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Preface 

1776 Charles Coulomb: 
J a y &  -A4 

I cannot doiiht but that these things, which tiow seem to us so mysteriotis, will he no 
mysteries at all; that the scales will fall from our eyes; that we shall leurti to look on Ihitigs it1 
a diJferent way - when that which is tiow a di,f$cul@ will he the wily c~mni~ti-seti~e arid 
ititelligihle way of looking at the subject. 

(Lord Kelvin) 

Early Developments in the Theory of Elasticity 

1638 Galileo Galilei 
__ _ _ _  

1660- 
1678 Robert Hooke: 
(Hooke's Law) 

I 

I788 Jacob Bernoulli (the younger): 
dw/~'+dw/dy'  - c4dWdt' 

I 

I 

18 13 Sophie Germain: 
dWdt3i klV'w= 0 

I850 Gustav Kirchhoff 
(Modern plate theory) 

1854 Jacques Bresse: 
(Principle of Superposition) 

vi 



Preface vii 

The history of science is one of observation, measurement, and the postulation of theories 
to explain the observed phenomena. As Karl Popper said, any theory worthy of being called 
scientific should be capable of making predictions which can be tested. With the passage of time, 
these processes become more precise and sophisticated. Theories which had earlier seemed to be 
satisfactory turn out to be inadequate, either because more precise measurements and analysis 
show them to be false or because they lack the scope to explain new phenomena. Also, they may 
be replaced by new methods and ideas which are more elegant or useful. Thus Young’s modulus, 
E as used today, should really be attributed to Navier. Young’s own definition was “The modulus 
of elasticity of any substance is a column of the same substance, capable of producing a pressure 
on its base which is to the weight causing a certain degree of compression as the length is to the 
diminution of its length”. Poisson was originally convinced that his ratio, v, had a fixed value of 
% until the body of experimental evidence showed that it must take different values for different 
materials. Lame (1852) was probably the first to accept that this must be so. 

Galileo first examined the resistance of a cantilever beam to failure. He had no concept 
of elasticity, and implicitly assumed a constant stress distribution at the support with failure 
occuning by rotation about the bottom edge. Although this lead to poor predictions of the failure 
of a cantilever, it came to be known as ‘Galileo’s problem’. Working independently from Hooke, 
Mariotte found the elastic stress distribution in bending. This was the correct linear response, with 
the neutral axis at the centroid. However, owing to a mathematical error, he concluded that this 
gave the same result for the resistance of the beam as taking a tensile linear variation in stress 
from a ftlcrum at the bottom edge. The name ‘Bernoulli’ is often used generically for the whole 
family from Jacob’ (the elder) to Daniel. The former is usually credited with the invention of beam 
theory, having determined that beam curvature was proportional to the local bending moment. 
However, he incorporated Mariotte’s mistake in his work. Even Euler, who first applied 
differential calculus to beam theory, wrongly estimated the stiffness of a rectangular beam to be 
proportional to the square of its depth. Again, it is Navier who should take the credit for beam 
theory as it is normally used today2. 

Perhaps surprisingly, the earliest work on the theory of plates was concerned with their 
vibration. Jacob Bernoulli treated plates as if they were square grids of beams (subject to bending 
only) and so derived an incorrect differential equation for their lateral displacement w. Sophie 
Germain found the correct form for the equation, but was at a loss to give an expression for the 
plate’s bending stiffness. Poisson (1814) deduced the same equation as Sophie, but claimed that 
it was too complicated to be solved. He also insisted that three boundary conditions could be 
imposed on each edge, a debate which continued until Kirchhoff s definitive work on the subject 
in 1850. The Bernoulli-Euler hypothesis for beams, that plane sections remain plane, has an 
equivalent for plates and shells known as the Kirchhoff-Love hypothesis. This hypothesis has been 
challenged fiom the earliest times, most notably by Barre de Saint-Venant. It will be seen that his 
name and that of Bresse have been added to the above chart. In Chapter 8, it will be shown that 
their principles unify the engineering theories of flexural, torsional and axial response. Together 
with the concept of strain energy, the shear response of beams can be determined !?om exactly 
the same principles. They also lead to the determination of the characteristic responses of other 

’Also known as James or Jacques 

’However, it is commonly known as the Banoulli-Euler theory In October 1742, Daniel Bemoulli 
w t e  to Leonhard Euler proposing hs m u m  pnnciple From this, Euler deduced his differential 
equation (see chart) using the calculus of variations that he had invented It then still required 
Coulomb to dscovcr the correct strcss distribution and Young to devise his modulus before nll the 
elements of bending theory as used today could bc combined by Navier 
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linearly-elastic structures, This is made possible by discarding the constraint of assuming that 
‘plane sections remain plane’. Here and elsewhere in the book it has been necessary to re-examine 
approaches which have been hallowed by convention. 

