

00_9780789741028_book.indb i 1/28/11 10:11 AM

CREATING MICROSOFT
EXPRESSION WEB 4 ADD-INS:
USING EXISTING HTML AND JAVASCRIPT SKILLS TO

BUILD ADD-INS FOR MICROSOFT EXPRESSION WEB

Copyright © 2011 by Que Publishing

All rights reserved. No part of this book shall be reproduced, stored in a

retrieval system, or transmitted by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without written permission from the publisher.

No patent liability is assumed with respect to the use of the information con-

tained herein. Although every precaution has been taken in the preparation of

this book, the publisher and author assume no responsibility for errors or omis-

sions. Nor is any liability assumed for damages resulting from the use of the

information contained herein.

ISBN-13: 978-0-7897-4102-8

ISBN-10: 0-7897-4102-4

First Printing: February 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Que Publishing cannot attest to the

accuracy of this information. Use of a term in this book should not be regarded as

affecting the validity of any trademark or service mark.

Microsoft is a registered trademark of Microsoft Corporation.

Expression is a registered trademark of Microsoft Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as

possible, but no warranty or fi tness is implied. The information provided is on

an “as is” basis. The author and the publisher shall have neither liability nor

responsibility to any person or entity with respect to any loss or damages arising

from the information contained in this book.

Associate Publisher
Greg Wiegand

Acquisitions Editor
Loretta Yates

Development Editor
Todd Brakke

Managing Editor
Sandra Schroeder

Project Editor
Seth Kerney

Copy Editor
Geneil Breeze

Indexer
Cheryl Lenser

Proofreader
Linda Seifert

Technical Editor
Kathleen Anderson

Publishing Coordinator
Cindy Teeters

Book Designer
Anne Jones

Compositor
Bronkella Publishing, Inc.

00_9780789741028_book.indb ii 1/28/11 10:11 AM

Contents iii

CONTENTS

 1 Expression Web 4 Add-in Basics 1
Add-ins in Expression Web 1

Expression Web 4 JavaScript Add-ins 2
The Makeup of Expression Web Add-
ins 2

XML Basics 3

General Manifest Elements
and Attributes 4

src (optional) 4
legacy (optional) 5
developer (optional) 5
navigationallowed (optional) 5
<name> (required) 6
<description> (optional) 6
<author> (optional) 6
<version> (optional) 7
<homepage> (optional) 7
<minversion> (optional) 7
<guid> (optional) 7
<load> (optional) 8

Commands and Dialog Boxes 8
id (required) 8
filetype (optional) 8
onclick (optional) 9

Menus and Toolbars 10
<menuitem> (optional) 10
<toolbaritem> (optional) 12

Panels 13
<panel> (optional) 14

Menu and Command Bar Reference 16
Menus 17
Toolbars 36

 2 Creating and Manipulating an Add-in
User Interface 47
Planning an Add-in 47

Creating the Manifest with the Add-in
Builder 48

Creating the Manifest 48
Editing the Manifest 53

Creating the User Interfaces 53
Creating a Custom Page Size for

Panels 54
Creating the Panel’s Interface 55
Creating the Options Dialog
Interface 58

Adding Functionality with JavaScript 59
JavaScript for panel.htm 59
JavaScript for options.htm 65
The Set Page Title Dialog 66

Accessing Managed Classes from
JavaScript 68

Creating a Managed Class 69
Editing the Add-in Manifest to Load the
Managed Class 72
Calling the Managed Class 73

Summary 73

 3 Packaging, Testing, and Debugging
Add-ins 75
Creating an Add-in Installation Package 75

Testing and Debugging Add-ins 76
Testing Add-ins 76
Debugging Add-ins Using Expression
Web 77
Debugging Add-ins Using Visual
Studio 81

Summary 85

 4 Expression Web 4 JavaScript API
Reference 87
Conventions Used in this Reference 87

xweb.application Object 88
xweb.application.version
Property 88
xweb.application.chooseFile
Method 89
xweb.application.endDialog
Method 90
xweb.application.handleEvent
Method 91
xweb.application.newDocument
Method 92
xweb.application.openDocument
Method 94
xweb.application.
refreshFileListing Method 94

