Copyrighted Material

Statistical Quality Control for the Six Sigma Green Belt

Bhisham C. Gupta & H. Fred Walker

Statistical Quality Control for the Six Sigma Green Belt

Also available from ASQ Quality Press:

Applied Statistics for the Six Sigma Green Belt Bhisham C. Gupta and H. Fred Walker

The Certified Six Sigma Green Belt Handbook Roderick A. Munro, Matthew J. Maio, Mohamed B. Nawaz, Govindarajan Ramu, and Daniel J. Zrymiak

Transactional Six Sigma for Green Belts: Maximizing Service and Manufacturing Processes Samuel E. Windsor

The Executive Guide to Understanding and Implementing Lean Six Sigma: The Financial Impact Robert M. Meisel, Steven J. Babb, Steven F. Marsh, & James P. Schlichting

Applying the Science of Six Sigma to the Art of Sales and Marketing Michael J. Pestorius

Six Sigma Project Management: A Pocket Guide Jeffrey N. Lowenthal

Six Sigma for the Next Millennium: A CSSBB Guidebook Kim H. Pries

The Certified Quality Engineer Handbook, Second Edition Roger W. Berger, Donald W. Benbow, Ahmad K. Elshennawy, and H. Fred Walker, editors

The Certified Quality Technician Handbook Donald W. Benbow, Ahmad K. Elshennawy, and H. Fred Walker

The Certified Manager of Quality/Organizational Excellence Handbook: Third Edition Russell T. Westcott, editor

Business Performance through Lean Six Sigma: Linking the Knowledge Worker, the Twelve Pillars, and Baldrige James T. Schutta

To request a complimentary catalog of ASQ Quality Press publications, call 800-248-1946, or visit our Web site at http://qualitypress.asq.org.

Statistical Quality Control for the Six Sigma Green Belt

Bhisham C. Gupta H. Fred Walker

ASQ Quality Press Milwaukee, Wisconsin American Society for Quality, Quality Press, Milwaukee 53203 © 2007 by American Society for Quality All rights reserved. Published 2007 Printed in the United States of America 12 11 10 09 08 07 06 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Gupta, Bhisham C., 1942– Statistical quality control for the Six sigma green belt / Bhisham C.
Gupta and H. Fred Walker. p. cm.
Includes index.
ISBN 978-0-87389-686-3 (hard cover : alk. paper)
1. Six sigma (Quality control standard)
2. Quality control—Statistical methods.
I. Walker, H. Fred, 1963– II. Title.

TS156.G8674 2007 658.5'62—dc22

2007000315

No part of this book may be reproduced in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Publisher: William A. Tony Acquisitions Editor: Matt Meinholz Project Editor: Paul O'Mara Production Administrator: Randall Benson

ASQ Mission: The American Society for Quality advances individual, organizational, and community excellence worldwide through learning, quality improvement, and knowledge exchange.

Attention Bookstores, Wholesalers, Schools, and Corporations: ASQ Quality Press books, videotapes, audiotapes, and software are available at quantity discounts with bulk purchases for business, educational, or instructional use. For information, please contact ASQ Quality Press at 800-248-1946, or write to ASQ Quality Press, P.O. Box 3005, Milwaukee, WI 53201-3005.

To place orders or to request a free copy of the ASQ Quality Press Publications Catalog, including ASQ membership information, call 800-248-1946. Visit our Web site at www.asq. org or http://qualitypress.asq.org.

Quality Press 600 N. Plankinton Avenue Milwaukee, Wisconsin 53203 Call toll free 800-248-1946 Fax 414-272-1734 www.asq.org http://www.asq.org/quality-press http://standardsgroup.asq.org E-mail: authors@asq.org

In loving memory of my parents, Roshan Lal and Sodhan Devi. —Bhisham

In loving memory of my father, Carl Ellsworth Walker. —Fred

Contents

List of L	Figures		xiii
List of	Tables.		xix
Preface	,		xxi
Acknow	lodami		vviii
лскион	reugme		ллии
Chapte	r 1 I	ntroduction to Statistical Quality Control	1
1.1	Identit	fying the Tools of SQC	2
1.2	Relati	ng SQC to Applied Statistics and to DOE	2
1.3	Under	standing the Role of Statistics in SQC	4
1.4	Makin	g Decisions Based on Quantitative Data	5
1.5	Practio	cal versus Theoretical or Statistical Significance	5
1.6	Why V	We Cannot Measure Everything	7
1.7	A Woi	rd on the Risks Associated with Making Bad	
	Decisi	ons	7
	A E		11
Chapte	er Z E	Aements of a Sample Survey	11
2.1	Basic		11
2.2	Sampl		14
2.2	Simple	Extinuation of a Develotion Manual Develotion Tetal	15
	2.2.1	Estimation of a Population Mean and Population Iotal	10
	2.2.2	Confidence Interval for a Population Mean and	20
	222	Population Iolal	20
22	Z.Z.J Stratif	Determination of Sample Size	20
2.5	2 2 1	Estimation of a Dopulation Maan and	21
	2.3.1	Population Total	$\gamma\gamma$
	222	Confidence Interval for a Dopulation Mean and	
	2.3.2	Population Total	24
	223	Determination of Sample Size	24
24	2.J.J System	natic Random Sampling	20
2.7	241	Estimation of a Population Mean and	21
	<i>∠</i> , , , 1	Population Total	28
			20

	2.4.2	Confidence Interval for a Population Mean	
		and Population Total	30
	2.4.3	Determination of Sample Size	30
2.5	Cluste	er Random Sampling	32
	2.5.1	Estimation of a Population Mean and	
		Population Total	33
	2.5.2	Confidence Interval for a Population Mean and	
		Population Total	34
	2.5.3	Determination of Sample Size	37
Chapte	er 3 F	Phase I (Detecting Large Shifts)—SPC: Control	
-	(Charts for Variables	39
3.1	Basic	Definition of Quality and Its Benefits	40
3.2	SPC.	~ ~	41
	Check	s Sheet	43
	Pareto) Chart	45
	Cause	e-and-Effect (Fishbone or Ishikawa) Diagram	47
	Defec	t Concentration Diagram.	48
	Run C	Chart	50
3.3	Contr	ol Charts for Variables	51
	Proce	ss Evaluation	51
	Actio	n on Process	51
	Actio	n on Output	51
	Variat	ion	52
	Comr	non Causes or Random Causes	52
	Speci	al Causes or Assignable Causes	52
	Local	Actions and Actions on the System	53
	Prepa	ration for Use of Control Charts	55
	Benef	its of Control Charts	56
	Ratio	nal Samples for a Control Chart	57
	ARL	1	57
	OC C	urve	59
	3.3.1	Shewhart \overline{X} and R Control Charts	60
	3.3.2	Shewhart \overline{X} and R Control Charts When Process	
		Mean μ and Process Standard Deviation σ Are	
		Known	68
	3.3.3	Shewhart Control Chart for Individual	
		Observations	69
	3.3.4	Shewhart \overline{X} and S Control Charts	72
3.4	Proce	ss Capability	79
Chapt	er4 H	Phase I (Detecting Large Shifts)—SPC: Control	00
4 1			83
4.1	Contr	ol Charts for Attributes	83
4.2	The p	Chart: Control Chart for Fraction of Nonconforming	05
	Contr	al Limits for the n Chart	0) 05
	Cond	of Limits for the p Chart \dots	05

