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  1 

 EXPRESSION WEB 4 ADD-IN 
BASICS  

     Add-ins in Expression Web  
 No software application can meet all needs for all people. No matter how 

many features Microsoft packs into Expression Web, there will always 

be designers who find that something’s missing. Fortunately, Expression 

Web is extensible so that users of the application can add functionality.  

 Previous versions of Expression Web were extensible only using a tech-

nology called Component Object Model, or COM. Using Visual Studio, 

Microsoft’s development studio, a developer can create a COM add-in that 

adds functionality to Expression Web. (If you’ve used any of my add-ins 

that I distribute from Jimco Software, 

you’ve used a COM add-in.) There is 

a significant barrier to entry for COM 

add-in development, and most web 

designers don’t possess the skill set 

necessary to develop them.   
 Expression Web 4 still allows for COM 

add-ins, but it adds an exciting new 

add-in architecture that allows web designers to use existing skills in 

HTML, XML, and JavaScript to develop add-ins. HTML is used to create 

user-interfaces, and JavaScript is used to add functionality to Expression 

Web 4 add-ins.  

    ➥   For more information on adding functionality to an add-in using 

JavaScript, see “Adding Functionality with JavaScript,” in the online 

Chapter 2 on page 59.           

 note 
 You can view a tutorial on 
how to create a COM add-in at 
 http://jimcobooks.com/arti-
cles/061130/Default.aspx .  
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 In this book, I cover everything you need to know to build add-ins 

using the new JavaScript and HTML extensibility model. I also 

cover the basics of how you can call into a COM add-in from a 

JavaScript add-in.   

  Expression Web 4 JavaScript 
Add-ins  

 Using the JavaScript add-in model in Expression Web 4, you can 

create add-ins with three different main components: panels, dia-

log boxes, and commands.  

 Panels are available from the Panels menu. The interface for the 

panel is developed using HTML code, and functionality is pro-

vided using JavaScript. Panels open as floating panels, but users 

of the add-in can drag and drop the panel to dock it if desired.  

 Dialog boxes are displayed as a modal dialog of a specific size. 

The dialog box interface is developed using HTML, and func-

tionality is provided using JavaScript. JavaScript can be used to 

control the functionality of the dialog box itself as well as add 

functionality for the add-in.  

 Commands add a menu command or a toolbar button that runs 

JavaScript code when the menu item or toolbar button is clicked. 

Commands are also used to launch dialog boxes.   
 You may already be familiar with using JavaScript to add func-

tionality to a web page running inside a browser. When you use 

JavaScript to develop Expression Web add-ins, you are not inter-

acting with a web page in the browser. Instead, you are using JavaScript to interact with files (web 

pages and other files) inside the Expression Web interface. You can also use JavaScript to interact 

with Expression Web itself.  

 I’ll explain how to do all of that in the next few chapters, but before we get into the details of imple-

menting an add-in, it’s important to understand some of the basics that make up an Expression Web 

add-in.  

  The Makeup of Expression Web Add-ins  
 Expression Web add-ins are made up of a collection of files. 

HTML files are used to present a user interface for panels and 

dialog-boxes. JavaScript code is often included directly in the 

HTML file, but can also be included as a separate script file with 

a  .js  file extension. Add-ins can also include any number of col-

lateral files such as image files, CSS files, and so on.   

 note 
 Microsoft intends for JavaScript 
add-ins to be used with disk-
based sites only. If you use a 
JavaScript add-in with a server-
based site accessed using HTTP 
or FTP, you may encounter unex-
pected results.  

 I’ll provide guidance on what you 
can expect with server-based 
sites in  Chapter   4   , “Expression 
Web 4 JavaScript API Reference.”  

 tip 
 Microsoft’s documentation says 
that there are three types of add-
ins: panel, dialog box, and com-
mand add-ins. However, since 
it’s possible for a single add-in 
to have any combination of those 
three, I believe it’s more accurate 
to call these components of an 
add-in and not refer to them as 
types of add-ins.  

 tip 
 Since add-ins can be created 
right from within Expression 
Web, the easiest way to create 
an add-in is to create a new disk-
based site and then create your 
add-in files within that site.  
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 Add-ins also contain a special XML file called a  manifest . The add-in manifest (named  addin.xml ) 

describes the add-in to Expression Web. It’s used to tell Expression Web the components included 

with the add-in, the files included with the add-in, and other information necessary for the proper 

functioning of the add-in. The manifest also includes information such as the add-in’s name, the 

name of the developer, the version number, and so on.  

  Listing   1.1    shows a simple add-in manifest for an add-in that displays a panel.  

  Listing 1.1 A Simple Manifest File  

 <addin>
    <name>Simple Panel</name>
    <version>1.0</version>
    <description>A simple panel add-in for Expression Web.</description>
    <author>Jim Cheshire</author>
    <homepage>http://www.jimcosoftware.com</homepage>
    <panel src=”default.html” id=”panel1”
          title=”Simple Panel” filetype=”HTML-DOM”
          activate=”enableControls” deactivate=”disableControls” />
  </addin>   

 Add-in files can be saved into any folder, but the manifest must be inside the root folder for the 

add-in. Once you’re ready to use an add-in, you simply Zip the folder where the files are located and 

then rename the Zip file so that it has a  .xadd  file extension. You can then install the add-in using 

the Add-ins dialog available by selecting Tools, Add-ins in Expression Web.  

 I’ll cover all of this in explicit detail in the next few chapters, but what I want you to take away 

from this is that no specialized tools or complicated skill sets are required to create and deploy 

Expression Web 4 add-ins. You can create them right inside Expression Web, and you can create an 

installable package by simply renaming a Zip file. It really couldn’t be simpler.    

