ELASTIC BEAMS
AND FRAMES

Second Edition

John D. Renton




ELASTIC BEAMS AND FRAMES

Second Edition

JOHN D. RENTON

Department of Engineering Science
University of Oxford
Oxford

WP

e

Oxford Cambridge Philadelphia New Delhi



Published by Woodhead Publishing Limited,
80 High Street, Sawston, Cambridge CB22 3HJ
www.woodheadpublishing.com

Woodhead Publishing, 1518 Walnut Street, Suite 1100, Philadelphia,
PA 19102-3406, USA

Woodhead Publishing India Private Limited, G-2, Vardaan House, 7/28 Ansari Road.
Daryaganj, New Delhi — 110002, India
www.woodheadpublishingindia.com

First published by Horwood Publishing Limited, 2002
Reprinted by Woodhead Publishing Limited, 2011

© J.D. Renton, 2002
The author has asserted his moral rights

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. Reasonable efforts have been
made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials. Neither the author nor the publisher, nor anyone
elsc associated with this publication, shall be liable for any loss, damage or liability directly or
indirectly caused or alleged to be caused by this book.

Neither this book nor any part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, microfilming and recording, or by
any information storage or retrieval system, without permission in writing from Woodhead
Publishing Limited.

The consent of Woodhead Publishing Limited does not extend to copying for general
distribution, for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from Woodhead Publishing Limited for such copying.

Trademark notice: Product or corporate names may be trademarks or registeréd trademarks, and
are used only for identification and explanation, without intent to infringe.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 978-1-898563-86-0



Table of Contents

Table of COMENES . . . . . o et i
Preface . . vi

Chapter 1 Introduction

1.1 Loads, Deflexions, Joints and Supports . ... ............. ... .. ...... 1.1
1.2 Small Deflexion Theory . ... ... . ... . .. i 1.3
1.3 Energy, Equilibrium and Stability . ... ............ ... ... ... 1.4
{1.4 Linear Response} . .. ........ ... .. ... i 1.5
{1.5 Symmetry and Antisymmetry} ... ... ... ... 1.7
Chapter 2 Statics
2.1 Work, Energy and Static Equilibrium .. ................ ... .. ... .. 2.1
2.2 Motion of a Rigid Body, Resultants and Equilibrium ... ... ... . . 2.1
2.3 Distributed Mass and Load, ForceFields .. ... .. ... .. ... .. ... ... 2.5
2.4 Particular Cases of Equilibrium .. ......... ... ... .. ..... ... .. 27
2.5 Method of Sections ... . ...... ... ... . 29
26 JointResolution . . . ... . ... . . ... 2.10
2.7 Tension Coefficients .. ... ... ... ... ... ... . ... ... ... ... 2.11
2.8 Static Analysisof Beams ........ ... ... ... ... ... 2.14
2.9 Static Determinacy .. .......... ... 2.17
2.10 Displacement Diagrams .. ... ... ... ... ... L 2.20
{2.11 Full Determinacy Analysis} .. ... .. ... ... . ... .. ... .. ... ....... 2.21
Chapter 3 Elasticity
31 Suess and Equilibrium . ... . . 31
3.2 Strain and Compatibility . . . ... o 32
3.3 Linear Elastic Behaviour of Isotropic Materials .. ........ ... ... ... .. 34
3.4 StramEnergyofaBody ....... ... .. .. ... .. ... 37
3.5 StrainEnergy Density ... ... ... ... . ... . 39
3.6 Saint-Venant’s Principle ... ... . ... .. ... ... . ... .. .. ... .. .. ... 39
3.7 Stress Transformations and Principal Stresses .. ....... ... .. .. .. ... .. 3.10
38 Mohr’sCirclefor Strain . ... ... ... ... ... .. ... . ... ... .. 3.12
3.9 Failure Criteria for Ductile Materials . ......... ... ... .. .. ... ... .. 3.14
3.10 Cylindrical Polar Coordinates ... ...... ... ... ... ........ ... .. 3.16
{3.11 Anisotropic Elasticity} .. ... ... ... .. .. .. ... ... .. .. 3.18
{3.12 Stressand Strain Tensors} ........... .. ... .. .. ... . . ... .. 3.20
Chapter 4 Beams with Axial Stresses
4.1 Introduction .. ...... ... .. ... 4.1
4.2 The Differential Equations of Flexure . ........ ... .. ... ... ... ... 44
{4.3 Non-Prismatic Beams and Other Exceptional Cases} . ... ... ... ... ... 49
44 Moment-AreaMethods . .. ... ... ... .. 4.13
4.5 The Slope-Deflexion Equations ... ............ ... .. ............. 4.15
4.6 Strain Energy of Bending and Axial Loading ... ........ ... ... ... .. .. 418
{4.7 Anisotropic Beams Subject to Axial Stresses} .. ... ....... . .. ... ... ... 4.19