	4.2.1 The <i>p</i> Chart: Control Chart for Fraction	00
12	Nonconforming with Variable Samples	89
4.5	Units	02
	Control Limits for the <i>nn</i> Control Chart	92
4.4	The <i>c</i> Chart (Nonconformities versus Nonconforming	12
	Units)	93
4.5	The <i>u</i> Chart	96
Chapte	er 5 Phase II (Detecting Small Shifts)—SPC:	
r	Cumulative Sum, Moving Average, and	
	Exponentially Weighted Moving Average	
	Control Charts	101
5.1	Basic Concepts of the CUSUM Control Chart	102
	CUSUM Control Chart versus Shewhart X-R Control	
	Chart	102
5.2	Designing a CUSUM Control Chart	104
	5.2.1 Two-Sided CUSUM Control Chart Using Numerical	100
	Procedure	106
	5.2.2 The Fast Initial Response Feature for the CUSUM	110
	5.2.2 Combined Showhert CUSUM Control Chart	112
	5.2.5 Combined Snewhalt-CUSUM Control Chart	115
	Variability	116
53	The MA Control Chart	117
5.5 5.4	The EWMA Control Chart	120
		120
Chapte	er 6 Process Capability Indices	127
6.1	Development of Process Capability Indices	127
6.2	PCI C_p	130
6.3	$\operatorname{PCI} C_{pk} \dots \dots$	135
6.4	$\operatorname{PCI} C_{pm} \dots \dots$	136
6.5	$\operatorname{PCI} C_{pmk} \dots \dots$	138
6.6	$PCI C_{pnst} \dots \dots$	139
	Examples Comparing C_{pnst} with PCIs C_{pk} and C_{pm}	141
67	b.b.1 Certain Features of the Capability Index C_{pnst}	142
0.7	PCIS P_p and P_{pk}	144
Chapte	er 7 Measurement Systems Analysis	147
7.1	Using SOC to Understand Variability	148
	Variability in the Production or Service Delivery Process	148
	Variability in the Measurement Process	148
7.2	Evaluating Measurement System Performance	149
	7.2.1 MSA Based on Range	150
	7.2.2 MSA Based on ANOVA	156
7.3	MCIs	162
	MCI as a Percentage of Process Variation (MCI_{pv})	162
	MCI as a Percentage of Process Specification (MCI_{ps})	163

Chapt	er 8 PRE-control	165
8.1	PRE-control Background.	165
	8.1.1 What Are We Trying to Accomplish with	
	PRE-control?	166
	8.1.2 The Conditions Necessary for PRE-control	
	to Be Valid.	166
8.2	Global Perspective on the Use of PRE-control	
	(Understanding the Color-Coding Scheme)	167
8.3	The Mechanics of PRE-control	168
	Step 1: Ensure the Process Is Sufficiently Capable	168
	Step 2: Establish the PRE-control Zones	169
	Step 3: Verify That the Process Is Ready to Begin	
	PRE-control	169
	Step 4: Begin Sampling	169
	Step 5: Apply the PRE-control Rules	169
8.4	The Statistical Basis for PRE-control	170
8.5	Advantages and Disadvantages of PRE-control	170
	8.5.1 Advantages of PRE-control	171
	8.5.2 Disadvantages of PRE-control	171
8.6	What Comes After PRE-control?	172
Chapt	er 9 Acceptance Sampling	173
9.1	The Intent of Acceptance Sampling	173
9.2	Sampling Inspection versus 100 Percent Inspection	174
9.3	Sampling Concepts	175
	9.3.1 Lot-by-Lot versus Average Quality Protection	175
	9.3.2 The OC Curve	175
	9.3.3 Plotting the OC Curve	176
	9.3.4 Acceptance Sampling by Attributes	177
	9.3.5 Acceptable Quality Limit	178
	9.3.6 Lot Tolerance Percent Defective	178
	9.3.7 Producer's and Consumer's Risks	178
	9.3.8 Average Outgoing Quality	178
	9.3.9 Average Outgoing Quality Limit	179
0.4	9.3.10 Lot Size, Sample Size, and Acceptance Number	180
9.4	Types of Attribute Sampling Plans	182
	9.4.1 Single Sampling Plans	182
	9.4.2 Double Sampling Plans.	184
	9.4.3 OC Curve for a Double Sampling Plan.	184
	9.4.4 Multiple Sampling Plans.	180
	9.4.5 AOQ and AOQL for Double and Multiple Plans	180
0.5	9.4.6 Average Sample Number	180
9.5	Sampling Standards and Plans.	188
	9.5.1 ANSI/ASU 21.4-2005	188
	9.5.2 Levels of Inspection	189
	9.5.5 Types of Sampling	191
	9.3.4 Douge-Komig Tables	193

