiral model, or as the first step in the waterfall model. In the
spiral model a developer could recheck the feasibility of the system after each
iteration as part of the review task.

For example, in the case of the Scrabble playing system, this stage would
investigate the rules of Scrabble, existing AI techniques and programs such as
Maven [46] and the feasibility of different memory storage and lookup schemes
for dictionaries.

For the Jukebox project, this stage would involve investigating the state
of available music streaming technologies, for example, streaming servers such
as Helix (http://www.realnetworks.com/) and checking that these support the
required functionality of the system.

1.3.2 Requirements definition

Provided that it has been determined that there is some feasible and cost-
effective way of constructing the system, the development process can advance
to elicit in detail the required functionality of the system.

This stage systematically records the requirements that the customer(s) of
the system have for it, and the constraints imposed on the system by existing

8 Chapter 1. The Challenges of Software Design

systems that it is required to operate with, including existing work practices.
For the Scrabble system, the list of requirements could include:

1. The system must enable between one and three human players to play,
together with the computer player.

2. Standard Scrabble rules for moves and the validity of moves should be
enforced.

3. The system should check all words formed in each move, and only accept
the move if all the words appear in its dictionary.

4. The system should keep a history of all valid moves made in a game: the
letters played, the player who moved, and the score of the move.

For the Jukebox, the requirements could include:

1. The server should be capable of storing 100 tracks.

2. The user can add a track to the server from a CD, by inserting the CD
into their computer and following on-screen instructions from the system.

3. The user interface can be on a separate device to the server. The Ul
provides an index of tracks, a way to select tracks and playback control
(play, stop, fast forward, rewind).

Use-case models in UML can be drawn for either system, to make clear what
users or external systems are involved in each functional requirement. Figure
1.4 shows some use cases for the Scrabble system, and Figure 1.5 those for the
jukebox.

add player

start game Computer
Player

select letters - @

\ generate move 7

\ make move

end game

¥
&
=

Figure 1.4: Use cases for Scrabble player

1.3. Software development steps 9

view/edit playlists

User

Q / play track/playlist
————= (upload track

Figure 1.5: Use cases for internet jukebox

1.3.3 Analysis

This stage builds precise models of the system, using suitable graphical or
mathematical notations to represent its state and behaviour in an abstract,
platform-independent manner. In a critical system, such as a railway signalling
system, formal validation that the analysis models satisfy required properties
would be carried out.

For the Scrabble system a fragment of the class diagram is shown in Figure
1.6. A fundamental property is that the total number of letters in the game is
always 100, these may be distributed between the player’s racks, the bag, or
the board. Hence the annotation in the top corner of the Letter class.

For the Jukebox, the core data model is much simpler (Figure 1.7). There
will also be other web forms associated with the system, for logging in, viewing
and creating playlists, etc.

1.3.4 Design

This stage defines an architecture and structure for the implementation of the
system, typically dividing it into subsystems and modules which have respons-
ibility for carrying out specific parts of its functionality and managing parts of
its data. The activities in design include:

1. Architectural design: define the global architecture of the system, as a set
of major subsystems, and indicate the dependencies between them.
For example, partitioning a system into a GUI, functional core, and data
repository. The GUI depends on the core because it invokes operations
of the core, and the core may depend on the GUI (if it invokes GUI
operations to display the result of computations, for example). The core
depends on the repository. There may be no other connections. Such an
architecture is termed a three tier architecture. Figure 1.8 shows such a
design architecture for the Scrabble system.

10 Chapter 1. The Challenges of Software Design

Board
]gsame JaceM. ! Square
oard | placeMove(m: isOccupied():
Game 1 Move) Boolean
turn: 1.4 getSquare(i: 1..15 getLetterScore():
moveNumber: 1 Jj: 1..15): Squarg Integer
Integer =1 0..1
startGame()
gameEnded(): 1
Boolean|
endMove(m: Move) 1 ‘ ‘ ‘
addPlayer(p: Player) game Bag OrdinarySquare DoubleLetter TripleLetter
1 1 Bag |/bagSize: 0..100 Square Square
isEmpty(): Boolean|

giveLetters(x: DoubleWord TripleWord
Integer) : Set Square Square
players

0.1 S L

quareletter
{ordered} \ 5 4 bag 0-100 |0.1

Player Letters Letter 100

name: String symbol: char

{identity} rackLetters | score: Integer
score: Integer {ordered} {readOnly}

0.7,

setSymbol(c: char)

1 1 1playerRack 0.1

Rack
HumanPlayer rackSize: 0..7
addLetters(l:
ComputerPlayer Set)

removeLetters(l:
#| history {ordered} Set)

Move « 0.1
score: Integer f LetterMove

1

n: Integer): letterMoves
Boolean
calculateScore(
b: Board):
Integer

Figure 1.6: Extract from analysis model of Scrabble player

PlayState <<enumeration>>
stopped Player

play [setting: Play |
rewind 1 setting: Satiate
fastForward

PlayForm

requested
Title: String
playTrack()

1| _Controller

Playlist
name: String

1 .

+ | description:

String

UploadForm

0..1\ playing
uploadTo: * Track
String title: String
uploadItem: artist: String
String

upload()

*

Figure 1.7: Analysis model of jukebox

1.3. Software development steps 11

GUI
Player GUI Administrator
GUI
Functional Core \ ¢/
Move Game Strategy
Management
Data Repository \
Move History Dictionary
Data

Figure 1.8: Architecture of Scrabble system

MDA may be applied only to the functional core of a system, which
contains the business rules of the system, or to all tiers, provided suitable
models of these tiers can be defined.

2. Subsystem design: decomposition of these global subsystems into smaller
subsystems which each handle some well-defined subset of its respons-
ibilities. This process continues until clearly identified modules emerge
at the bottom of the subsystem hierarchy. A module typically consists
of a single entity or group of closely related entities, and operations on
instances of these entities.

3. Module design: define each of the modules, in terms of:

(a) the data it encapsulates — eg: a list of attributes and their types or
structures;

(b) the properties (invariants or constraints) it is responsible for main-
taining (ie, for ensuring that they are true whenever an operation is
not in progress);

(c) the operations it provides (external services) — eg: their names, input
and output data, and specifications. This is called the interface of
the module.

4. Detailed design: for each operation of the module, identify the steps of
its processing.

Specialised forms of design include interface design, to plan the appearance
and sequencing of dialogs and other graphical interface elements for user in-