ii Table of Contents

Chapter 5 Torsion of Beams

S.1 Introduction ... ... 5.1
5.2 Isotropic Beams with Circular Sections ... .................. ... .. .. 5.1
5.3 Thin Tubes and Approximate Analyses of Non-Circular Sections . ... ... ... 52
5.4 Saint-Venant TOTsion ... ... . ... ......... .. .. 5.5
5.5 The Membrane Analogy . .............. . ... ... ... ... ... 5.9
5.6 Strain Energyof Torsion . ........... .. ... ... ... .. ... 5.11
5.7 Non-Prismatic Bars and Other Exceptional Cases ............... ... . 512
{5.8 Anisotropic Beamsin Torsion} . ..... ... ... ... ... .. ..., 5.14
{5.9 Non-Uniform Torsion of Thin-Walled Open Sections} . ............ ... . 5.16
Chapter 6 Shear of Beams
6.1 Introduction . ....... . ... ... ... R B
6.2 The Engineering Theory of Shear of Thin-Walled Sections ........... . .. 6.1
6.3 Shear Strain Energy and the Shear Stiffness of Thin-Walled Sections . . . . ... 6.4
{6.4 A Closer Examination of Deflexion and Support Conditions} . ...... .. .. 6.5
{6.5 The Exact Analysis of Flexural Shear} . ....... ... ............. .. ... 6.8
{6.6 Non-Prismatic and Inhomogeneous Beams} .. ... ... ... .. .. .. .. 6.16
{6.7 Anisotropic Beams} ... ... ... .. ... ... o 6.18
Chapter 7 Energy Methods
7.1 Introduction . ... ... .. ... ... 7.1
{7.2 The Principle of Minimum Potential Energy} ................... . .... 73
§{7.3 The Principle of Minimum Complementary Energy} .. ... ........ .. .... 7.5
7.4 Prescribed Resultants, Corresponding Deflexions and Work .. ... ... .. .. 7.6
7.5 Castigliano’s Strain Energy Theorem . . . ... ............ ... .. ... ... .. 7.9
7.6 Castigliano’s and Crotti’s Complementary Energy Theorems . .. ... ... .. 7.11
7.7 The Rayleigh-RitzMethod . . ... .. . ... . ... ... .. ... ... .. ... 7.14
7.8 The Calculus of Variations .. ... ... ... ... ... .................. 7.16
Chapter 8 The General Theory of Beams
8.1 Introduction . ... ... .. . ... ... .. 8.1
{8.2 The Constant RESponse ... ............. ...t iean .. 82
83 TheLinearResponse ... ... ... ... .. ... ... .. ... ... ... 8.4
8.4 The DeformationMatrix ... .. .. ... ... ... ... ... ... .. .. ... ... .. 85
8.5 The Slope-Deflexion Equations for Modular Beams . ............. . .. 8.9
8.6 The Characteristic Response for Circular Beams} ... ... ... .. ... ... . .. 8.12

Chapter 9 Stability of Beams

9.1 Introduction ......... ... ... ... ... 9.1
9.2 The Classical Problems of Structural Stability .. ..... ... .. .. ... . .. .. 9.4
9.3 The Slope-Deflexion Equations for Large Axial Loads .. ... ... .. .. .. 95
{9.4 Flexureand Shear} ...... ... ... ... . .. ... ... ... .. ... 9.7
{9.5 Flexure and Torsion} . ..... ... .. .. ... ... ... ... ... .. .. ... 99
{9.6 Lateral Buckling} . . ........ ... ... .. .. ... .. ... ..., 9.12
{9.7 Local Buckling of Thin-Walled Sections} . .. .......... ... ......... 9.17
9.8 Approximate Methods . . ... ... ... ... ... . oo L 922