00_9780789741028_book.indb iii 1/28/11 10:11 AM

iv Microsoft® Expression® Web 4 In Depth

xweb.application.
setActiveDocument Method 95
xweb.application.
setPanelVisibility Method 96
xweb.application.showModalDialog
Method 97

xweb.application.settings Object 98
xweb.application.settings.read
Method 99
xweb.application.settings.write
Method 99

xweb.developer Object 100
xweb.developer.write Method 100
xweb.developer.writeLine
Method 101

xweb.document Object 101
xweb.document.anchors
Property 103
xweb.document.applets
Property 103
xweb.document.embeds Property 104
xweb.document.filename
Property 104
xweb.document.forms Property 105
xweb.document.frames Property 105
xweb.document.images Property 106
xweb.document.isXHTML
Property 106
xweb.document.links Property 106
xweb.document.location
Property 107
xweb.document.name Property 108
xweb.document.pathFromSiteRoot
Property 108
xweb.document.scripts
Property 109
xweb.document.selection
Property 109
xweb.document.
appendScriptReference Method 110
xweb.document.
appendStyleReference Method 111
xweb.document.close Method 112
xweb.document.getElementById
Method 112
xweb.document.
getElementsByAttributeName
Method 113
xweb.document.
getElementsByTagName Method 114

xweb.document.
getScriptElementByCode
Method 114
xweb.document.
getScriptElementByFile
Method 115
xweb.document.
getStyleElementByCode Method 116
xweb.document.
getStyleElementByFile Method 116
xweb.document.insertBeforeHtml
Method 117
xweb.document.save Method 118
xweb.document.saveAs Method 118
xweb.document.synchronizeViews
Method 119

xweb.file Object 119
xweb.file.copy Method 120
xweb.file.createFile Method 121
xweb.file.createFolder
Method 121
xweb.file.deleteFile Method 122
xweb.file.exists Method 123
xweb.file.getAttributes
Method 123
xweb.file.getCreationDate
Method 124
xweb.file.getModificationDate
Method 124
xweb.file.getSize Method 125
xweb.file.listFolder Method 125
xweb.file.read Method 126
xweb.file.setAttributes
Method 127
xweb.file.write Method 128

htmlElement Object 128
htmlElement.childNodes
Property 128
htmlElement.className Property 129
htmlElement.id Property 129
htmlElement.innerHtml Property 130
htmlElement.innerText Property 131
htmlElement.nextSibling
Property 132
htmlElement.outerHtml Property 133
htmlElement.parentNode
Property 134
htmlElement.previousSibling
Property 134
htmlElement.tagName Property 135

00_9780789741028_book.indb iv 1/28/11 10:11 AM

htmlElement.getAttribute
Method 135
htmlElement.removeAttribute
Method 136
htmlElement.setAttribute
Method 136

xweb.document.selection Object 137
selection.end Property 137
selection.start Property 137
selection.text Property 138
selection.append Method 138
selection.insert Method 139
selection.set Method 139
selection.remove Method 140
selection.replace Method 140
selection.wrap Method 141

00_9780789741028_book.indb v 1/28/11 10:11 AM

ABOUT THE AUTHOR
Jim Cheshire is the owner of Jimco Software and Books and is the author of several design

books and books on the Amazon Kindle and Barnes and Noble Nook. In his real job, Jim works

as a senior escalation engineer at Microsoft on the ASP.NET, IIS, and Expression Web teams.

He has worked on the FrontPage, Visual Basic, ASP, IIS, and ASP.NET teams at Microsoft for

more than 12 years.

You can reach Jim by visiting one of his websites: www.jimcobooks.com or www.jimcosoft-

ware.com. You can also email him at jcheshire@jimcobooks.com.

DEDICATION
This book is dedicated to my lovely wife, Becky, and my two children. I love you all very much.

ACKNOWLEDGMENTS
I owe a debt of gratitude to my editors at Que Publishing. Loretta, it’s been such a pleasure to

work with you over the years. Todd, thanks for your consistent work to improve what comes

out of my mind. To Kathleen and Ian, thank you for your hard work in ensuring that this book is

technically accurate and easy to understand. To Seth, thanks for your commitment to a quality

book. Although the cover of this book bears my name only, the book would have not been pos-

sible without the commitment of all of you, and I am sincerely thankful for all your hard work.