  XML Basics  
 Before I go into the details of the add-in manifest, you’ll need to know some basics about XML. XML 

syntax is actually used for the XHTML code with which you are probably at least somewhat familiar.  

 At the top level of an XML file is the  root element . There is exactly one root element; no fewer, no 

more. Beneath the root element are  child elements . There can be any number of child elements in an 

XML file, and each child element can also have its own child elements. The element directly above a 

child element is known as the  parent element .  

 In the manifest in  Listing   1.1   , the  <addin>  element is the root element. All other elements are child 

elements.   
 All elements may contain one or more  attributes . An attribute is 

defined within the XML element itself and consists of the attribute 

name followed by the attribute value in quotes. The following line 

of XML shows an attribute called  developer  with a value of  yes .  

  <addin developer=”yes”>   

 caution 
 XML is case-sensitive, so pay 
attention to case when writing 
XML.  
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 Attribute names are case-sensitive, and attribute values must be 

enclosed in quotes.   
 All child elements in an XML file may contain attributes or text 

content. Text content is textual information surrounded by a par-

ticular element. In the XML code that follows,  Simple Panel  is 

the text content for the  <name>  element.  

  <name>Simple Panel</name>    

 The  <  and  &  characters are not legal characters for XML content. 

If you want to use these characters for attribute or text content, 

you need to use what’s called an  entity reference . The entity ref-

erence for  <  is  &lt;  and the entity reference for  &  is  &amp; . You 

might notice that both entity references contain the  &  character. 

The only time the  &  character is valid in an XML file is when it is 

used with an entity reference.  

 The following XML snippet defines a name of Jack & Jill Add-ins.  

  <name>Jack &amp; Jill Add-ins</name>   

 Armed with this basic information about XML, you are now ready 

to learn the details about the add-in manifest. This chapter covers all the elements and attributes 

that you can use in an add-in manifest. Later chapters go into much more detail about how to use 

specific elements and attributes.    

  General Manifest Elements and Attributes  
 As mentioned previously, the  <addin>  element is the root ele-

ment of the add-in manifest. Four optional attributes are available 

for the  <addin>  element.   

   src  (optional)  
  <addin  src =’script.js’>   

 The  src  attribute is used to specify JavaScript source files that 

contain functions that the manifest references. This attribute is 

typically used for commands that don’t have a user interface. Scripts that are used with panels and 

dialog boxes are referenced within the HTML files used with those components.  

 Source file paths are relative to the add-in’s top-level folder, and you can add multiple source files by 

separating them with a comma.   

 tip 
 Some XML files use camel case 
for attribute names. However, in 
an add-in manifest, all attribute 
names are lowercase.  

 note 
 An XML element can contain both 
attributes and text content.  

 note 
 If you’d like more information 
about XML, read Special Edition 
Using XML from Que Publishing.  

 tip 
 Each element and attribute docu-
mented in the following sections 
includes a graphical representa-
tion of where that particular ele-
ment or attribute fits within the 
manifest’s hierarchy.  
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   legacy  (optional)  
  <addin  legacy =’yes’>   

 The  legacy  attribute is set to  yes  when an add-in needs to access the legacy object model for 

Expression Web. The legacy object model provides access to the object model used by add-in devel-

opers in previous versions of Expression Web, and it has some additional functionality compared to 

the JavaScript API.  

 Use of the legacy object model is outside the scope of this book.   

   developer  (optional)  
  <addin  developer =’yes’>   

 When set to  yes , the  developer  attribute aids in testing and 

troubleshooting your add-in during development. By default, the 

context menu that appears when you right-click on a page is dis-

abled for add-in panels and dialog boxes. By including the  devel-

oper  attribute with a value of  yes , you can remove this restriction, 

allowing you to easily refresh the user interface of your panel or 

dialog box, view the source of your interface, and so on.  

 There are other benefits to setting the  developer  attribute to  yes  

when you are developing your add-in. I’ll cover how you can use 

developer mode to debug your add-in in  Chapter   4   .    

   navigationallowed  (optional)  
  <addin  navigationallowed =’yes’>   

 By default, Expression Web does not allow you to navigate away from the current page from within 

a panel or a dialog box. For example, if your dialog box contains a hyperlink, clicking the hyperlink 

does nothing by default.  

 In some situations, it may be necessary to allow a user of your add-in to navigate to other pages 

within your add-in’s user interface. For example, if your add-in’s interface is in the form of a wizard, 

you may want to implement each step of the wizard using a separate page. In such a scenario, set-

ting the  navigationallowed  attribute to  yes  allows a user to navigate through the pages of your 

wizard.   

 note 
 You should not set the  devel-
oper  attribute to  yes  unless 
you are in the process of devel-
oping your add-in because doing 
so enables debugging tools that 
are not meant for end-users.  
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  < name>  (required)  
  <addin>
     < name =’My Add-in’/>   

 The  <name>  element specifies the name of your add-in. Once your add-in is installed into Expression 

Web, the value specified by the  <name>  attribute is displayed in the Manage Add-ins dialog as 

shown in  Figure   1.1   .    

 Figure 1.1 
 The name shown in the Manage 
Add-ins dialog is controlled by the 
 <name>  element. This add-in uses 
the manifest shown in  Listing   1.1   .        

   <description>  (optional)  
  <addin>
     < description =’Simple Add-in’/>   

 The  <description>  element is used to provide a description of your add-in that appears in the 

Manage Add-ins dialog as shown previously in  Figure   1.1     

 The  <description>  element is optional, but it’s a good idea to include it so that users of your add-

in can more easily identify it inside the Manage Add-ins dialog.   

   <author>  (optional)  
  <addin>
     < author =’Jim Cheshire’/>   

00_9780789741028_book.indb   6 1/28/11   10:11 AM