9.9 General Theories of Stability



Table of Contents iii

Chapter 10 Vibration of Beams

10.1 Introduction ... ... . ... . ... 10.1
10.2 The Flexural Vibrationof Beams .. ... ......... .. .. ... ... ... .. 10.2
10.3 The Natural Frequencies of Simple Beams . ... ...... ... .. ... ... .. 10.5
10.4 The Axial Vibrationof Beams . . ... ........ ... ... ... ... .. ... .. 10.6
10.5 The Torsional Vibration of Beams ... . .............. ... ... ... . .. 10.7
10.6 Flexural Vibration with Large Axial Loading .. .. ... ... .. . .. .. .. 10.9
{10.7 Response to Arbitrary Time-Dependent Loading} . ... ... ... .. 10.10
10.8 Travelling Waves inRodsand Beams . ... ... .. .. ... . ... 10.14
10.9 The Whirling of Shafts . .. .. . e 10.17
10.10 Approximate Methods .. ... ... ... .. ... ... ... ... ... .. 10.19
Chapter 11 Matrix Analysis of Structures
11.1 Introduction . ........ . .. . ... ... 1.1
11.2 Plane Pin-Jointed Frames . ... ... ... ....... ... .. ... ... ......... 11.4
11.3 Plane Rigid-Jointed Frames . ............. ... ... ... ... ... ... 11.7
{11.4 Three-Dimensional Frames} . ... ... ... .. .. . .. ... . ........ .. 11.10
{11.5 The Stability of Frames} .. ... ... ... .. .. ... ... ........... 11.15
{11.6 The Vibrationof Frames} . ... ... ... . . .. ... ... ... ........ 11.18
11.7 Equilibrium Matrices . ... .. ... . ... . ... ... ... 11.22
{11.8 Non-Prismatic Members} ... ... ... ... .. ... ... .. ... ... . ... . 11.24
{11.9 Transfer Matrices} . ...... . .......... ... . . i, 11.28
11.10 Special Applications .. ... ... ... ... ... 11.31
Chapter 12 Computer Analysis of Frames
12.1 Introduction .. ... . ... . . ... .. 12.1
12.2 The Nature of the Frame Stiffness Matrix ... ... ... ... ... ... .. 12.3
123 Datalnput .. ... ... ... .. . ... 12.5
12.4 OrganisationoftheData .. ....... ... ........ ... .. ... . ... .. 12.8
12.5 Methods of Solution .. ... .. .. . ... .. ... ... ... ... 12.9
12.6 DataOutput .. ... ... .. . . . .. . . 12.14
12.7 Stability and Vibration Problems ... ... .. ... ... ... .. .. ... . 12.16
Chapter 13 Influence Lines
13.1Introduction .. ... ... .. ... 13.1
13.2 Elementary Beam Problems .. ... ... ... ... ... o oL 13.1
13.3 Envelope Diagrams . . ... . ... . .. .. ... 13.4
134 TrRUSSES . . . .. 13.5
13.5 Miiller-Breslau’s Theorem . ... ... o 13.6

Chapter 14 Optimum Structures

14.1 Introduction . . ... ... ... 141
142 Maxwell’s Theorem .. ... .. ... ... ... ... ... ... ... ... 14.1
14.3 Michell Structures .. ... . ... 143
{14.4 Linear Programming} ... ................ ... ... ... .......... 149
14.5 General Methods of Optimisation . ...... ... ... ... .. ... .. ... ... .. 14.15
14.6 Vibration Optimisation ... ................. ... ... ........... 14.18

14.7 Optimisation with Buckling Problems . .. ... ... .. .. ... ... ... .. .. 14.20



iv Table of Contents

Chapter 15 Regular Structures

15.1 Introduction .. ... ... ...
15.2 Mathematical Preliminaries . .. .. ... ... .. ... .. ... .. .. ........
153 RegularPlane Trusses ......... ... ... ... ... .. ... .. . ...
154 Regular Space Trusses ............ ... ... ... .. ... .. ... ... ..
155 Membranesand CableNets .. ... ... . .. ... ... ... . ... ... ... ...
156 Plane Grids ... ... ... ..
157 SpaceGrids . ... ... ...
15.8 Reticulated Barrel Vaults . . .. ... ... ... ... .. ... ... ... ... .. ..
159 BracedDomes . ......... ... .. ..
15.10 Stability Considerations .. .. .......... ... .. ... ... .. .. ... ...
15.11 VibrationProblems ... ... ... ... ... ... .. .. .. ... . ... ... ... ..
Appendix 1 Commeon Notation ... .. ... ... . ... .. ... .. .. ...... ..

Appendix 2 How to Use the Structural Analysis Programs
A2.1 Getting Started . .. ... ...
A22 DataFiles . ... ... .. ... ...
A2.3 Common Errorsin Producing Files . .............. ... ... ... ... ..
A2.4 The DataFilesProvided ... ... ... ... ..... . ... ... ... ... ..

Appendix 3 How to Use the Other Programs ... ... . ... ... .. ... .. .. ... .

Appendix 4 Section Properties and Related Formulae
A4.1 Exact Formulae for Solid Sections

Appendix 5§ Properties of Regular Structures and Standard Solutions
AS.1 General Solutions for Modular Beams
AS5.2 Plane Trusses .. . .......... ... ...
AS53 Space Trusses . . . ............. . ...
AS5.4 SolutionsforPlane Grids . .. ... ... ... ... ... .. ... ... ... ......
A5.5 Solutions for Space Grids . . . .. ..

