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Talking of education, "People have now a-days" (said he) "got a 
strange opinion that every thing should be taught by lectures. Now, I 
cannot see that lectures can do so much good as reading the books 
from which the lectures are taken. I know nothing that can be best 
taught by lectures, expect where experiments are to be shewn. You 
may teach chymestry by lectures. — You might teach making of 
shoes by lectures.' " 

James Boswell: Lifeof Samuel Johnson, 1766 [1709-1784] 



ABOUT THE AUTHOR 

In 1947 John D Renton was admitted to a Reserved Place (entitling him to free 
tuition) at King Edward's School in Edgbaston, Birmingham which was then a 
Grammar School. After six years there, followed by two doing National Service in 
the RAF, he became an undergraduate in Civil Engineering at Birmingham 
University, and obtained First Class Honours in 1958. He then became a research 
student of Dr A H Chilver (now Lord Chilver) working on the stability of space 
frames at Fitzwilliam House, Cambridge. Part of the research involved writing the 
first computer program for analysing three-dimensional structures, which was used 
by the consultants Ove Arup in their design project for the roof of the Sydney 
Opera House. He won a Research Fellowship at St John's College Cambridge in 
1961, from where he moved to Oxford University to take up a teaching post at the 
Department of Engineering Science in 1963. This was followed by a Tutorial 
Fellowship to St Catherine's College in 1966. 

Two main strands of research have been the behaviour of regular structures (such as 
trusses and plates) and the stability of continua. The former led to a general beam 
theory, equally applicable to continuous beams and trusses (see Elastic Beams and 
Frames, 2nd Ed. 2002 Horwood Publishing). The stability of continua, being the 
only way to establish the correct governing equations in terms of tensor calculus, 
gave rise to the present book (see Chapter 4). Both books contain much of the 
work in the author's published papers. 

The author's other interests include judo (he was in both the Birmingham and 
Cambridge University teams) and photography (he does his own chemical colour 
printing). He thought it possible that special photographic techniques might rescue 
the Pre-Raphaelite murals illustrating King Arthur and the Knights of the Round 
Table which were in the Oxford Union from total obscurity, and with the aid of the 
head photographer at the Physics laboratory, Cyrii Band, this was done. A booklet 
The Oxford Union Murals the author wrote on them in 1976 is now in its fourth 
edition, the murals having been fully restored and illuminated for the many visitors 
who now come to see them. 



Applied Elasticity, 2nd Edition
Matrix and Tensor Analysis ofElastic Continua

John D. Renton
Department of Engineering Science
Oxford University

Horwood Publishing
Chichester



HORWOOD PUBLISHING LIMITED
International Publishers in Science and Technology
Coli House, Westergate, Chichester, West Sussex,
P020 3QL England

First published in 2002, Reprinted 2005

COPYRIGHT NOTICE
All Rights Reserved. No part of this publication may be. reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the permission of Horwood Publishing Limited, Coil House,
Westergate, Chichester, West Sussex, P020 3QL England

© John D. Renton, 2002

British Library Cataloguing in Publication Data
A catalogue record of this book is available from tbe British Library

ISBN: 1-898563-85-3

Printed in Great Britain by Antony Rowe Ltd, Eastbourne



Table of contents 
Table of contents ; 

Preface /v 

Chapter 1 Matrix methods 

1.Γ Summary of matrix properties 1 
1.2 Vector representation 4 
1.3 Coordinate transformation 7 
1.4 Differential operators 8 
1.5 The strain matrix 9 
1.6 The stress matrix 15 
1.7 Isotropic elasticity 21 
1.8 Linear anisotropic behaviour 25 
1.9 Engineering theory of beams 32 
1.10 Engineering theory of plates 35 
1.11 Applications and worked examples 

1.11.1 Graphical representation of failure criteria for isotropic materials .. 38 
1.11.2 Prandtl's stress function for uniform torsion 40 
1.11.3 Bulk modulus 43 
1.11.4 Atensiontest 43 