The general reader may be more interested in practical applications rather than the more 
abstract aspects of the theory. The intention is to provide an introduction to more advanced ideas 
on the subject than is commonly available in a student text book. There are, of course, many 
excellent books on the basic theory of structures. The aim here will be to present the basic theory 
in a different light and add to it material which is useful but is not readily available. Efforts have 
been made to maintain an overall consistency of notation. As one form is more familiar for two- 
dimensional problems and another for three-dimensional problems, some compromises have been 
made. As far as possible, the more advanced sections which may not be required at a first reading 
will be enclosed in curly brackets: ( ) , and will normally be located after the elementary theory, 
even at the risk of some duplication, and specialist formulae and data consigned to the appendices. 

JOHN D. RENTON 
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Chapter 1 Introduction 

1.1 Loads, Deflexions, Joints and Supports 

The most common notation will be found in Appendix I and is also defined where it is first 
used. In addition, it is worthwhile making clear some of the distinctions in terminology which will 
be used in this book. A force is an action or influence on a body which tends to cause it to move 
in a particular direction. A moment is an action or influence on a body which has a turning effect 
on it, about a particular axis. The word load will be taken as a general t e n ,  referring to forces, 
moments, distributed forces (such as pressure) and distributed moments. Likewise, deflexiori may 
be taken to refer to a linear displacement, a rotation or a general movement of a structure or 
component. Loads can have corresponding deflexions which are the deflexions through which 
they do work. Thus the corresponding deflexion to a force is its displacement along its line of 
action, and the corresponding deflexion to a moment acting about some axis is its rotation about 
that axis. The work done by a load is then given by the integral of that load with incremental 
changes in its corresponding deflexion. 

Forces, displacements, moments and rotations 
are, in general, vector quantities possessing both y v, 

convention that will be used in two dimensions. F is a 
magnitude and direction. Figure 1.1 shows the 

force vector and u is the deflexion vector corresponding 
to it. The horizontal and vertical components of F are H 
and V in the x and y directions respectively. If the 
magnitude of F is F, then the values of H and V are t.' 
COS a and F sin (I respectively. The horizontal and 
vertical components of u, u and v, are similarly related 
to the magnitude of u. In a right-handed coordinate 
system, the I axis would come out of the paper. The moment M and the corresponding rotation 
8 would be clockwise about this axis, as viewed looking along it. 

M, 8 tP 
X 

Figure 1.1 Loads and deflexions 
in two dimensions. 

Figure 1.2 Load and deflexion vectors in three dimensions 

In three dimensions, the force F and the corresponding deflexion u have components (Fr, 
F, , F, ) and (u, , u, , u, ) respectively in the x , y and z directions, as shown in Figure 1.2a. The 
moment M and the corresponding rotation 0 can be regarded as vectors too, with components 
(M, , M, , M, ) and (8, , 8, , 8, ) in the x, y and z directions, as shown in Figure I.2b. These 
components are taken to be positive in the clockwise sense, as viewed along the axis about which 
they act. The double-headed arrow convention is used to indicate that they are rotatinti vectors. 

1 . 1  



1.2 Introduction [Ch. 1 

Most joints and supports are taken to be workless. That is, they neither absorb nor give 
out work (or energy). The most common exceptions are elastic supports or joints and frictional 
supports. Here, we will consider only the workless variety. Most frameworks are classified into 
either pin-jointed frames or rigid-jointed frames. In practice, most frames are not entirely one or 
the other. but from the analytic point ofview, the classification is usehl. Figure 1.3 shows the two - -  
types of joint. Neither permits relative 
displacement of the ends of the structural 
members joined to it, and both can sustain forces 
applied to them. However, the pin joint permits 
relative rotation of the ends of members joined to 
it. As it is a workless joint, it follows that it can 
exert no moments on these ends and also it 
cannot sustain an external moment applied to it. 
Usually, the members of a pin-jointed framework 
are straight and are not subject to lateral loads 
between their ends. In this case, they only sustain 
axial forces. In three dimensions, the pin joint 

(a) A pin joint (b) A rigid joint 

. .  
permits relative rotation of the ends about all 
three axes, and is commonly referred to as a 
tmiwrsuljoinf. A rigid joint does not permit any relative rotation of the ends attached to it, and 
can exert moments as well as forces on the member ends. 