Appendix 6 Tables
A6.1 Formulae for Simple Beams . . .
A6.2 Stability and Vibration Functions

Appendix 7 The Characteristic Response of Cones
A7.1 Formulae for Spherical Polar Coordinates
A7.2 The General Method . .. ... .. ..
A7.3 An Axially-loaded Hollow Cone ... .. ... ... ... . .. ... .. ... .. ..
A7.4 A Hollow Cone with a Tip Shear Force
A7.5 A Hollow Cone in Torsion
A76 AHollowConeinFlexure .. ... ... .. .. .. ... .. ...
A7.7 The Unloaded Cone Paradox



Table of Contents v

Appendix 8 Elements of Plate Theory

A8.1 The Governing Equations for Isotropic Plates . .. ... .. ... ... .. .. ... A81

A8.2 Boundary Conditions ... ...... .. ... ... ... ... ... ... A82

A8.3 Strain Energy Analysis . ... ... ... .. ... ... .. .. . ... ... . ... .. A83
Appendix 9 Further Theoretical Considerations

A9.1 Orthogonality of Normal Modes . ............................. .. A9.1

References and Suggested Reading . ... ... .. ... ... ... ... .. .. ... ... .. ... ix



Preface

I cannot doubt but that these things, which now seem to us so mysterious, will be no
mysteries at all; that the scales will fall from our eyes, that we shall learn 1o look on things in
a different way - when that which is now a difficulty will be the only common-sense and
intelligible way of looking at the subject.

(Lord Kelvin)

Early Developments in the Theory of Elasticity

1638 Galileo Galilei

1660-
1678 Robert Hooke:
(Hooke's Law)

1686 Edme Mariotte P
1694 Jacob Bemnoulli:
C/R = Px (C = mbh*/3)

1742 Daniel Bernoulli:

{1/R%dx is a minimum

I
1744 Leonhard Euler:
C dvdx? = Px (C « bh?)

1776 Charles Coulomb: 1788 Jacob Bernoulli (the younger):
foydd =M d'widx*+d'widy' = o dw/dr?

1807 Thomas Young: 1813 Sophie Germain:

(Young's modulus)——1819 Louis Navier: dw/dr+ k*Vhw=10
Eldwvdx? ~EI/R =M

1823 Siméon Poisson: (Modern beam theory)

Poisson's ratio (=%)

1850 Gustav Kirchhoff:
1852 Gabriel Lamé: (Modern plate theory)
Material-specific A,
and Poisson's ratio. 1854 Jacques Bresse:

1857 Barré de Saint-Venant: (Principle of Superposition)
(Saint-Venant's Principle)

vi



Preface vii

The history of science is one of observation, measurement, and the postulation of theories
to explain the observed phenomena. As Karl Popper said, any theory worthy of being called
scientific should be capable of making predictions which can be tested. With the passage of time,
these processes become more precise and sophisticated. Theories which had earlier seemed to be
satisfactory turn out to be inadequate, either because more precise measurements and analysis
show them to be false or because they lack the scope to explain new phenomena. Also, they may
be replaced by new methods and ideas which are more elegant or useful. Thus Young’s modulus,
E as used today, should really be attributed to Navier. Young’s own definition was “The modulus
of elasticity of any substance is a column of the same substance, capable of producing a pressure
on its base which is to the weight causing a certain degree of compression as the length is to the
diminution of its length”. Poisson was originally convinced that his ratio, v, had a fixed value of
V4 until the body of experimental evidence showed that it must take different values for different
materials. Lamé (1852) was probably the first to accept that this must be so.

Galileo first examined the resistance of a cantilever beam to failure. He had no concept
of elasticity, and implicitly assumed a constant stress distribution at the support with failure
occurring by rotation about the bottom edge. Although this lead to poor predictions of the failure
of a cantilever, it came to be known as ‘Galileo’s problem’. Working independently from Hooke,
Mariotte found the elastic stress distribution in bending. This was the correct linear response, with
the neutral axis at the centroid. However, owing to a mathematical error, he concluded that this
gave the same result for the resistance of the beam as taking a tensile linear variation in stress
from a fulcrum at the bottom edge. The name ‘Bernoulli’ is often used generically for the whole
family from Jacob' (the elder) to Daniel. The former is usually credited with the invention of beam
theory, having determined that beam curvature was proportional to the local bending moment.
However, he incorporated Mariotte’s mistake in his work. Even Euler, who first applied
differential calculus to beam theory, wrongly estimated the stiffness of a rectangular beam to be
proportional to the square of its depth. Again, it is Navier who should take the credit for beam
theory as it is normally used today”.