Thanks to Anna Ullrich, Paul Bartholomew, Justin Harrison, Steve Guttman, Erik Saltwell, Marc

Kapke, Mike Calvo, and Erik Mikkelson at Microsoft, all of whom were of great help in answer-

ing questions that arose during the writing of this book. I also owe John Dixon at Microsoft a

special thank you for always being available for questions about add-in development. Without

John’s assistance, the last part of this book simply wouldn’t have been possible.

—Jim

00_9780789741028_book.indb vi 1/28/11 10:11 AM

www.jimcobooks.com
www.jimcosoftware.com
www.jimcosoftware.com

WE WANT TO HEAR FROM YOU!
As the reader of this book, you are our most important critic and commentator. We value your

opinion and want to know what we’re doing right, what we could do better, what areas you’d

like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an associate publisher for Que Publishing, I welcome your comments. You can email or

write me directly to let me know what you did or didn’t like about this book—as well as what

we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book.

We do have a User Services group, however, where I will forward specific technical questions

related to the book.

When you write, please be sure to include this book’s title and author as well as your name,

email address, and phone number. I will carefully review your comments and share them with

the author and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Greg Wiegand

Associate Publisher

Que Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, or errata that might be available for this book.

00_9780789741028_book.indb vii 1/28/11 10:11 AM

This page intentionally left blank

 1

 EXPRESSION WEB 4 ADD-IN
BASICS

 Add-ins in Expression Web
 No software application can meet all needs for all people. No matter how

many features Microsoft packs into Expression Web, there will always

be designers who find that something’s missing. Fortunately, Expression

Web is extensible so that users of the application can add functionality.

 Previous versions of Expression Web were extensible only using a tech-

nology called Component Object Model, or COM. Using Visual Studio,

Microsoft’s development studio, a developer can create a COM add-in that

adds functionality to Expression Web. (If you’ve used any of my add-ins

that I distribute from Jimco Software,

you’ve used a COM add-in.) There is

a significant barrier to entry for COM

add-in development, and most web

designers don’t possess the skill set

necessary to develop them.
 Expression Web 4 still allows for COM

add-ins, but it adds an exciting new

add-in architecture that allows web designers to use existing skills in

HTML, XML, and JavaScript to develop add-ins. HTML is used to create

user-interfaces, and JavaScript is used to add functionality to Expression

Web 4 add-ins.

 ➥ For more information on adding functionality to an add-in using

JavaScript, see “Adding Functionality with JavaScript,” in the online

Chapter 2 on page 59.

 note
 You can view a tutorial on
how to create a COM add-in at
 http://jimcobooks.com/arti-
cles/061130/Default.aspx .

00_9780789741028_book.indb 1 1/28/11 10:11 AM

http://jimcobooks.com/articles/061130/Default.aspx
http://jimcobooks.com/articles/061130/Default.aspx

Expression Web 4 Add-in Basics2

1

PA
R
T

 In this book, I cover everything you need to know to build add-ins

using the new JavaScript and HTML extensibility model. I also

cover the basics of how you can call into a COM add-in from a

JavaScript add-in.

 Expression Web 4 JavaScript
Add-ins

 Using the JavaScript add-in model in Expression Web 4, you can

create add-ins with three different main components: panels, dia-

log boxes, and commands.

 Panels are available from the Panels menu. The interface for the

panel is developed using HTML code, and functionality is pro-

vided using JavaScript. Panels open as floating panels, but users

of the add-in can drag and drop the panel to dock it if desired.

 Dialog boxes are displayed as a modal dialog of a specific size.

The dialog box interface is developed using HTML, and func-

tionality is provided using JavaScript. JavaScript can be used to

control the functionality of the dialog box itself as well as add

functionality for the add-in.

 Commands add a menu command or a toolbar button that runs

JavaScript code when the menu item or toolbar button is clicked.

Commands are also used to launch dialog boxes.
 You may already be familiar with using JavaScript to add func-

tionality to a web page running inside a browser. When you use

JavaScript to develop Expression Web add-ins, you are not inter-

acting with a web page in the browser. Instead, you are using JavaScript to interact with files (web

pages and other files) inside the Expression Web interface. You can also use JavaScript to interact

with Expression Web itself.

 I’ll explain how to do all of that in the next few chapters, but before we get into the details of imple-

menting an add-in, it’s important to understand some of the basics that make up an Expression Web

add-in.