Figure 1.3 Common types ofjoint. 

(4 (b) (4 (4 (e) 

Figure 1.4 Common types of workless support (in two dimensions) 

The common types of workless support are shown in Figure 1.4. These can exert either 
a reaction (force or moment), in which case the corresponding deflexion of the frame at that point 
is zero, or a particular reaction does not exist, in which case the corresponding deflexion of the 
frame at that point is free to take place. (The extreme example of the latter is a free end, which 
is subject to no reactions at all.) Other workless supports could exist, such that both reactions and 
deflexions took place at the support, but they would be interrelated in such a way that no net 
work was ever done. However, these can be simulated by rigid mechanisms attached to supports 
of the above kind. Figure I .4a shows afixed or enca.m! end. All rotation and displacement of the 
end are prevented, requiring the three reactions shown in two dimensions (or six reactions in three 
dimensions). Figure 1.4b shows a pin sipport which permits end rotation but no end 
displacement. In three dimensions, a pin support will be taken to perniit rotation about all three 
axes, and a rocker support taken as one which permits rotation about a particular axis (the rock 
axis). Figure 1 . 4 ~  shows a knfwdge support which permits rotation of the structure about it but 
no motion normal to it (in either direction). It can then exert a normal reaction but no moment 
reaction. This kind of support is postulated in examining the flexure of beams, when it is assumed 
that the axial beam loading in the beam is insignificant, so that the question of any lateral reaction 
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provided by the knife edge does not arise. Figure 1.4d shows a slider support which permits 
transverse motion of the end, but prevents any rotation or normal motion of it with the aid of 
normal and moment reactions, M and V, if necessary. Finally, 1.4e shows a pinned slider support 
which allows rotation and lateral displacement of the end but prevents any normal motion with 
a normal reaction V. More possible workless support conditions exist in three dimensions, but no 
commonly-accepted symbols have been devised for them. 

Figure 1.5 Loading on a structural member. 

The above loading descriptions are related to some overall set of coordinates and not to 
a particular structural member. Figure 1.5a shows distributed loads p and q acting on a beam. 
These are usually forces per unit length, although sometimes they are used to indicate forces per 
unit area. The symbol used forp will be used to indicate that it is of constant intensity, whereas 
q, as shown, indicates a variable intensity. Figures 1.5b to 1 S e  show resultant internal load pairs 
acting on short sections of the beam. Each pair is acting in the positive sense used in this book, 
which is that the corresponding deflexion tends to increase along the axis (here the x axis) of the 
beam. The axial force P in Figure 1.5b is tensile positive, producing an increase in the axial 
displacement u along the beam. In Figure 1 .5c, the moment M produces ‘sagging’ of the beam, 
corresponding to a positive increase in the rotation 8 along the beam. The shear force S in Figure 
1.5d acts in such a way as to increase the lateral displacement v in they direction. Lastly, the 
torque Tis such that the beam’s rotation about its longitudinal (x) axis increases along its length. 

1.2 Smrll Deflexion Theory 

In order to illustrate the mode of deflexion of a structure, this mode is usually 
exaggerated. The actual deflexions are usually too small to be detected with the naked eye. 
Typically, the maximum displacement of a beam is no more than 1/300th of its length and the 
induced rotations are likewise of the order of a fraction of a degree. For many purposes, the 
change in geometry of a structure under load can be ignored. For example, its equilibrium under 
load is usually examined relative to the position of the loading in the undeformed state. Also, the 
changes in orientation of parts of the structure, produced by rotations under load, are often 
(implicitly) taken as negligible. If the rotations were large, then the effect of a sequence of 
rotations about different axes, which themselves are affected by these rotations, would depend 
on the order in which the rotations took place. (The method of analysing the effects of large 
rotations will be discussed in setting up the stiffness matrices for beams with arbitrary orientations 
in three dimensions, see $ 1  1.4,) However, if the rotations are small, the effect of a sequence of 
rotations is given by their vector sum. 
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B~~

A rigid-body rotation.Figure 1.6

a = IsinO ; e = I(I-cose).

As e is very small, () can be taken as Ie and EO as
zero (using the first terms in the expansions of
sinO and cosfl only). However, for stability
analyses it will be seen later that it is necessary to
use the more accurate expression IIzle2 for EO,

given by including the second term in the expansion for cosfl.