9.6	Variables Sampling Plans	193
	9.6.1 ANSI/ASQ Z1.9-2003	194
9.7	Sequential Sampling Plans	199
9.8	Continuous Sampling Plans	201
	9.8.1 Types of Continuous Sampling Plans	201
9.9	Variables Plan When the Standard Deviation Is Known	203
Chapte	r 10 Computer Resources to Support SQC: MINITAB	225
10.1	Using MINITAB—Version 14	225
	Getting Started with MINITAB	226
	Creating a New Worksheet	226
	Saving a Data File.	227
	Retrieving a Saved MINITAB Data File	227
	Saving a MINITAB Project.	227
	Print Options	228
10.2	The Shewhart Xbar-R Control Chart	228
10.3	The Shewhart Xbar-R Control Chart When Process	
	Mean μ and Process Standard Deviation σ Are Known	230
10.4	The Shewhart Control Chart for Individual Observations	230
10.5	The Shewhart Xbar-S Control Chart—Equal Sample	
	Size	231
10.6	The Shewhart Xbar-S Control Chart—Sample Size	• • • •
	Variable	233
10.7	Process Capability Analysis.	235
10.8	The <i>p</i> Chart: Control Chart for Fraction Nonconforming	•••
10.0	Units.	238
10.9	The <i>p</i> Chart: Control Chart for Fraction Nonconforming	a aa
10.10	Units with Variable Sample Size	239
10.10	The <i>np</i> Chart: Control Chart for Nonconforming Units	239
10.11	The <i>c</i> Chart	240
10.12	$\frac{1}{2} \text{The } u \text{ Chart } \dots $	241
10.13	5 The <i>u</i> Chart: Variable Sample Size	242
10.14	E Designing a CUSUM Control Chart	243
10.12	The FIR Feature for a CUSUM Control Chart	245
10.10	The MA Control Chart.	245
10.17	Manual Sector Const 11 to Angle in	247
10.18	10.18.1 Measurement System Capability Analysis	249
	10.18.1 Measurement System Capability Analysis	250
	(Using Crossed Designs)	230
Chapte	r 11 Computer Resources to Support SQC: JMP	261
11.1	Using JMP—Version 6.0	261
	Getting Started with JMP	263
	Creating a New Data Table	264
	Opening an Existing JMP File	265
	Saving JMP Files	265
	Print Options	266
	Using JMP Images for Reporting	267

11.2	The Shewhart XBar and R Control Chart	268
11.3	The Shewhart XBar and S Control Chart—Equal	
	Sample Size	270
11.4	The Shewhart XBar and S Control Chart—Sample Size	
	Variable	272
11.5	The Shewhart Control Chart for Individual	
	Observations	273
11.6	Process Capability Analysis.	275
11.7	The <i>p</i> Chart: Control Chart for Fraction Nonconforming	
	Units with Constant Sample Size.	277
11.8	The <i>p</i> Chart: Control Chart for Fraction Nonconforming	
	Units with Sample Size Varying	281
11.9	The <i>np</i> Chart: Control Chart for Nonconforming Units	281
11.10	The <i>c</i> Chart	282
11.11	The <i>u</i> Chart with Constant Sample Size	284
11.12	The <i>u</i> Chart: Control Chart for Fraction Nonconforming	
	Units with Sample Size Varying	286
11.13	The CUSUM Chart	286
11.14	The Uniformly Weighted Moving Average Chart	288
11.15	The EWMA Control Chart	290
11.16	Measurement System Capability Analysis	292
	11.16.1 Measurement System Capability Analysis	
	(Using Crossed Designs)	293
Appendi	x Statistical Factors and Tables	299
Rihlioora	nhv	327
Index	<i>P</i> ^{<i>ny</i>} · · · · · · · · · · · · · · · · · · ·	221
таех	•••••••••••••••••••••••••••••••••••••••	551

List of Figures

Figure 1.1	The five tool types of SQC.	2
Figure 1.2	Relationship among applied statistics, SQC, and DOE	3
Figure 1.3	Order of SQC topics in process or transactional Six Sigma	4
Figure 1.4	Detecting statistical differences.	6
Figure 1.5	Detecting practical and statistical differences.	6
Figure 1.6	Sample versus population	7
Figure 3.1	Flowchart of a process.	41
Figure 3.2	Pareto chart for data in Example 3.1	45
Figure 3.3	Pareto chart when weighted frequencies are used	47
Figure 3.4	An initial form of a cause-and-effect diagram.	48
Figure 3.5	A complete cause-and-effect diagram.	49
Figure 3.6	A rectangular prism-shaped product that has been	
-	damaged.	49
Figure 3.7	A run chart	50
Figure 3.8	A control chart with a UCL and an LCL.	54
Figure 3.9	OC curves for the \bar{x} chart with 3σ limits for different	
	sample sizes <i>n</i>	59
Figure 3.10	The \overline{X} and R control charts, constructed using MINITAB,	
	for the ball bearing data in Table 3.4	65
Figure 3.11	The MR control chart, constructed using MINITAB, for	
	the ball bearing data in Table 3.5	71
Figure 3.12	The \overline{X} and S control charts, constructed using MINITAB,	
	for the ball bearing data in Table 3.4.	75
Figure 3.13	The \overline{X} and S control charts for variable sample sizes,	
	constructed using MINITAB, for the piston ring data in	
	Table 3.6	77
Figure 3.14	Three illustrations of the concept of process capability,	
	where (a) shows a process that is stable but not capable,	
	(b) shows a process that is stable and barely capable, and	
	(c) shows a process that is stable and capable	80
Figure 4.1	MINITAB printout of the <i>p</i> chart for nonconforming	
	computer chips, using trial control limits from the data	
	in Table 4.2	89
Figure 4.2	MINITAB printout of the <i>p</i> chart for nonconforming	
	chips with variable sample sizes, using trial control limits	
	for the data in Table 4.3.	91

Figure 4.3	MINITAB printout of the np chart for nonconforming	
	computer chips, using trial control limits for the data	
	in Table 4.2	93
Figure 4.4	The c control chart of nonconformities for the data	
	in Table 4.4	95
Figure 4.5	The <i>u</i> chart of nonconformities for the data in Table 4.5,	
	constructed using MINITAB.	99
Figure 4.6	The <i>u</i> chart of nonconformities for the data in Table 4.6,	
	constructed using MINITAB.	100
Figure 5.1	\overline{X} -R control chart for the data in Table 5.1	105
Figure 5.2	CUSUM chart for the data in Table 5.1.	105
Figure 5.3	MINITAB printout of a two-sided CUSUM control chart	
	for the data in Table 5.1.	109
Figure 5.4	MINITAB printout of the X control chart for individual	
	values in Table 5.4.	111
Figure 5.5	MINITAB printout of the CUSUM control chart for	
	individual values in Table 5.4.	111
Figure 5.6	MINITAB printout of the two-sided CUSUM control	
	chart for the data in Table 5.5 using FIR.	113
Figure 5.7	MINITAB printout of the MA control chart for the data	
	in Table 5.4.	120
Figure 5.8	MINITAB printout of the EWMA control chart for the	
F I (1	data in Table 5.4	125
Figure 6.1	Flowchart of a process.	128
Figure 7.1	Approximate sampling distribution of sample statistics	1.40
	X with sample size five	148
Figure 7.2	Components of total variation	149
Figure 7.3	I ne distinction between accurate and precise, where (a) is	
	accurate and precise, (b) is accurate but not precise, (c) is	
	not accurate but precise, and (d) is neither accurate nor	151
Figure 7 4	The linear relationship between the actual and the	131
Figure 7.4	observed volues	152
Figure 7 5	Percent contribution of variance components for the data	132
Figure 7.5	in Example 7.1	159
Figure 7.6	\overline{X} and R charts for the data in Example 7.1	160
Figure 7.7	Interaction between operators and parts for the data in	100
- gui e / tr	Example 7.1.	161
Figure 7.8	Scatter plot for measurements versus operators.	161
Figure 7.9	Scatter plot for measurements versus parts (bolts)	162
Figure 8.1	Relationships among the SOC tools	165
Figure 8.2	A barely capable process.	167
Figure 8.3	PRE-control zones.	168
Figure 8.4	A process with process capability equal to one	170
Figure 9.1	An OC curve.	176
Figure 9.2	AOQ curve for $N = \infty$, $n = 50$, $c = 3$	180
Figure 9.3	Effect on an OC curve of changing sample size (n) when	
_	acceptance number (c) is held constant.	181
Figure 9.4	Effect of changing acceptance number (c) when sample	
	size (<i>n</i>) is held constant	181
Figure 9.5	Effect of changing lot size (N) when acceptance number	
	(c) and sample size (n) are held constant	183