Problems 45 

Chapter 2 Cartesian tensors 

2.1 Vector and matrix representation 49 
2.2 Coordinate transformation 50 
2.3 Differentiation 55 



Table of Contents 

2.4 Representation of strain " 
2.5 Representation of stress 57 
2.6 Thermoelastic behaviour 5 8 

2.7 Isotropie materials 61 
2.8 Applications and worked examples 

2.8.1 Generalised plane stress and plane strain 66 
2.8.2 Complex variable methods 69 
2.8.3 The San Andreas fault 75 

Problems 80 

Chapter 3 Curvilinear tensors 

3.1 Base vectors 83 
3.2 Metric tensors 87 
3.3 Higher order tensors 91 
3.4 Vector products 93 
3.5 Orthogonal coordinate systems 96 
3.6 Covariant differentiation 98 
3.7 Strain and stress tensors 104 
3.8 Elastic behaviour 108 
3.9 Membrane theory of thin shells 116 
3.10 Applications and worked examples 

3.10.1 Stress distribution around circular notches 120 
3.10.2 Velocity and acceleration 124 
3.10.3 Generalised plane stress 124 
3.10.4 A spinning disc 124 
3.10.5 A gravitating sphere 125 

Problems 126 

Chapter 4 Large deformation theory 

4.1 Lagrangean and Eulerian strain 129 
4.2 Material coordinates 131 
4.3 The state of stress 133 
4.4 Elementary solutions 140 
4.5 Incompressible materials 143 
4.6 Stability of continua 149 
Problems 157 

Appendix Al Formulae for orthogonal coordinate systems 159 

Al.l Cylindrical coordinates 160 
A1.2 Spherical coordinates 162 
Al .3 Curvilinear anisotropy 163 

11 



Table of Contents 

Appendix A2 Harmonie and biharmonic functions 165 

A2.1 The two-dimensional case 165 
A2.2 The three-dimensional case 168 

Appendix A3 Equations in vector form 170 

A3.1 The Papkovich-Neuber functions 170 
A3.2 The wave equations 171 
A3.3 Gradient, divergence and curl for curvilinear coordinates 172 
A3.4 The cone problem 173 

Appendix A4 Direct tensor notation 180 

Appendix AS Polar decomposition 183 

Appendix A6 Cosserat continua and micropolar elasticity 186 

Appendix A7 Minimal curves and geodesies 189 

A7.1 Minimal curves 189 
A7.2 Geodesies 190 
A7.3 Relativity 191 

Answers to problems 195 

Further reading and references 198 

Index 201 

111 



Preface 
This book was resulted from a need to solve certain three-dimensional problems in an 
organised manner, for those familiar with matrix algebra, much can be done without the 
explicit use of tensors. Chapter 1 was written with such readers in mind, so that only the 
briefest summary of matrix methods is given. Those unfamiliar with these techniques 
might well start at Chapter 3. 

Elastic analysis using Cartesian tensor notation follows quite naturally from matrix 
notation and so forms the subject of Chapter 2. The concepts of thermoelasticity are 
examined more readily at this level. For most purposes, the slight differences between 
adiabatic and isothermal behaviour can be ignored, but temperature changes under 
adiabatic conditions can now be used to give thermal maps of stress fields. Elsewhere in 
the book, the material is understood to be hyperelastic. That is, the state of stress is given 
by the rate of potential with strain, as in Green's formula (2.52). 

Matrix algebra is inadequate for analysing problems related to curvilinear 
coordinates. They are best solved using the curvilinear tensors discussed in Chapter 3. 
Care has been taken to give a physical and geometrical grounding to the quantities used. 
For example, all too often the Christoffel symbol is defined by a formula. 