Perhaps surprisingly, the earliest work on the theory of plates was concerned with their
vibration. Jacob Bernoulli treated plates as if they were square grids of beams (subject to bending
only) and so derived an incorrect differential equation for their lateral displacement w. Sophie
Germain found the correct form for the equation, but was at a loss to give an expression for the
plate’s bending stiffness. Poisson (1814) deduced the same equation as Sophie, but claimed that
it was too complicated to be solved. He also insisted that three boundary conditions could be
imposed on each edge, a debate which continued until Kirchhoff's definitive work on the subject
in 1850. The Bernoulli-Euler hypothesis for beams, that plane sections remain plane, has an
equivalent for plates and shells known as the Kirchhoff-Love hypothesis. This hypothesis has been
challenged from the earliest times, most notably by Barré de Saint-Venant. It will be seen that his
name and that of Bresse have been added to the above chart. In Chapter 8, it will be shown that
their principles unify the engineering theories of flexural, torsional and axial response. Together
with the concept of strain energy, the shear response of beams can be determined from exactly
the same principles. They also lead to the determination of the characteristic responses of other

! Also known as James or Jacques.

However, it is commonly known as the Bemoulli-Euler theory. In October 1742, Daniel Bemnoulli
wrote 1o Leonhard Euler proposing his minimum principle. From this, Euler deduced his differential
equation (see chart) using the calculus of vanations that he had invented. It then still required
Coulomb to discover the correct stress distribution and Young to devise his modulus before all the
elements of bending theory as used today could be combined by Navier.
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linearly-elastic structures. This is made possible by discarding the constraint of assuming that
‘plane sections remain plane’. Here and elsewhere in the book it has been necessary to re-examine
approaches which have been hallowed by convention.

The general reader may be more interested in practical applications rather than the more
abstract aspects of the theory. The intention is to provide an introduction to more advanced ideas
on the subject than is commonly available in a student text book. There are, of course, many
excellent books on the basic theory of structures. The aim here will be to present the basic theory
in a different light and add to it material which is useful but is not readily available. Efforts have
been made to maintain an overall consistency of notation. As one form is more familiar for two-
dimensional problems and another for three-dimensional problems, some compromises have been
made. As far as possible, the more advanced sections which may not be required at a first reading
will be enclosed in curly brackets: { } , and will normally be located after the elementary theory,
even at the risk of some duplication, and specialist formulae and data consigned to the appendices.

JOHN D. RENTON
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Chapter 1 Introduction

1.1 Loads, Deflexions, Joints and Supports

The most common notation will be found in Appendix 1 and is also defined where it is first
used. In addition, it is worthwhile making clear some of the distinctions in terminology which will
be used in this book. A force is an action or influence on a body which tends to cause it to move
in a particular direction. A moment is an action or influence on a body which has a turning effect
on it, about a particular axis. The word Joad will be taken as a general term, referring to forces,
moments, distributed forces (such as pressure) and distributed moments. Likewise, deflexion may
be taken to refer to a linear displacement, a rotation or a general movement of a structure or
component. Loads can have corresponding deflexions which are the deflexions through which
they do work. Thus the corresponding deflexion to a force is its displacement along its line of
action, and the corresponding deflexion to a moment acting about some axis is its rotation about
that axis. The work done by a load is then given by the integral of that load with incremental
changes in its corresponding deflexion.

Forces, displacements, moments and rotations
are, in general, vector quantities possessing both
magnitude and direction. Figure 1.1 shows the
convention that will be used in two dimensions. F is a
force vector and u is the deflexion vector corresponding
to it. The horizontal and vertical components of F are H
and V in the x and y directions respectively. If the
magnitude of F is F, then the values of H and V are *
cos o and Fsin & respectively. The horizontal and  Figure 1.1 Loads and deflexions
vertical components of u#, u and v, are similarly related in two dimensions.
to the magnitude of 4. In a right-handed coordinate
system, the z axis would come out of the paper. The moment M and the corresponding rotation
0 would be clockwise about this axis, as viewed looking along it.

4 M0
M, 8
M}"e}’ \_) Mx 'ex
y x
(b)

Figure 1.2 Load and deflexion vectors in three dimensions.

In three dimensions, the force F and the corresponding deflexion 4 have components (¥,
F,, F,)and (u, u,, u, ) respectively in the x, y and z directions, as shown in Figure 1.2a. The
moment M and the corresponding rotation 8 can be regarded as vectors too, with components
M, M, , M, )and (8, ,6,,8, )inthex, yand z directions, as shown in Figure 1.2b. These
components are taken to be positive in the clockwise sense, as viewed along the axis about which

they act. The double-headed arrow convention is used to indicate that they are rotation vectors.

