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The direction in which education starts a man will determine his future life
Plato: The Republic. Book (427-347 BC)

"Talking of education, people have now a-days" (said he) "got a strange
opinion that every thing should be taught by lectures. Now, I cannot see
that lectures can do so much good as reading the books from which the
lectures are taken. I know nothing that can be best taught by lectures,
expect where experiments are to be shewn. You may teach chymestry by
lectures. - You might teach making of shoes by lectures!"

James Boswell: Life ofSamuel Johnson. 1766 (1709-1784 AD)
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Preface

Communication is the process by which information is exchanged between human
beings, between machines, or between human beings and machines. Communication
Theory is the theory of the transmission process, and the language of this theory is
mathematics. This book sets out to explain some of the mathematical concepts and
techniques which form the elements and syntax of that language, and thus enable
the reader to appreciate some of the results from the theory.

In some ways, the degree of evolution of a nation or state may be measured by the
sophistication of its communication processes, particularly those based on electronic
means. Within the lifetime of one of the authors, the telephone has become an
everyday means of communication, and television has moved from a rarely seen
novelty to the means of mass entertainment. Instantaneous communication over
long distances, across continents or oceans, by voice or text has become an everyday
requirement in many walks of life. More recently, the internet has provided a new
dimension to the way many of us work. Electronic mail is not only an indespensible
tool for collaborative research, it is a means by which colleagues, perhaps in different
countries, communicate on a day-to-day basis. The wider resource of the so-called
world-wide-web gives access to a mass of data. Perhaps the major problem which
faces us at the time of writing is how these data can be turned into information
efficiently, but that is a debate for a different forum!

All these forms of communication are conducted by the transmission of electronic
signals using an appropriate method and this book concentrates on the description
of signals and the systems which may be used to process them. Such processing
is for the purpose of enabling the transmission of information by, and the extrac
tion of information from, signals. Over the last few years, the unifying concepts
of signals and linear systems have come to be recognised as a particularly con
venient way of formulating and discussing those branches of applied mathematics
concerned with the design and control of 'processes'. The process under discussion
may be mechanical, electrical, biological, economic or sociological. In this text, we
consider only a restricted subset of such processes, those related to communication
by electronic means. There are several first class treatments of the general field of
signals and linear systems and indeed, some specifically related to communication
theory. However, in many cases, the haste to discuss the engineering applications
of the material means that the mathematical development takes second place. Such
a treatment may not appeal to, or even be readily accessible to those whose first
subject, or interest, is mathematics, and who thus may not be able to supply the
necessary engineering insight to follow the discussion easily. This book is aimed in
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part at such readers who may wish to gain some understanding of this fascinating
application area of mathematics.

We are also aware from our teaching experience that many of our engineering
students (possibly more than is commonly acknowledged!) also appreciate such a
development to complement and support their engineering studies. This book is
also written for this readership. It is interesting to recall that, whilst the need
for engineers to become competent applied mathematicians was widely recognised
in the recent past, this need is not so often expressed, at least in some countries,
today. It will be interesting to compare future performance in the field of design
and innovation, and thus in economic performance, between countries which adopt
different educational strategies.

The subject matter which is included within the book is largely self-contained,
although we assume that the reader will have completed a first course in mathe
matical methods, as given for engineering and computer science students in most
UK Universities. The style adopted is an attempt to capture that established for
textbooks in other areas of applied mathematics, with an appropriate, but not
overwhelming, level of mathematical rigour. We have derived results, but avoided
theorems almost everywhere!

Many books on applied mathematics seem to concentrate almost exclusively on
the analysis of 'given' systems or configurations. In producing this text, we have
attempted to demonstrate the use of mathematics as a design or synthesis tool.
Before such a task may be undertaken, it is necessary for the user or designer to
achieve a considerable degree of experience of the field by the careful analysis of the
relevant types of system or structure, and we have attempted to provide a suitable
vehicle for this experience to be gained. Nevertheless, it has been at the forefront
of our thinking as we have approached our task, that the aim of many readers will
eventually be the production of network or system designs of their own. We cannot,
in a book such as this, hope to give a sufficiently full treatment of anyone topic
area to satisfy this aim entirely. However, by focusing on the design task, we hope
to demonstrate to the reader that an understanding of the underlying mathematics
is an essential pre-requisite for such work.