Large deformation theory is left until the last chapter. Here, the reference state is 
expressed in terms of the undeformed geometry. This is because the undeformed 
configuration of the body is known and the deformed state is sought. A consequence of this 
approach is that lower case letters refer to the undeformed geometry and upper case letters 
to the deformed geometry, which is the opposite of the notation often used elsewhere. Also, 
attention has tended to focus on the exact analysis of mathematically defined materials. 
However, these only approximate to the behaviour of real materials. Examples of such 
exact analyses are given in section 4.5. An alternative approach is to start from a 
description based on the known properties of real materials, accepting that this is likely to 
be incomplete. For many purposes such a description may well suffice and in section 4.6 
it is used to derive a small deflection theory of the stability of elastic continua. 

Other topics which do not fit readily into the main flow of the book will be found in 



Matrix methods 

This chapter starts with a brief résumé of the properties of matrices, a topic which 
will already be familiar to most readers. Those requiring a fuller exposition may consult 
Bamett (1979), Bell (1975) or Graham (1980) for example. Some readers will also have 
encountered the matrix representation of a cross product, and possibly that of differential 
vector operators. An introduction to subscript notation is also outlined; this notation 
becomes essential in later chapters. 

By using matrix methods, a number of equations can be encapsulated in a single 
matrix equation and readily transformed from one Cartesian coordinate system to another. 
These useful properties are also intrinsic in the tensor notation used in later chapters. For 
some purposes, anisotropic behaviour can be examined more easily in terms of matrix 
notation than in tensor notation*.This is because the symmetry of the components of stress 
and strain can be used implicitly in writing the equations, as in section 1.8. 

1.1 SUMMARY OF MATRIX PROPERTIES 
An m*n matrix A is an array of m rows and n columns of elements av, where the 
subscripts i andy indicate that the element is in the rth row andy'th column of the matrix. 
For example, if A is a 2 *3 matrix, it is given by 

A = 
°21 Λ22 α23 

(1.1) 

A matrix with only one row is called a row vector, and a matrix with only one column is 

tEven some mathematicians who should know better seem unaware of the distinction. Tensors are 
like vectors and their elements have transformation properties which do not necessarily apply to 
matrices. 



2 Matrix Methods [Ch. 1 

called a column vector. Two matrices A and B can be added and subtracted if m and n 
is the same both of them. Then if the elements of B are btj, the sum of the matrices A and 
B is the array of elements av+bv and the difference is the array of elements atj-b ,·,. For 
2x3 matrices, these take the forms 

A + B = 
an+bn a]2+è12 α,3+2>13 

°21+*21 °22+ è22 a23+b23 
B + A (1.2) 

B 
a n " * l l a i 2 _ * 1 2 ö13~*13 

a 2 l " f t 2 1 fl22"*22 fl23~*23 
- (B - A ) (1.3) 

A matrix can be multiplied by a scalar, λ say, (a simple quantity possessing magnitude 
only). This has the effect of multiplying each element by λ. Thus 

λΑ = 
λαη λα12 λο,3 

λα2] λα22 λα23 
(1.4) 

A matrix product CD of two matrices C and D can be formed if the number of columns 
of C is the same as the number of rows of D. If C is an mx» matrix and D is an «*/? 
matrix, then the product is an mxp matrix. A typical element of the rth row andy'th column 
of the product is given by the sum of the products clr dTj for all values of r from 1 to n. For 
example 

Cll C12 

C21 C22 

4l 
ail 

du dn 

"22 "23 

cudn+cnd2\ cudu+cnd22 cndn+cnd23 
C2\d\\*C22d2\ C21^12+C22"22 C21^13+C22^23 

(1.5) 

The rows of the transpose of a matrix are formed from the columns of the original matrix, 
and conversely the rows of the original matrix become the columns of the transpose. The 
transpose of a matrix will be denoted by the superscriptT. Thus the transpose of the matrix 
Ain(l.l)is 

a\\ °2i 

°13 ö23 

(1.6) 

The transpose of a product of matrices is equal to the product of their transposes in the 
reverse order. For example 

(ABC)T = CTBTAT (1.7) 