Figure 9.6	OC curves for sampling plans having the sample size equal	
	to 10 percent of the lot size	183
Figure 9.7	OC curve for double sampling plan where $n_1 = 75$, $c_1 = 0$,	
	$r_1 = 3, n_2 = 75, c_2 = 3, \text{ and } r_2 = 4. \dots$	185
Figure 9.8	AOQ curve for double sampling plan	186
Figure 9.9	ASN curve for double sampling plan.	188
Figure 9.10	Switching rules for normal, tightened, and reduced	
-	inspection.	190
Figure 9.11	Structure and organization of ANSI/ASQ Z1.9-2003	195
Figure 9.12	Decision areas for a sequential sampling plan.	199
Figure 9.13	ANSI/ASQ Z1.4-2003 Table VIII: Limit numbers for	
0	reduced inspection.	205
Figure 9.14	ANSI/ASQ Z1.4-2003 Table I: Sample size code letters	206
Figure 9.15	ANSI/ASQ Z1.4-2003 Table II-A: Single sampling plans	
0	for normal inspection.	207
Figure 9.16	ANSI/ASO Z1.4-2003 Table III-A: Double sampling	
8	plans for normal inspection.	208
Figure 9.17	ANSI/ASO Z1.4-2003 Table IV-A: Multiple sampling	
8	plans for normal inspection.	209
Figure 9.18	4.20 ANSI/ASO Z1.9-2003 Table A-2: Sample size	
8	code letters.	211
Figure 9.19	ANSI/ASO Z1.9-2003 Table C-1: Master table for normal	
8	and tightened inspection for plans based on variability	
	unknown (single specification limit—Form 1)	212
Figure 9.20	ANSI/ASO Z1.9-2003 Table B-5: Table for estimating	
8	the lot percent nonconforming using standard deviation	
	method	213
Figure 9.21	ANSI/ASO Z1.9-2003 Table B-3: Master table for normal	-10
- gui e > -==	and tightened inspection for plans based on variability	
	unknown (double specification limit and Form 2—single	
	specification limit).	222
Figure 10.1	The welcome screen in MINITAB.	226
Figure 10.2	Showing the menu command options	227
Figure 10.3	MINITAB window showing the Xbar-R Chart dialog	
8	box.	229
Figure 10.4	MINITAB window showing the Xbar-R Chart - Options	/
	dialog box	230
Figure 10.5	MINITAB window showing the Individuals-Moving	-00
- 8	Range Chart dialog box	231
Figure 10.6	MINITAB window showing the Xbar-S Chart dialog	-01
	hox.	232
Figure 10.7	MINITAB windows showing the Xbar-S Chart and	
8	Xbar-S Chart - Options dialog boxes.	234
Figure 10.8	MINITAB window showing the Capability Analysis	
8	(Normal Distribution) dialog box	237
Figure 10.9	MINITAB windows showing the process capability	_0,
Bare 1002	analysis	237
Figure 10.10	MINITAB window showing the P Chart dialog box	238
Figure 10.11	MINITAB window showing the C Chart dialog box	241
Figure 10.12	MINITAB window showing the U Chart dialog box	242
Figure 10.13	MINITAB window showing the CUSUM Chart dialog	
- 15ure 10.15	hox	244
	0.021	<u>~</u>

Figure 10.14	MINITAB window showing the CUSUM Chart - Options	
0	dialog box	245
Figure 10.15	MINITAB window showing the Moving Average Chart	
8	dialog box	246
Figure 10.16	MINITAB window showing the EWMA Chart dialog	
8	box	248
Figure 10.17	Screen showing the selections Stat > Quality Tools >	
i igui e i oil?	Gage Study > Gage R&R Study (Crossed)	252
Figure 10.18	Gage R&R Study (Crossed) dialog box	252
Figure 10.10	Gage R&R Study (Crossed) - Ontions dialog box	252
Figure 10.19	Percent contribution of variance components for the	255
Figure 10.20	data in Example 10.12	257
Figure 10 21	$\overline{\mathbf{X}}$ and R charts for the data in Example 10.12	257
Figure 10.21	Interaction between operators and parts for the data in	230
Figure 10.22	Example 10.12	258
Figure 10.22	Example 10.12.	250
Figure 10.23	Scatter plot for measurements versus operators	259
Figure 10.24	MD Starter display	239
Figure 11.1	JMP Starter display	202
Figure 11.2	JMP drop-down menus.	202
Figure 11.5	JMP file processing commands.	203
Figure 11.4	JMP statistical analysis commands	264
Figure 11.5		264
Figure 11.6		265
Figure 11.7	Opening an existing JMP file.	266
Figure 11.8	Saving a newly created JMP file	266
Figure 11.9	Saving an existing JMP file.	267
Figure 11.10	Printing JMP output.	267
Figure 11.11	Generating an XBar and R chart	268
Figure 11.12	XBar chart dialog box	269
Figure 11.13	Generating an XBar and S chart.	2/1
Figure 11.14	XBar chart dialog box	2/1
Figure 11.15	ABar and S chart dialog box	213
Figure 11.16	Generating a control chart for individual observations	274
Figure 11.17	IR chart dialog box	275
Figure 11.18	Capability analysis based on an XBar and S chart	077
F ! 11.10	for Example 11.5.	277
Figure 11.19	Process capability analysis dialog box.	278
Figure 11.20	Process capability analysis output.	279
Figure 11.21	Generating a <i>p</i> chart.	280
Figure 11.22	p chart dialog box	280
Figure 11.23	Generating a <i>c</i> chart.	282
Figure 11.24		283
Figure 11.25	Generating a <i>u</i> chart.	284
Figure 11.26	u chart dialog box	285
Figure 11.27	Generating a CUSUM chart.	287
Figure 11.28	CUSUM CHART dialog DOX	28/
Figure 11.29	Specify Stats dialog box	288
Figure 11.30	Generating a UWMA chart	289
Figure 11.31	UWMA chart dialog box.	290
Figure 11.32	Generating an EWMA chart.	291
Figure 11.33	EWMA chart dialog box	292
Figure 11.34	Initiating a Gage K&R.	295
Figure 11.35	Gage K&K dialog box	295