Unless specifically stated otherwise, radian measure will be used for such rotations. Then
there is no need to distinguish between these rotations and their sines and tangents, as they are
the same, ifonly the first term of each of the power expansions for these functions is taken to be
significant. In particular, this means that the slope (or gradient) of a beam produced by flexure,
and the flexural rotation of the beam at the same location are taken as the same.

Figure 1.6 shows the displacement of the
end C ofa rigid bar AC of length I resulting from
a rotation e about the end A. These are given by
the horizontal and vertical components, aand e,
where

1.3 Energy, Equilibrium and Stability

The laws of thermodynamics form an important part of the theoretical basis of structural
analysis. They can be expressed in various ways, but put simply, they are as follows. The first law
states that in any closed system, energy is conserved. That is, if we can encapsulate the structural
system within a real or imaginary boundary, so that energy passes neither in nor out, the total
energy within the system will remain constant. (Workless supports can form a useful part of that
boundary.) However, the forms ofenergy within the system can change. The second law is related
to what (natural) changes in these forms can take place. They tend to be such that the potential
for further change to take place is reduced. The system tends to become less organised and more
random (the 'entropy' increases), so that the amount of 'useful' energy is reduced. To put it
another way, you cannot have your cake and eat it, or there are no free lunches.

A loaded structure is generally designed to reach a state of balance ofloads (both external
and internal) such that no further movement occurs. This state holds not only for the structure as
a whole but for every part of it. It is then said to be in a state ofstatic equilibrium. If the loaded
structure tends to move away from a given deflected state, then it is not in equilibrium. The
energy ofmovement (kinetic energy) may be provided from two sources. The applied loads can
do work, thus reducing their potential energy, or the deformed structure may release strain
energy in moving back towards its undeformed state. A clock driven by falling weights and one
driven by a spring are examples ofkinetic energy derived from these two sources. Then if a loaded
structure is in equilibrium, it has no tendency to move resulting in the release of energy from these
two sources. This can be analysed by examining the net energy released from these two sources
during any imaginary small deflexion (virtual deflexion) from the equilibrium state. The conditions
of static equilibrium of the loads on a body are that these loads have no resultant force or
moment. This means that during any rigid-body motion of the body, in which it displaces or
rotates without any change in its deformation, no net work is done and hence no kinetic energy
can be generated.

A loaded structure-is not always safe, even when it is in equilibrium. Although in theory
it could remain in that state if undisturbed, some small imperfection or external perturbation may
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Figure 1.7 Basic types of equilibrium. 

induce movements away from the assumed state. Figure 1.7 illustrates three different kinds of 
equilibrium. The upper diagrams show a heavy ball free to roll over a surface and the lower ones 
a mechanism consisting of three rigid bars linked by pin joints. The pair of diagrams shown in 
Figure 1.7a illustrate stable equilibriiim. If the ball is moved slightly, it will tend to move back 
to its original position. Likewise, the pair of forces F will tend to pull the mechanism back to its 
initial state ifit is perturbed slightly. In Figure 1.7b, if either the ball or the mechanism is displaced 
from its initial state, neither gravity acting on the ball nor the forces F have any influence on the 
perturbation and both systems tend to remain in the displaced position. This is known as neutral 
equilibririm. Any tendency of either the ball or the mechanism in Figure I .7c to move From their 
equilibrium states is amplified by the forces acting on them. This is therefore known as unstable 
equilibrium. In the cases shown, the nature of the equilibrium state is determined from the 
potential of the loading in an immediately adjacent state. If this potential then permits the loading 
to do work in either restoring the system to its original state or enhancing the perturbation, then 
the state is either stable or unstable respectively. More generally, the strain energy of the system 
has to be considered as well. Structural systems are usually stable, because during any fbrther 
growth of a small perturbation, more energy would be absorbed in straining the structure than 
would be released from the loss of potential energy of the applied loads in doing work. However, 
under certain loading conditions the structure grows unstable, as its ability to absorb strain energy 
becomes less than that of the loading to do work. The transition is usually marked by a state of 
neutral equilibrium. 

