Wear Problems and Testing for Industry

M J Neale and M Gee

William Andrew publishing

Guide to Wear Problems and Testing for Industry

This page intentionally left blank

Guide to

Wear Problems and Testing for Industry

M J Neale and M Gee

William Andrew Incorporated Norwich, New York, USA

First published in 2000 by Professional Engineering Publishing Limited, UK

ISBN 0-8155-1471-9 Library of Congress Card Number 00-108631

This edition distributed exclusively by:

William Andrew Publishing, LLC 13 Eaton Avenue Norwich, NY 13815, USA Phone: (800) 932 7045 or (607) 337 5080

Fax: (607) 337 5090

E-mail: sales@williamandrew.com http://www.williamandrew.com

© 2001 M J Neale and M Gee

All rights reserved.

Information in this document is subject to change without notice and does not represent a commitment on the part of William Andrew Inc. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information retrieval and storage system, for any purpose without the written permission of William Andrew Inc.

The publishers are not responsible for any statement made in this publication. Data, discussion, and conclusions developed by the Authors are for information only and are not intended for use without independent substantiating investigation on the part of the potential users. Opinions expressed are those of the Authors and are not necessarily those of the Institution of Mechanical Engineers or its publishers.

Printed and bound in Great Britain by St. Edmundsbury Press Limited,

Suffolk, UK

Contents

Chapter	1: Introduction	1
Chapter	2: Industrial Wear Problems	3
2.1	Types of wear	3
2.2	Identification of the type of wear	8
2.3	Assessing the problem	17
2.4	Improvement by the use of alternative materials	20
	2.4.1 Abrasive wear by hard, granular materials	20
	2.4.2 Abrasive wear from hard particles trapped	
	between moving surfaces	22
	2.4.3 Adhesive wear from the rubbing together	
	of smooth surfaces	24
	2.4.4 Fretting	26
	2.4.5 Cavitation erosion	28
	2.4.6 Particle erosion	28
	2.4.7 Surface fatigue from contact stress	30
2.5	Wear testing of materials	31
Chapter	3: Wear Tests to Simulate Practical	
-	Conditions	33
3.1	The wear tests available	33
3.2	Important factors in practical simulation	35
3.3	The selection of suitable test machines and their	
	important design features	43
	3.3.1 Abrasive wear by hard, granular materials	43
	3.3.2 Abrasive wear by particles trapped between	
	surfaces	47
	3.3.3 Adhesive wear between two surfaces	50
	3.3.4 Fretting	56
	3.3.5 Cavitation erosion	58
	3.3.6 Particle erosion	59
	3.3.7 Surface fatigue	60
3.4	General procedure in tests to ensure simulation	62

Chapte	r 4: A Guide to Wear Test Selection	65
Chapte	r 5: A Guide to the Examination of	
	the Worn Surfaces	73
5.1	Sample preparation	74
5.2	Surface appearance	75
	5.2.1 Visual examination	75
	5.2.2 Electron microscopy	82
5.3	Topographical information including surface finish	85
	5.3.1 Mechanical probes	85
	5.3.2 Optical probes	87
Chapte	r 6: A Summary of the Approach to	
-	Wear Testing	89
6.1	Identification of a wear problem	90
6.2	Identification of the dominant wear mechanism	90
6.3	Deciding on the action to be taken	90
6.4	Choosing an appropriate wear test	91
6.5	Planning an appropriate series of tests	91
6.6	Carrying out the wear test programme	92
6.7	Assessing the results	92
Append	dix A: Description of Recommended Tes	sts
• •	and their Operating Conditions	93
1	Fixed abrasive – abrasive paper or grinding wheel	93
2	Rubber wheel, dry abrasive, ASTM G65	98
3	Steel wheel, wet abrasive slurry, ASTM B611	100
4	Rubber wheel, wet abrasive slurry, ASTM G105	102
5	Loose slurry abrasive testing, ASTM G75	104
6	Ball cratering test	106
7	Sliding wear – uni-directional motion, pin-on-disc,	
0	ASTM G99	108
8	Sliding wear – reciprocating motion, ASTM G133	110
9	Sliding wear – thrust washer test	112
10	Fretting test system Cavitation presion test system	114
11 12	Cavitation erosion test system Liquid jet erosion test	116 118
13	Gas blast erosion test. ASTM G76	120
1.5	Out that Citainii leal Athini Cita	140

Contents vii

Appen	dix B: Recommended Detailed Test Procedures for the Various Tests	123
1	Apparatus	124
2	Test specimens	127
3	Measurement methods	128
4	Testing	132
5	Reporting the results	136
Appen	dix C: Guide to Notation	139
Appen	dix D: Bibliography for Further Reading	141
Index		145

This page intentionally left blank