Figure 11.36	Completed Gage R&R dialog box.	296
Figure 11.37	Y, Response variability charts	296
Figure 11.38	Continuing the Gage R&R	297
Figure 11.39	Variance components.	297
Figure 11.40	Gage R&R dialog box	297
Figure 11.41	Gage R&R output	298

List of Tables

Table 3.1	Check sheet summarizing the data of a study over a period	
T 11 44	of four weeks.	44
Table 3.2	Frequencies and weighted frequencies when different types	
T 11 22	of defects are not equally important.	46
Table 3.3	Percentage of nonconforming units in different shifts over	50
T 11 0 4	a period of 30 shifts.	50
Table 3.4	Diameter measurements (in mm) of ball bearings used in	(2)
TIL 35	the wheels of heavy construction equipment.	63
Table 3.5	Diameter measurements (in mm) of ball bearings used in	70
T-11-27	the wheels of heavy construction equipment.	/0
Table 3.6	The finished inside diameter measurements (in cm) of	70
T-11- 41	piston ring.	/8
Table 4.1	I ne four control charts for attributes.	85
1able 4.2	number of nonconforming computer crips out of 1000	00
Table 1.2	Number of nonconforming computer ching with different	88
Table 4.5	size semples inspected each day during the study period	01
Table 4.4	Size samples inspected each day during the study period	91
1able 4.4	of paper	05
Table 4 5	Number of nonconformities on printed boards for lantons	95
1401C 7.5	ner sample, each sample consisting of five inspection	
	units	98
Table 4.6	Number of nonconformities on printed boards for laptops	70
iusie no	ner sample with varving sample size	99
Table 5.1	Data from a manufacturing process of auto parts before	//
	and after its mean experienced a shift of 1σ (sample	
	size four)	103
Table 5.2	Values of h for a given value of k when $ARL_0 = 370$	107
Table 5.3	Tabular CUSUM control chart for the data given in	
	Table 5.1	108
Table 5.4	Data from a manufacturing process of auto parts before	
	and after its mean experienced a shift of 1σ (sample	
	size one).	110
Table 5.5	Tabular CUSUM control chart using FIR for data in	
	Table 5.4	113
Table 5.6	Tabular CUSUM control chart using FIR for the process in	
	Table 5.4, after it had experienced an upward shift of 1σ	114

Table 5.7	MA chart (M_i 's) for data in Table 5.4 with $\mu = 20, \sigma = 2$	119
Table 5.8	A selection of EWMA charts with $ARL_0 \cong 500. \dots$	123
Table 5.9	EWMA control chart (z_i 's) for data in Table 5.4 with $\lambda = 0.20$, $L = 2.962$.	124
Table 6.1	Different processes with the same value of C	135
Table 6.2	Parts per million of nonconforming units for different values	
	of C_1	136
Table 6.3	The values of $C_{\mu\nu}$ and $C_{\mu\nu}$ as μ deviates from the target	137
Table 6.4	Values of C_n , C_{nk} , C_{nm} , C_{nmk} , and C_{nmk} for	
	$\mu = 20, 22, 24, 26, 28; T = 24; LSL = 12; and$	
	USL = $36 (\sigma = 2)$	143
Table 6.5	Values of $C_{n}, C_{nk}, C_{nm}, C_{nmk}$, and C_{nmet} for	
	$\sigma = 2, 2.5, 3.0, 3.5, 4.0, 4.5; T = 24, LSL = 12, and$	
	USL = 36 (μ = 20)	144
Table 7.1	Data on an experiment involving three operators, 10 bolts,	
	and three measurements (in millimeters) on each bolt by	
	each operator	154
Table 8.1	PRE-control rules	169
Table 10.1	Data of 25 samples, each of size five, from a given	
	process.	236
Table 10.2	Data on an experiment involving three operators, 10 bolts,	
	and three measurements (in mm) on each bolt by each	
	operator	251
Table 11.1	Data of 25 samples, each of size five, from a given	
	process.	276
Table 11.2	Data on an experiment involving three operators, 10 bolts,	
	and three measurements (in mm) on each bolt by each	204
T-11. A 1	operator.	294
Table A.1	Random numbers.	300
Table A.2	Factors neipiul in constructing control charts for	202
Table A 2	Values of K for computing repeatability using the range	502
Table A.S	walkes of \mathbf{x}_1 for computing repeatability using the range	202
Table A 4	Values of K for computing reproducibility using the	303
Table A.4	range method	304
Table A 5	Binomial probabilities	304
Table A 6	Poisson probabilities	304
Table A.7	Standard normal distribution	313
Table A.8	Critical values of χ^2 with y degrees of freedom	314
Table A 9	Critical values of t with v degrees of freedom	316
Table A.10	Critical values of F with numerator and denominator	510
	degrees of freedom v, v, respectively ($\alpha = 0.10$)	318
		210

Preface

Statistical Quality Control for the Six Sigma Green Belt was written as a desk reference and instructional aid for those individuals currently involved with, or preparing for involvement with, Six Sigma project teams. As Six Sigma team members, Green Belts help select, collect data for, and assist with the interpretation of a variety of statistical or quantitative tools within the context of the Six Sigma methodology.

Composed of steps or phases titled Define, Measure, Analyze, Improve, and Control (DMAIC), the Six Sigma methodology calls for the use of many more statistical tools than is reasonable to address in one book. Accordingly, the intent of this book is to provide for Green Belts and Six Sigma team members a thorough discussion of the statistical quality control tools addressing both the underlying statistical concepts and the application. More advanced topics of a statistical or quantitative nature will be discussed in two additional books that, together with the first book in this series, *Applied Statistics for the Six Sigma Green Belt*, and this book, will comprise a four-book series.