1.1
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Most joints and supports are taken to be workless. That is, they neither absorb nor give
out work (or energy). The most common exceptions are elastic supports or joints and frictional
supports. Here, we will consider only the workless variety. Most frameworks are classified into
either pin-jointed frames or rigid-jointed frames. In practice, most frames are not entirely one or
the other, but from the analytic point of view, the classification is useful. Figure 1.3 shows the two
types of joint. Neither permits relative
displacement of the ends of the structural

members joined to it, and both can sustain forces
applied to them. However, the pin joint permits
relative rotation of the ends of members joined to
it. As it is a workless joint, it follows that it can
exert no moments on these ends and also it - =

cannot sustain an external moment applied to it.
Usually, the members of a pin-jointed framework
are straight and are not subject to lateral loads
between their ends. In this case, they only sustain
axial forces. In three dimensions, the pin joint
permits relative rotation of the ends about all Figure 1.3 Common types of joint.
three axes, and is commonly referred to as a

universal joint. A rigid joint does not permit any relative rotation of the ends attached to it, and
can exert moments as well as forces on the member ends.

Lok

V* w\ V*""; V+ -M
(a) (b) © @ (e)

Figure 1.4 Common types of workless support (in two dimensions)

(2) A pin joint (b) A rigid joint

The common types of workless support are shown in Figure 1.4, These can exert either
a reaction (force or moment), in which case the corresponding deflexion of the frame at that point
is zero, or a particular reaction does not exist, in which case the corresponding deflexion of the
frame at that point is free to take place. (The extreme example of the latter is a free end, which
is subject to no reactions at all.) Other workless supports could exist, such that both reactions and
deflexions took place at the support, but they would be interrelated in such a way that no net
work was ever done. However, these can be simulated by rigid mechanisms attached to supports
of the above kind. Figure 1.4a shows a fixed or encastré end. All rotation and displacement of the
end are prevented, requiring the three reactions shown in two dimensions (or six reactions in three
dimensions). Figure 1.4b shows a pin support which permits end rotation but no end
displacement. In three dimensions, a pin support will be taken to permit rotation about all three
axes, and a rocker support taken as one which permits rotation about a particular axis (the rock
axis). Figure 1.4c shows a Anife-edge support which permits rotation of the structure about it but
no motion normal to it (in either direction). It can then exert a normal reaction but no moment
reaction. This kind of support is postulated in examining the flexure of beams, when it is assumed
that the axial beam loading in the beam is insignificant, so that the question of any lateral reaction
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provided by the knife edge does not arise. Figure 1.4d shows a slider support which permits
transverse motion of the end, but prevents any rotation or normal motion of it with the aid of
normal and moment reactions, M and V, if necessary. Finally, 1.4e shows a pinned slider support
which allows rotation and lateral displacement of the end but prevents any normal motion with
a normal reaction V. More possible workless support conditions exist in three dimensions, but no
commonly-accepted symbols have been devised for them.

‘M% if_;“ ([
(@ é SJ?HS TD[]OT

Figure 1.5 Loading on a structural member.

The above loading descriptions are related to some overall set of coordinates and not to
a particular structural member. Figure 1.5a shows distributed loads p and g acting on a beam.
These are usually forces per unit length, although sometimes they are used to indicate forces per
unit area. The symbol used for p will be used to indicate that it is of constant intensity, whereas
g, as shown, indicates a variable intensity. Figures 1.5b to 1.5e show resultant internal load pairs
acting on short sections of the beam. Each pair is acting in the positive sense used in this book,
which is that the corresponding deflexion tends to increase along the axis (here the x axis) of the
beam. The axial force P in Figure 1.5b is tensile positive, producing an increase in the axial
displacement u along the beam. In Figure 1.5c¢, the moment M produces ‘sagging’ of the beam,
corresponding to a positive increase in the rotation 8 along the beam. The shear force § in Figure
1.5d acts in such a way as to increase the lateral displacement v in the y direction. Lastly, the
torque 7 is such that the beam’s rotation about its longitudinal (x) axis increases along its length.

1.2 Small Deflexion Theory

In order to illustrate the mode of deflexion of a structure, this mode is usually
exaggerated. The actual deflexions are usually too small to be detected with the naked eye.
Typically, the maximum displacement of a beam is no more than 1/300th of its length and the
induced rotations are likewise of the order of a fraction of a degree. For many purposes, the
change in geometry of a structure under load can be ignored. For example, its equilibrium under
load is usually examined relative to the position of the loading in the undeformed state. Also, the
changes in orientation of parts of the structure, produced by rotations under load, are often
(implicitly) taken as negligible. If the rotations were large, then the effect of a sequence of
rotations about different axes, which themselves are affected by these rotations, would depend
on the order in which the rotations took place. (The method of analysing the effects of large
rotations will be discussed in setting up the stiffness matrices for beams with arbitrary orientations
in three dimensions, see §11.4.) However, if the rotations are small, the effect of a sequence of
rotations is given by their vector sum.