(1.4 Linear Response) 

(Most structural engineering analyses involve the solution of linear simultaneous equations 
of the form 

Ul,Xl + O12X2 + . . . + CIlnXn = y ,  
allxl + 4 2 x 2  + . + = Y2 

o,,xl + (im2x2 + . . . + amnxn = y ,  
. . . . .  

or 
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&,XI = y ,  (i' 1 to m) 
1 ' 1  

These equations can be written in matrix form as 

A x  = y  

where A is the matrix of coefficients a9,  and x and y are the column vectors of the parameters 
x, andy, . Such equations arise in writing the equations of equilibrium, the relationships between 
(small) deflections, and the linear-elastic relationships between stresses and strains, for example. 
If a third column vector z of parameters zk (k = 1 top) is related toy  by 

By = I; 

where €3 is the matrix of coef€icients bb,  then 

Cx = RAx = By = z (1.5) 

where 

so that the relationship between x and z is also linear. In any linear relationship, the following 
results apply. 

Let x, , x, , x, be particular values of the column vector x and y, , y l ,  y ,  particular values 
of the column vectory such that 

Then 
Ax3 = A(x,  + XJ = AX, + Ax2 = y ,  + y2 = y3 (1.8) 

Suppose that x is the column vector of deflexions of a structure in response to a loading given by 
y.  Then (1.8) shows that a response to a combination of loadings y, and y2 is the sum of the 
individual responses to these loadings applied separately. This is known as the principle of 
superposition attributed to Bresse, as noted in the preface. It also follows that if y, is a scalar 
multiple, K, ofy, then kk, is a solution, for 

so that this response increases in proportion to the loading. 
There is not necessarily a unique solution to linear simultaneous equations such as (1.3). 

If there are more equations than unknowns (m>n), then there may be no solution. If there are 
fewer equations than unknowns (men), then the parameters x, cannot be completely determined. 
If the structure is insufficiently constrained so that it forms a mechanism (such as that shown in 
Figure 1.7), the above equations will be insufficient to find the deflexions. Likewise, if too many 
constraints are applied to the structure, it may not be possible to find its internal loading from the 
equations of equilibrium alone. It is then called a sruricully-indererminare or redundant structure, 
(This will be discussed hrther in Chapter 2.) Even if the number of equations is equal to the 
number of unknowns (m=n), there may still not be a unique solution. This would be because some 
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of the equations contain no information which could not be deduced from the other equations. In 
this case, some of the rows ofA would be linear combinations of other rows ofA, so that the 
determinant ofA would be zero. This happens when the structure just reaches its buckling load 
and passes fiom a state of stable equilibrium to a state of neutral equilibrium where its deflexions 
are no longer determinate. As will be seen in $1 1.5, this zero determinant is a useful indicator of 
the loss of stability. 

In engineering analyses, most problems have unique solutions. If a structure is constrained 
so that it neither forms a mechanism nor is fiee to move bodily in space (rigidbody motion), then 
its deflexions can be determined from the applied loading. If, in addition, there are no redundant 
constraints, so that the internal loading can be determined from the applied loading by means of 
the equations of equilibrium only, then the structure is said to be jusr-stvx It will be assumed that 
the initial (unloaded) state is one of zero stress and strain, and so one of zero strain energy, As 
will be seen in Chapter 3, it can then be shown that the internal stresses and strains in a structure 
are uniquely determind for given loads and displacements applied to it. Suppose that in ( I  .3), xI  
and xt are two different responses of a structure to a particular loadingy,. Then 

A x ,  = Y ,  . Ax, = y, (1.10) 

and so 
A ( x ,  -x2) = y ,  - y l  = 0 (1.11) 

Thus, ifa unique solution exists, so that xI and x, must be equal, then the initial (unloaded) state 
must be one of zero response. Uniqueness implies that ifa solution has been found which satisfies 
all the necessary conditions imposed on it, then it is the solution. The importance of uniqueness 
will be seen, for example, in proving Betti's reciprocal theorem in Chapter 3 . )  

(1.5 Symmetry and Antisymmetry} 

{A structure is said to be symmetrical when, under some transformation of the coordinate 
system from which it is viewed, it appears unchanged. That is to say it is invariant with respect 
to the transformation. The most common type of symmetry is mirror-symmetry. The two- 
dimensional structure shown in Figure 1.8a is symmetrical about its centre line. That is, if a mirror 
M-M is placed on this centre line as in Figure 1.8b, the right-hand half of the structure would 
appear as the mirror image of the left-hand half The system of reference shown by the (x,y) axes 
and the anticlockwise sense of rotation also has its mirror image, (x',y') and the clockwise 
rotation. 

AQ I'" ?Q 
I 

Figure 1.8 Behaviour of a symmetric framework 

The structure appears identical when viewed from either system of reference, except for changes 
in the joint labels. The typical joint labelled P seen with respect to the (x,y) system is the same as 