While it is beyond the scope of this book and series to cover the DMAIC methodology specifically, this book and series focus on concepts, applications, and interpretations of the statistical tools used during, and as part of, the DMAIC methodology. Of particular interest in the books in this series is an applied approach to the topics covered while providing a detailed discussion of the underlying concepts.

In fact, one very controversial aspect of Six Sigma training is that, in many cases, this training is targeted at the Six Sigma Black Belt and is all too commonly delivered to large groups of people with the assumption that all trainees have a fluent command of the statistically based tools and techniques. In practice this commonly leads to a good deal of concern and discomfort on behalf of trainees, as it quickly becomes difficult to keep up with and successfully complete Black Belt–level training without the benefit of truly understanding these tools and techniques.

So let us take a look together at *Statistical Quality Control for the Six Sigma Green Belt.* What you will learn is that these statistically based tools and techniques aren't mysterious, they aren't scary, and they aren't overly difficult to understand. As in learning any topic, once you learn the basics, it is easy to build on that knowledge—trying to start without a knowledge of the basics, however, is generally the beginning of a difficult situation.

Acknowledgments

www.ewould like to thank Professors John Brunette, Cheng Peng, Merle Guay, and Peggy Moore of the University of Southern Maine for reading the final draft line by line. Their comments and suggestions have proven to be invaluable. We also thank Laurie McDermott, administrative associate of the Department of Mathematics and Statistics of the University of Southern Maine, for help in typing the various drafts of the manuscript. In addition, we are grateful to the several anonymous reviewers, whose constructive suggestions greatly improved the presentations, and to our students, whose input was invaluable. We also want to thank Matt Meinholz and Paul O'Mara of ASQ Quality Press for their patience and cooperation throughout the preparation of this project.

We acknowledge MINITAB for permitting us to reprint screen shots in this book. MINITAB and the MINITAB logo are registered trademarks of MINITAB. We also thank the SAS Institute for permitting us to reprint screen shots of JMP v. 6.0 (© 2006 SAS Institute). SAS, JMP, and all other SAS Institute product or service names are registered trademarks or trademarks of the SAS Institute in the United States and other countries. We would like to thank IBM for granting us permission to reproduce excerpts from Quality Institute manual entitled, *Process Control, Capability and Improvement* (© 1984 IBM Corporation and the IBM Quality Institute).

The authors would also like to thank their families. Bhisham is indebted to his wife, Swarn; his daughters, Anita and Anjali; his son, Shiva; his sonsin-law, Prajay and Mark; and his granddaughter, Priya, for their deep love and devotion. Fred would like to acknowledge the patience and support provided by his wife, Julie, and sons, Carl and George, as he worked on this book. Without the encouragement of both their families, such projects would not be possible or meaningful.

> —Bhisham C. Gupta —H. Fred Walker

Introduction to Statistical Quality Control

tatistical quality control (SQC) refers to a set of interrelated tools used to monitor and improve process performance.

Definition 1.1 A *process*, for the purposes of this book, is a set of tasks or activities that change the form, fit, or function of one or more input(s) by adding value as is required or requested by a customer.

Defined in this manner, a process is associated with production and service delivery operations. Because Six Sigma applies to both production and service delivery/transactional operations, understanding and mastering the topics related to SQC is important to the Six Sigma Green Belt.

In this book, SQC tools are introduced and discussed from the perspective of application rather than theoretical development. From this perspective, you can consider the SQC tools as statistical "alarm bells" that send signals when there are one or more problems with a particular process. As you learn more about the application of SQC tools, it will be helpful to understand that these tools have general guidelines and rules of thumb for both design and interpretation; however, these tools are intended to be tailored to each company for use in a specific application. This means that when preparing to use SQC tools, choices must be made that impact how certain parameters within the tools are calculated, as well as how individual stakeholders involved with these tools actually interpret statistical data and results. Accordingly, choices related to the types of tools used, sample size and frequency, rules of interpretation, and acceptable levels of risk have a substantial impact on what comes out of these tools as far as usable information.

Critical to your understanding of SQC as a Six Sigma Green Belt is that SQC and statistical process control (SPC) are different. As noted earlier, SQC refers to a set of interrelated tools. SPC is but one of the tools that make up SQC. Many quality professionals continue to use the term *SPC* incorrectly by implying that SPC is used for process monitoring as a stand-alone tool. Prior to using SPC, we need to ensure that our process is set up correctly and, as much as possible, is in a state of statistical control. Likewise, once the process is in a state of statistical control, we need valid SPC data to facilitate

our understanding of process capability and to enable the use of acceptance sampling.

1.1 Identifying the Tools of SQC

Figure 1.1 identifies the five basic tool types that make up SQC.

As can be seen in Figure 1.1, SQC consists of SPC (phase I and II), capability analysis (process and measurement systems), PRE-control, acceptance sampling (variables and attributes), and design of experiments (DOE). Within these five basic tool types are specific tools designed to provide information useful in a specific context or application. The remainder of this book will focus on the first four SQC tools, identified in Figure 1.1. DOE, as identified in Figure 1.1, is a component of SQC. However, DOE is also treated as a set of tools outside the context of SQC, and for this reason we will address DOE in the next two books in this series.

1.2 Relating SQC to Applied Statistics and to DOE

There is a distinct relationship among applied statistics, SQC, and DOE, as is seen in Figure 1.2.

Figure 1.2 shows that each of the SQC tools, as well as DOE, is based on applied statistics. The first book in this four-book series, *Applied Statistics for the Six Sigma Green Belt*, provides the foundational skills needed to learn the content presented here. Note that in Figure 1.2, with the possible exception of PRE-control, the level of statistical complexity increases with the use of the SQC tools moving from left to right. The level of statistical complexity is the greatest in DOE, and, in fact, there is an increasing level of statistical complexity within DOE, as you will see in the next two books in this series: *Introductory Design of Experiments for the Six Sigma Green Belt* and *Advanced Design of Experiments for the Six Sigma Green Belt*.

In understanding the relationship among applied statistics, SQC, and DOE, you should note the order in which they are presented—applied statistics, SQC, and then DOE. These topics are presented in this order in this

Figure 1.1 The five tool types of SQC.