14 Introduction [Ch. 1

Unless specifically stated otherwise, radian measure will be used for such rotations. Then
there is no need to distinguish between these rotations and their sines and tangents, as they are
the same, if only the first term of each of the power expansions for these functions is taken to be
significant. In particular, this means that the slope (or gradient) of a beam produced by flexure,
and the flexural rotation of the beam at the same location are taken as the same.

Figure 1.6 shows the displacement of the
end C of a rigid bar AC of length / resulting from
a rotation O about the end A. These are given by
the horizontal and vertical components, § and €,
where

6 =1sin® ; € =1(1-cosB).
As 0 is very small, & can be taken as /8 and € as
zero (using the first terms in the expansions of
sin® and cosB only). However, for stability
analyses it will be seen later that it is necessary to
use the more accurate expression /0 for €,
given by including the second term in the expansion for cos6.

Figure 1.6 A rigid-body rotation.

1.3 Energy, Equilibrium and Stability

The laws of thermodynamics form an important part of the theoretical basis of structural
analysis. They can be expressed in various ways, but put simply, they are as follows. The first law
states that in any closed system, energy is conserved. That is, if we can encapsulate the structural
system within a real or imaginary boundary, so that energy passes neither in nor out, the total
energy within the system will remain constant. (Workless supports can form a useful part of that
boundary.) However, the forms of energy within the system can change. The second law is related
to what (natural) changes in these forms can take place. They tend to be such that the potential
for further change to take place is reduced. The system tends to become less organised and more
random (the ‘entropy’ increases), so that the amount of ‘useful’ energy is reduced. To put it
another way, you cannot have your cake and eat it, or there are no free lunches.

A loaded structure is generally designed to reach a state of balance of loads (both external
and internal) such that no further movement occurs. This state holds not only for the structure as
a whole but for every part of it. It is then said to be in a state of static equilibrium. If the loaded
structure tends to move away from a given deflected state, then it is not in equilibrium. The
energy of movement (kinetic energy) may be provided from two sources. The applied loads can
do work, thus reducing their potential energy, or the deformed structure may release strain
energy in moving back towards its undeformed state. A clock driven by falling weights and one
driven by a spring are examples of kinetic energy derived from these two sources. Then if a loaded
structure is in equilibrium, it has no tendency to move resulting in the release of encrgy from these
two sources. This can be analysed by examining the net energy released from these two sources
during any imaginary small deflexion (virtral deflexion) from the equilibrium state. The conditions
of static equilibrium of the loads on a body are that these loads have no resultant force or
moment. This means that during any rigid-body motion of the body, in which it displaces or
rotates without any change in its deformation, no net work is done and hence no kinetic energy
can be generated.

A loaded structure-is not always safe, even when it is in equilibrium. Although in theory
it could remain in that state if undisturbed, some small imperfection or external perturbation may
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Figure 1.7 Basic types of equilibrium.

induce movements away from the assumed state. Figure 1.7 illustrates three different kinds of
equilibrium. The upper diagrams show a heavy ball free to roll over a surface and the lower ones
a mechanism consisting of three rigid bars linked by pin joints. The pair of diagrams shown in
Figure 1.7a illustrate stable equilibrium. If the ball is moved slightly, it will tend to move back
to its original position. Likewise, the pair of forces / will tend to pull the mechanism back to its
initial state if it is perturbed slightly. In Figure 1.7b, if either the ball or the mechanism is displaced
from its initial state, neither gravity acting on the ball nor the forces F have any influence on the
perturbation and both systems tend to remain in the displaced position. This is known as neutral
equilibrium. Any tendency of either the ball or the mechanism in Figure 1.7¢c to move from their
equilibrium states is amplified by the forces acting on them. This is therefore known as unstable
equilibrium. In the cases shown, the nature of the equilibrium state is determined from the
potential of the loading in an immediately adjacent state. If this potential then permits the loading
to do work in either restoring the system to its original state or enhancing the perturbation, then
the state is either stable or unstable respectively. More generally, the strain energy of the system
has to be considered as well. Structural systems are usually stable, because during any further
growth of a small perturbation, more energy would be absorbed in straining the structure than
would be released from the loss of potential energy of the applied loads in doing work. However,
under certain loading conditions the structure grows unstable, as its ability to absorb strain energy
becomes less than that of the loading to do work. The transition is usually marked by a state of
neutral equilibrium.