Most of the material has been taught as a single course to students of Mathemat
ics at Coventry University, where student reaction has been favourable. The mate
rial, to a suitable engineering interface, has been given to students of Engineering,
again with encouraging results. Engineering students have generally acknowledged
that the course provided an essential complement to their Engineering studies.

Many of the concepts considered within the book can be demonstrated on a PC
using the MATLAB package, together with the various toolboxes. In Appendix B,
we give some 'm' files, with application to the processing of speech signals.

OUTLINE OF THE BOOK.

Chapter 1 introduces the concepts of signals and linear systems. Mathematical mod
els of some simple circuits are constructed, and the Laplace transform is introduced
as a method of describing the input/output relationship. Simulation diagrams are
also discussed, and a brief introduction to generalized functions is presented.
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Chapters 2 and 3 provide much of the technique and analytical experience nec
essary for our later work. Chapter 2 is concerned with system responses. By
examining the type of response which can be obtained from a linear, time invariant
system, concepts of stability are developed. An introduction to signal decomposi
tion and the convolution operation precedes a discussion of the frequency response.
Chapter 3 is devoted to the harmonic decomposition of signals by use of the Fourier
transform, leading to the idea of the amplitude and phase spectra of a signal. The
effect of sampling a continuous-time signal on these spectra is first discussed here.

Chapter 4 deals with the design of analogue filters. Based on the analytical
experience gained in the previous three chapters, the task of designing a low-pass
filter is addressed first. Butterworth filters emerge as one solution to the design
task, and the question of their realization using elementary circuits is considered.
Transformations which produce band-pass, band-reject and high-pass filters are
investigated, and a brief introduction is given to Chebyshev designs.

Chapters 5-7 provide a discussion of discrete-time signals and systems. Differ
ence equations, the z-transform and the extension of Fourier techniques to discrete
time are all discussed in some detail. The need for a fast, computationally effi
cient algorithm for Fourier analysis in discrete time rapidly emerges, and a Fast
Fourier Transform algorithm is developed here. This chapter presents several op
portunities for those readers with access to a personal computer to conduct their
own investigations into the subject area.

Chapter 8 returns to the theme of design. Building on the material in the earlier
chapters, it is now possible to see how digital filters can be designed either to emulate
the analogue designs of Chapter 4, or from an ab initio basis. Infinite-impulse and
finite-impulse response designs are developed, together with their realizations as
difference equations. Here again, the reader with access to a personal computer,
together with minimal coding skill, will find their study considerably enhanced.

Finally, in Chapter 9, we apply some of the work in the previous chapters to the
processing of speech signals: speech processing, as well as image processing, being
an important part of Communication Theory. There are many aspects of speech
processing such as, for example, speech production, modelling of speech, speech
analysis, speech recognition, speech enhancement, synthesis of speech, etc. All these
aspects have numerous applications, including speech coding for communications,
speech recognition systems in the robotic industry or world of finance (to name
but a few), and speech synthesis, the technology for which has been incorporated
in a number of modern educational toys for example. One important analysis
technique is that of Linear Predictive Coding. Using this technique, a speech signal
can be processed to extract salient features of the signal which can be used in
various applications. For example, in the synthesis problem, these features can be
used to synthesize electronically an approximation to the original speech sound. In
this chapter, some specific topics considered are: a speech production model, linear
predictive filters, lattice filters, and cepstral analysis, with application to recognition
of non-nasal voiced speech and formant estimation.
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PREREQUISITES

Preface

Chapter 1 assumes a knowledge of elementary calculus, and a familiarity with the
Laplace transform would be helpful, but is not essential. Also in Chapter 1, we delve
into a little analysis in connection with the discussion on generalized functions. The
interested reader who wishes to develop understanding further should consult the
excellent text by Hoskins, cited in the references, for a full and clearly presented
account.