 The Makeup of Expression Web Add-ins
 Expression Web add-ins are made up of a collection of files.

HTML files are used to present a user interface for panels and

dialog-boxes. JavaScript code is often included directly in the

HTML file, but can also be included as a separate script file with

a .js file extension. Add-ins can also include any number of col-

lateral files such as image files, CSS files, and so on.

 note
 Microsoft intends for JavaScript
add-ins to be used with disk-
based sites only. If you use a
JavaScript add-in with a server-
based site accessed using HTTP
or FTP, you may encounter unex-
pected results.

 I’ll provide guidance on what you
can expect with server-based
sites in Chapter 4 , “Expression
Web 4 JavaScript API Reference.”

 tip
 Microsoft’s documentation says
that there are three types of add-
ins: panel, dialog box, and com-
mand add-ins. However, since
it’s possible for a single add-in
to have any combination of those
three, I believe it’s more accurate
to call these components of an
add-in and not refer to them as
types of add-ins.

 tip
 Since add-ins can be created
right from within Expression
Web, the easiest way to create
an add-in is to create a new disk-
based site and then create your
add-in files within that site.

00_9780789741028_book.indb 2 1/28/11 10:11 AM

3XML Basics

1

C
H
A
P
TER

 Add-ins also contain a special XML file called a manifest . The add-in manifest (named addin.xml)

describes the add-in to Expression Web. It’s used to tell Expression Web the components included

with the add-in, the files included with the add-in, and other information necessary for the proper

functioning of the add-in. The manifest also includes information such as the add-in’s name, the

name of the developer, the version number, and so on.

 Listing 1.1 shows a simple add-in manifest for an add-in that displays a panel.

 Listing 1.1 A Simple Manifest File

 <addin>
 <name>Simple Panel</name>
 <version>1.0</version>
 <description>A simple panel add-in for Expression Web.</description>
 <author>Jim Cheshire</author>
 <homepage>http://www.jimcosoftware.com</homepage>
 <panel src=”default.html” id=”panel1”
 title=”Simple Panel” filetype=”HTML-DOM”
 activate=”enableControls” deactivate=”disableControls” />
 </addin>

 Add-in files can be saved into any folder, but the manifest must be inside the root folder for the

add-in. Once you’re ready to use an add-in, you simply Zip the folder where the files are located and

then rename the Zip file so that it has a .xadd file extension. You can then install the add-in using

the Add-ins dialog available by selecting Tools, Add-ins in Expression Web.

 I’ll cover all of this in explicit detail in the next few chapters, but what I want you to take away

from this is that no specialized tools or complicated skill sets are required to create and deploy

Expression Web 4 add-ins. You can create them right inside Expression Web, and you can create an

installable package by simply renaming a Zip file. It really couldn’t be simpler.

 XML Basics
 Before I go into the details of the add-in manifest, you’ll need to know some basics about XML. XML

syntax is actually used for the XHTML code with which you are probably at least somewhat familiar.

 At the top level of an XML file is the root element . There is exactly one root element; no fewer, no

more. Beneath the root element are child elements . There can be any number of child elements in an

XML file, and each child element can also have its own child elements. The element directly above a

child element is known as the parent element .

 In the manifest in Listing 1.1 , the <addin> element is the root element. All other elements are child

elements.
 All elements may contain one or more attributes . An attribute is

defined within the XML element itself and consists of the attribute

name followed by the attribute value in quotes. The following line

of XML shows an attribute called developer with a value of yes .

 <addin developer=”yes”>

 caution
 XML is case-sensitive, so pay
attention to case when writing
XML.

00_9780789741028_book.indb 3 1/28/11 10:11 AM

Expression Web 4 Add-in Basics4

1

PA
R
T

 Attribute names are case-sensitive, and attribute values must be

enclosed in quotes.
 All child elements in an XML file may contain attributes or text

content. Text content is textual information surrounded by a par-

ticular element. In the XML code that follows, Simple Panel is

the text content for the <name> element.

 <name>Simple Panel</name>

 The < and & characters are not legal characters for XML content.

If you want to use these characters for attribute or text content,

you need to use what’s called an entity reference . The entity ref-

erence for < is < and the entity reference for & is & . You

might notice that both entity references contain the & character.