{1.4 Linear Response}

{Most structural engineering analyses involve the solution of linear simultaneous equations
of the form

ayx, *apX; ... a,x, =y
X *GpX t T MX, 7Y, (1)
amlxl * am2x2 M * amnxn = ym

or
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Ea,jxj =y, (i=1tom) (1.2)
i

These equations can be written in matrix form as
Ax =y (1.3)

where A is the matrix of coefficients a,, and x and y are the column vectors of the parameters
x,and y, . Such equations arise in writing the equations of equilibrium, the relationships between
(small) deflections, and the linear-elastic relationships between stresses and strains, for example.
If a third column vector z of parameters z, (k=1 to p) is related to y by

By =z (1.4)
where B is the matrix of coefficients &, , then
Cx = BAx = By = ¢ (1.5)
where
¢y = El b,a, (1.6)
so that the relationship between x and z is also linear. In any linear relationship, the following
results apply.

Let x,, x;, X, be particular values of the column vector x and y,, y,, y; particular values
of the column vector y such that

Ax, =y, , Ax, =y, ,

1.7
X3 =X % 5 V= th (.7

Then
Axy = A@x; + x)) = Ax, + Axy = p; +y, = )y (1.8)

Suppose that x is the column vector of deflexions of a structure in response to a loading given by
». Then (1.8) shows that a response to a combination of loadings y, and y, is the sum of the
individual responses to these loadings applied separately. This is known as the principle of
superposition attributed to Bresse, as noted in the preface. It also follows that if y, is a scalar
multiple, K, of y, then Kx, is a solution, for

A(Kx,) = KAx, = Ky, = y, (1.9)

so that this response increases in proportion to the loading.

There is not necessarily a unique solution to linear simultaneous equations such as (1.3).
If there are more equations than unknowns (m>n), then there may be no solution. If there are
fewer equations than unknowns (m<#), then the parameters x, cannot be completely determined.
If the structure is insufficiently constrained so that it forms a mechanism (such as that shown in
Figure 1.7), the above equations will be insufficient to find the deflexions. Likewise, if too many
constraints are applied to the structure, it may not be possible to find its internal loading from the
equations of equilibrium alone. It is then called a statically-indeterminate or redundant structure.
(This will be discussed further in Chapter 2.) Even if the number of equations is equal to the
number of unknowns (1n=n), there may still not be a unique solution. This would be because some
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of the equations contain no information which could not be deduced from the other equations. In
this case, some of the rows of A would be linear combinations of other rows of 4, so that the
determinant of A would be zero. This happens when the structure just reaches its buckling load
and passes from a state of stable equilibrium to a state of neutral equilibrium where its deflexions
are no longer determinate. As will be seen in §11.5, this zero determinant is a useful indicator of
the loss of stability.

In engineering analyses, most problems have unique solutions. If a structure is constrained
so that it neither forms a mechanism nor is free to move bodily in space (rigid-body motion), then
its deflexions can be determined from the applied loading. If, in addition, there are no redundant
constraints, so that the internal loading can be determined from the applied loading by means of
the equations of equilibrium only, then the structure is said to be just-stiff. It will be assumed that
the initial (unloaded) state is one of zero stress and strain, and so one of zero strain energy. As
will be seen in Chapter 3, it can then be shown that the internal stresses and strains in a structure
are uniquely determined for given loads and displacements applied to it. Suppose that in (1.3), x,
and x;, are two different responses of a structure to a particular loading y, Then

Ax, =y, . Ax, =y, (1.10)
and so
A(x,-x) =p, -9, =0 (1.11)

Thus, if a unique solution exists, so that x, and x, must be equal, then the initial (unloaded) state
must be one of zero response. Uniqueness implies that if a solution has been found which satisfies
all the necessary conditions imposed on it, then it is the solution. The importance of uniqueness
will be seen, for example, in proving Betti’s reciprocal theorem in Chapter 3.}

{1.5 Symmetry and Antisymmetry}

{A structure is said to be symmetrical when, under some transformation of the coordinate
system from which it is viewed, it appears unchanged. That is to say it is invariant with respect
to the transformation. The most common type of symmetry is mirror-symmetry. The two-
dimensional structure shown in Figure 1.8a is symmetrical about its centre line. That is, if a mirror
M-M is placed on this centre line as in Figure 1.8b, the right-hand half of the structure would
appear as the mirror image of the left-hand half. The system of reference shown by the (x,y) axes
and the anticlockwise sense of rotation also has its mirror image, (x’,y’) and the clockwise
rotation.

-

() (d)

Figure 1.8 Behaviour of a symmetric framework.

The structure appears identical when viewed from either system of reference, except for changes
in the joint labels. The typical joint labelled P seen with respect to the (x,y) system is the same as