EXERCISES

These are designed principally to test the reader's understanding of the material
but there are, in addition, some more testing exercises. In addition to stressing
applications of the material, answers to Exercises are given in an Appendix.
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M J Chapman, D P Goodall and N C Steele
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Notation

'is a member of'

'is contained in'

the integers: 0, ±1, ±2, ...

the natural numbers: 1, 2, 3, ...

the real numbers

the complex numbers

the Laplace transform operator

the z-transform operator

the Fourier transform operator

'the real part of'

'the imaginary part of'

'is represented by'

transform pairs

the unit impulse (Dirac 0-) function

the Heaviside unit step function

the unit impulse sequence

the unit step sequence

the Kronecker delta, (Oij =Oi-j =o(i - j))

the transpose of a matrix A

the Laplace transform of a signal, /(t)

the z-transform of a sequence, {Uk}

the Fourier transform of a signal, /(t)

the period of a periodic signal

the fundamental frequency in rads.Zsec, WQ = 2Ti/ P

sample period

convolution

IX
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Signals and linear system fundamentals

1.1 INTRODUCTION

In this first chapter we concern ourselves with signals and operations on signals.
The first task is to define what is meant by a signal and then to classify signals
into different types according to their nature. When this has been achieved, the
concept of a system is introduced by the consideration of some elementary ideas
from the theory of electrical circuits. Useful ideas and insight can be obtained from
simulation diagrams representing circuits (or systems) and these are discussed
for the time domain. Laplace transforms are reviewed, with their role seen as
that of system representation rather than as a method for the solution of differential
equations.

1.2 SIGNALS AND SYSTEMS

A signal is a time-varying quantity, used to cause some effect or produce some
action. Mathematically, we describe a signal as a function of time used to represent
a variable of interest associated with a system, and we classify signals according to
both the way in which they vary with time and the manner of that variation. The
classification which we use discriminates between continuous-time and discrete
time signals and, thereafter, between deterministic and stochastic signals,
although we concern ourselves only with deterministic signals. Deterministic signals
can be modelled or represented using completely specified functions of time, for
example:

1. It(t) = a sin(wt), with a and w constant and -00 < t < 00,

2. h(t) = e«:", with c and d constant and t 2: 0,

3. Is(t) ={ ~: ItI :s A,
ItI> A,

with A constant and -00 < t < 00.

Each signal It (t), [z (t) and Is(t) above is a function of the continuous-time variable
t, and thus are continuous-time signals. Notice that although Is(t) is a continuous
time signal, it is not a continuous function of time.
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In some applications, notably in connection with digital computers, signals are
represented at discrete (or separated) values ofthe time variable (or index). Between
these discrete-time instants the signal may take the value zero, be undefined or be
simply of no interest. Examples of discrete-time signals are

1. f4(nT) = asin(nT), with a and T constant and n E;:Z:;, i.e. n is an integer.

2. f5(k) = bk + c, with band c constants and k = 0, 1, 2, ..., i.e. k is a non
negative integer.

The signals f4(nT) and f5(k) are functions of nT and k , respectively, where nand k
may take only specified integer values. Thus, values of the signal are only defined at
discrete points. The two notations have been used for a purpose: the origin of many
discrete-time signals is in the sampling of a continuous-time signal f(t) at (usually)
equal intervals, T. If n represents a sampling index or counter, taking values from a
set t c: ;:z:;, then this process generates the sequence of values {/(nT); n E I}, with
each term f(nT) generated by a formula as in, for example, f4(nT) above. Using
the notation as in f5(k) = bk+c merely suppresses the information on the sampling
interval and uses instead the index of position, k, in the sequence {/(k); k E I}
as the independent variable. Figures 1.la-e exhibits the graphs of some of these
signals. Stochastic signals, either continuous-time or discrete-time, cannot be

II (t)

t

Figure 1.la: Graph of it (t).

h(t)

t

Figure Lib: Graph of h(t).

so represented and their description has to be in terms of statistical properties.
The analysis and processing of such signals is an important part of communication
theory, but depends on an understanding of deterministic signal processing. This
book concentrates on deterministic signals, and thus may serve as an introduction
to the more advanced texts in this area.