The only time the & character is valid in an XML file is when it is

used with an entity reference.

 The following XML snippet defines a name of Jack & Jill Add-ins.

 <name>Jack & Jill Add-ins</name>

 Armed with this basic information about XML, you are now ready

to learn the details about the add-in manifest. This chapter covers all the elements and attributes

that you can use in an add-in manifest. Later chapters go into much more detail about how to use

specific elements and attributes.

 General Manifest Elements and Attributes
 As mentioned previously, the <addin> element is the root ele-

ment of the add-in manifest. Four optional attributes are available

for the <addin> element.

 src (optional)
 <addin src =’script.js’>

 The src attribute is used to specify JavaScript source files that

contain functions that the manifest references. This attribute is

typically used for commands that don’t have a user interface. Scripts that are used with panels and

dialog boxes are referenced within the HTML files used with those components.

 Source file paths are relative to the add-in’s top-level folder, and you can add multiple source files by

separating them with a comma.

 tip
 Some XML files use camel case
for attribute names. However, in
an add-in manifest, all attribute
names are lowercase.

 note
 An XML element can contain both
attributes and text content.

 note
 If you’d like more information
about XML, read Special Edition
Using XML from Que Publishing.

 tip
 Each element and attribute docu-
mented in the following sections
includes a graphical representa-
tion of where that particular ele-
ment or attribute fits within the
manifest’s hierarchy.

00_9780789741028_book.indb 4 1/28/11 10:11 AM

5General Manifest Elements and Attributes

1

C
H
A
P
TER

 legacy (optional)
 <addin legacy =’yes’>

 The legacy attribute is set to yes when an add-in needs to access the legacy object model for

Expression Web. The legacy object model provides access to the object model used by add-in devel-

opers in previous versions of Expression Web, and it has some additional functionality compared to

the JavaScript API.

 Use of the legacy object model is outside the scope of this book.

 developer (optional)
 <addin developer =’yes’>

 When set to yes , the developer attribute aids in testing and

troubleshooting your add-in during development. By default, the

context menu that appears when you right-click on a page is dis-

abled for add-in panels and dialog boxes. By including the devel-

oper attribute with a value of yes , you can remove this restriction,

allowing you to easily refresh the user interface of your panel or

dialog box, view the source of your interface, and so on.

 There are other benefits to setting the developer attribute to yes

when you are developing your add-in. I’ll cover how you can use

developer mode to debug your add-in in Chapter 4 .

 navigationallowed (optional)
 <addin navigationallowed =’yes’>

 By default, Expression Web does not allow you to navigate away from the current page from within

a panel or a dialog box. For example, if your dialog box contains a hyperlink, clicking the hyperlink

does nothing by default.

 In some situations, it may be necessary to allow a user of your add-in to navigate to other pages

within your add-in’s user interface. For example, if your add-in’s interface is in the form of a wizard,

you may want to implement each step of the wizard using a separate page. In such a scenario, set-

ting the navigationallowed attribute to yes allows a user to navigate through the pages of your

wizard.

 note
 You should not set the devel-
oper attribute to yes unless
you are in the process of devel-
oping your add-in because doing
so enables debugging tools that
are not meant for end-users.

00_9780789741028_book.indb 5 1/28/11 10:11 AM

Expression Web 4 Add-in Basics6

1

PA
R
T

 < name> (required)
 <addin>
 < name =’My Add-in’/>

 The <name> element specifies the name of your add-in. Once your add-in is installed into Expression

Web, the value specified by the <name> attribute is displayed in the Manage Add-ins dialog as

shown in Figure 1.1 .

 Figure 1.1
 The name shown in the Manage
Add-ins dialog is controlled by the
 <name> element. This add-in uses
the manifest shown in Listing 1.1 .

 <description> (optional)
 <addin>
 < description =’Simple Add-in’/>

 The <description> element is used to provide a description of your add-in that appears in the

Manage Add-ins dialog as shown previously in Figure 1.1

 The <description> element is optional, but it’s a good idea to include it so that users of your add-

in can more easily identify it inside the Manage Add-ins dialog.

 <author> (optional)
 <addin>
 < author =’Jim Cheshire’/>

00_9780789741028_book.indb 6 1/28/11 10:11 AM