Figure 1.2 Relationship among applied statistics, SQC, and DOE.

book, and in most statistical and engineering texts and literature, to reflect the increasing level of computational difficulty. You should also know that in practice these tools would be used in a different order, which is applied statistics, DOE, and then SQC. There are three reasons, all quite logical, for changing the order of presentation: (1) moving from applied statistics to DOE is generally considered to be too rapid an increase in computational complexity for many people to easily grasp, (2) moving from applied statistics to DOE removes the opportunity for development of process knowledge, which provides the context for a study of experimental factors that come from product and process designs, and (3) it is generally necessary for us to determine which process parameters need to be monitored with DOE prior to using the process monitoring tools of SQC.

Figure 1.1 and Figure 1.2, then, represent maps of the topics addressed in SQC and provide the order of presentation of those topics in this book as well as in the greater statistical and engineering communities. Figure 1.3 represents an order in which those topics would be applied in process or transactional Six Sigma, assuming all the tools were to be applied.

The intent of Figure 1.3 is to illustrate that Six Sigma Green Belts would, where applicable, begin with DOE followed by the SQC tools. Further, Figure 1.3 illustrates that there is a cycle of iteration wherein DOE leads us to identify appropriate process parameters to monitor. We then use SQC tools to monitor those parameters, which may lead us to continue with additional experimentation and process monitoring as we refine our processes to better meet customer expectations.

Figure 1.3 also shows that once we identify with DOE the characteristics to monitor in our process, we then use SPC and capability analysis simultaneously to ensure that our process is in a state of statistical control and that our process variability and mean are consistent with our specifications. Another important point shown in Figure 1.3 is that we may or may not use a tool

Figure 1.3 Order of SQC topics in process or transactional Six Sigma.

type called PRE-control. The very name *PRE-control* counterintuitively and incorrectly implies its use prior to SPC. If used at all, PRE-control is used after SPC, wherein processes are properly centered on target, are in a state of statistical control, are determined to be capable, and exhibit very low defect rates. Use of PRE-control as a means of reduced sampling and inspection continues to be controversial, and it is applicable only in a very small set of circumstances, as will be discussed more fully in Chapter 8. Whether or not PRE-control is used, the next tool type used, as identified in Figure 1.3, is acceptance sampling. What all these tools have in common is a statistical basis for analysis and decision making.

1.3 Understanding the Role of Statistics in SQC

As noted in section 1.2, the first book in this series focusing on the Six Sigma Green Belt is *Applied Statistics for the Six Sigma Green Belt*. Developing a working knowledge of basic statistics and how they apply to production and service delivery operations was an important step in enabling us to discuss SQC. Each SQC tool is based on statistical theory and application. The value and amount of information you are able to obtain from SQC tools are directly related to your level of understanding of basic statistical concepts. Because SQC is based on the application of statistics, much of what you read in this book assumes you have mastery of the prerequisite knowledge.

In practice, two groups of people use SQC tools:

- 1. Shop-floor operators and service delivery/transaction-focused people
- 2. Technicians, engineers, Six Sigma team members, and management team members

Each group using SQC tools has different roles and responsibilities relative to the use and implementation of the tools. For example, people in group 1 are commonly expected to collect data for, generate, and react to SQC tools. People in group 2 are commonly expected to design and implement SQC tools. They are also expected to critically analyze data from these tools and make decisions based on information gained from them.

1.4 Making Decisions Based on Quantitative Data

In practice, we are asked to make decisions based on quantitative and qualitative data on a regular basis.

Definition 1.2 *Quantitative data* are numerical data obtained from direct measurement or tally/count. Direct measurement uses a scale for measurement and reference, and tally/count uses direct observation as a basis for summarizing occurrences of some phenomenon.

Definition 1.3 *Qualitative data* are nonnumerical data obtained from direct observation, survey, personal experience, beliefs, perceptions, and perhaps historical records.

It is important to acknowledge that application of both quantitative and qualitative data has value and can be entirely appropriate in a professional work environment depending on the types of decisions we need to make. It is also important to acknowledge the difficulty in defending the use of qualitative data to make decisions in the design and process improvement efforts most commonly encountered by the Six Sigma Green Belt. Key, then, to obtaining the maximum value of information from SQC tools is realizing the power of quantitative data, because what can be directly measured can be validated and verified.

1.5 Practical versus Theoretical or Statistical Significance

As a Six Sigma Green Belt you will use applied statistics to make decisions. We emphasize the words *applied statistics* to note that applied statistics will be the basis for business decisions. When making decisions, we simply must temper our ability to detect statistical differences with our ability to act on designs and processes in a cost-effective manner. Figure 1.4 helps us visualize what we are trying to accomplish in detecting statistical differences.

In Figure 1.4 we see a normal distribution with a level of test significance (α) defined by the shaded regions in the tails of the distribution. The α identifies the region of the distribution wherein we would not expect to see evidence of process behavior if the process is behaving as intended. As a Six Sigma Green Belt you have the ability to set the level of α , which means you are actually making choices about the amount of area for the shaded region—the higher the level of α selected, the bigger the shaded region, the more discriminating the

Figure 1.4 Detecting statistical differences.

test, and the more expensive it will be to make process improvement changes. While making any decisions related to α has financial implications, to understand practical differences we need to look at Figure 1.5.

In Figure 1.5 our comparison point changes from the shaded regions under the distribution tails of Figure 1.4 to the center of the distribution. Practical decisions then require that we consider how far off the intended target the observed process behavior is as compared with the statistical difference identified in Figure 1.4. It should be noted that differentiating between a practical and a statistical difference is a business or financial decision. When making a practical versus a statistical decision, we may very well be able to detect a statistical difference; however, it may not be cost effective or financially worth making the process improvements being considered.

Figure 1.5 Detecting practical and statistical differences.

1.6 Why We Cannot Measure Everything

Whether in process-oriented industries such as manufacturing or in transactional-oriented industries, the volume of operations is sufficiently large to prohibit measurement of all the important characteristics in all units of production or all transactions. And even if we could measure some selected quality characteristic in all units of production or in all transactions, it is well known that we simply would not identify every discrepancy or mistake. So managing a balance between the volume of measurement and the probability of making errors during the measurement process requires us to rely on the power of statistics.

The power of statistics, in this case, refers to conclusions drawn from samples of data about a larger population, as shown in Figure 1.6.

Because we cannot afford the time or cost of measuring 100 percent of our products or transactions, sampling, along with appropriate descriptive or inferential statistics, is used to help us understand our processes. The important point contained in Figure 1.6 is that *samples*, by definition, are subsets of data drawn from a larger population. Because samples do not contain all the data from a population, there is a risk that we will draw incorrect conclusions about the larger population.

1.7 A Word on the Risks Associated with Making Bad Decisions

When relying on inferential or descriptive statistics based on samples of data, we risk making bad decisions. Bad decisions in practice lead to difficulties and problems for producers as well as consumers, and we refer to this as producer risk and consumer risk. The same bad decisions in statistical terms are referred to as Type I and Type II error, as well as alpha (α) and beta (β) risk, respectively. It is important for Six Sigma Green Belts to realize that these

Figure 1.6 Sample versus population.

risks exist and that people from different functional areas within an organization may use different terms to describe the same thing. Lastly, we must realize that choices made during the design of SQC tools, choices related to selection of consumer and producer risk levels, quite dramatically impact performance of the tools and the subsequent information they produce for decision making.

It is not enough to simply identify the risks associated with making bad decisions; the Six Sigma Green Belt must also know the following key points:

- Sooner or later, a bad decision will be made
- The risks associated with making bad decisions are quantified in probabilistic terms
- α and β risks added together *do not* equal one
- Even though α and β go in opposite directions (that is, if α increases, β decreases), there is no direct relationship between α and β
- The values of α and β can be kept as low as we want by increasing the sample size

Definition 1.4 *Probability* is the chance that an event or outcome will or will not occur. Probability is quantified as a number between zero and one where the chance that an event or outcome will not occur in perfect certainty is zero and the chance that it will occur with perfect certainty is one. The chance that an event or outcome will not occur added to the chance that it will occur add up to one.

Definition 1.5 *Producer risk* is the risk of failing to pass a product or service delivery transaction on to a customer when, in fact, the product or service delivery transaction meets the customer quality expectations. The probability of making a producer risk error is quantified in terms of α .

Definition 1.6 Consumer risk is the risk of passing a product or service delivery transaction on to a customer under the assumption that the product or service delivery transaction meets customer quality expectations when, in fact, the product or service delivery is defective or unsatisfactory. The probability of making a consumer risk error is quantified in terms of β .

A critically important point, and a point that many people struggle to understand, is the difference between the probability that an event will or will not occur and the probabilities associated with consumer and producer risk *they simply are not the same thing*. As noted earlier, probability is the percent chance that an event will or will not occur, wherein the percent chances of an event occurring or not occurring add up to one. The probability associated with making an error for the consumer, quantified as β , is a value ranging between zero and one. The probability associated with making an error for the producer, quantified as α , is also a value between zero and one. The key here is that α and β *do not add up to one*. In practice, one sets an acceptable level of α and then applies some form of test procedure (some application of an SQC tool in this case) so that the probability of committing a β error is acceptably small. So defining a level of α does not automatically set the level of β .

In closing, the chapters that follow discuss the collection of data and the design, application, and interpretation of each of the various SQC tools. You should have the following two goals while learning about SQC: (1) to master these tools at a conceptual level, and (2) to keep in perspective that the use of these tools requires tailoring them to your specific application while balancing practical and statistical differences.

Elements of a Sample Survey

The science of sampling is as old as our civilization. When trying new cuisine, for example, we take only a small bite to decide whether the taste is to our liking—an idea that goes back to when civilization began. However, modern advances in sampling techniques have taken place only in the twentieth century. Now, sampling is a matter of routine, and the effects of the outcomes can be felt in our daily lives. Most of the decisions regarding government policies, marketing (including trade), and manufacturing are based on the outcomes of various samplings conducted in different fields. The particular type of sampling used for a given situation depends on factors such as the composition of the population and the objectives of the sampling as well as time and budget availability. Because sampling is an integral part of SQC, this chapter focuses on the various types of sampling, estimation problems, and sources of error.

2.1 Basic Concepts of Sampling

The primary objective of sampling is to make inferences about population parameters (population mean, population total, population proportion, and population variance) using information contained in a sample taken from the population. To make such inferences, which are usually in the form of estimates of parameters and which are otherwise unknown, we collect data from the population under investigation. The aggregate of these data constitutes a sample. Each data point in the sample provides us information about the population parameter. Collecting each data point costs time and money, so it is important that some balance is kept while taking a sample. Too small a sample may not provide enough information to obtain proper estimates, and too large a sample may result in a waste of resources. This is why it is very important to remember that in any sampling procedure an appropriate sampling scheme—normally known as the *sample design*—is put in place.

The sample size is usually determined by the degree of precision desired in the estimates and the budgetary restrictions. If θ is the population parameter of interest, $\hat{\theta}$ is an estimator of θ , and *E* is the desired margin of error of estimation (absolute value of the difference between θ and $\hat{\theta}$), then the sample size is usually determined by specifying the value of E and the probability with which we will indeed achieve that value of E.

In this chapter we will briefly study four different sample designs: simple random sampling, stratified random sampling, systematic random sampling, and cluster random sampling from a finite population. But before we study these sample designs, some common terms used in sampling theory must be introduced.

Definition 2.1 A *population* is a collection of all conceivable individuals, elements, numbers, or entities that possess a characteristic of interest.

For example, if we are interested in the ability of employees with a specific job title or classification to perform specific job functions, the population may be defined as all employees with a specific job title working at the company of interest across all sites of the company. If, however, we are interested in the ability of employees with a specific job title or classification to perform specific job functions at a particular location, the population may be defined as all employees with the specific job title working only at the selected site or location. Populations, therefore, are shaped by the point or level of interest.

Populations can be finite or infinite. A population where all the elements are easily identifiable is considered *finite*, and a population where all the elements are not easily identifiable is considered *infinite*. For example, a batch or lot of production is normally considered a finite population, whereas all the production that may be produced from a certain manufacturing line would normally be considered infinite.

It is important to note that in statistical applications, the term *infinite* is used in the relative sense. For instance, if we are interested in studying the products produced or the service delivery iterations occurring over a given period of time, the population may be considered as finite or infinite, depending on one's frame of reference. It is important to note that the frame of reference (finite or infinite) directly impacts the selection of formulae used to calculate some statistics of interest.

In most statistical applications, studying each and every element of a population is not only time consuming and expensive but also potentially impossible. For example, if we want to study the average lifespan of a particular kind of electric bulb manufactured by a company, we cannot study the whole population without testing each and every bulb. Simply put, in almost all studies we end up studying only a small portion, called a sample, of the population.

Definition 2.2 A portion of a population selected for study is called a *sample*.

Definition 2.3 The *target population* is the population about which we want to make inferences based on the information contained in a sample.