

Windows
Communication
Foundation 3.5

UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Craig McMurtry
Marc Mercuri
Nigel Watling
Matt Winkler

Windows Communication Foundation 3.5 Unleashed
Copyright © 2009 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33024-7
ISBN-10: 0-672-33024-5

Library of Congress Cataloging-in-Publication Data:

Windows Communication Foundation 3.5 unleashed / Craig McMurtry ... [et

al.]. -- 2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-672-33024-7

1. Application software--Development. 2. Electronic data

processing--Distributed processing. 3. Microsoft Windows (Computer

file) 4. Web services. I. McMurtry, Craig.

QA76.76.A65W59 2009

005.4'46--dc22

2008038773

Printed in the United States of America

First Printing October 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The authors and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793
international@pearsontechgroup.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling

Development Editor
Mark Renfrow

Managing Editor
Patrick Kanouse

Project Editor
SanDee Phillips

Copy Editor
Mike Henry

Indexer
Ken Johnson

Proofreaders
Kathy Ruiz
Leslie Joseph

Technical Editor
John Lambert

Publishing
Coordinator
Cindy Teeters

Cover and Interior
Designer
Gary Adair

Composition
Mark Shirar

Contents at a Glance

Introduction..1

Part I Introducing the Windows Communication Foundation

1 Prerequisites ..9

2 The Fundamentals ..21

3 Data Representation and Durable Services...85

4 Sessions, Reliable Sessions, Queues, and Transactions...............................125

Part II Introducing the Windows Workflow Foundation

5 Fundamentals of the Windows Workflow Foundation..............................147

6 Using the Windows Communication Foundation

and the Windows Workflow Foundation Together209

Part III Security

7 Security Basics ...251

8 Windows CardSpace, Information Cards, and the Identity Metasystem ..285

9 Securing Applications with Information Cards ...329

10 Advanced Security...371

Part IV Integration and Interoperability

11 Legacy Integration ..417

12 Interoperability ...445

Part V Extending the Windows Communication Foundation

13 Custom Behaviors ...451

14 Custom Channels ...485

15 Custom Transports..513

Part VI Special Cases

16 Publish/Subscribe Systems ..537

17 Peer Communication..567

18 Representational State Transfer and Plain XML Services599

Part VII The Lifecycle of Windows Communication Foundation Applications

19 Manageability..623

20 Versioning ...661

Part VIII Guidance

21 Guidance ...677

Index ...711

Table of Contents

Introduction 1

Part I Introducing the Windows Communication Foundation

1 Prerequisites 9

Partial Types ..9
Generics...10
Nullable Value Types...13
The Lightweight Transaction Manager...14
Role Providers ...16
Summary ...18
References..19

2 The Fundamentals 21

Background ...21
Enter Services ..24
Windows Communication Foundation ...26
The Service Model...28

A Software Resource...34
Building a Service for Accessing the Resource36
Using the Service ...55
Hosting the Service in IIS ..67
Changing How the Service Communicates ..72

Visual Studio 2008 Tool Support ..75
Summary ...82
References..83

3 Data Representation and Durable Services 85

Background ...85
The XmlSerializer and the DataContractSerializer.......................................87
The XML Fetish...91

Building a Service ..92
Building a Client..95
Succumbing to the Urge to Look at XML...95
The Case for the DataContractSerializer ...95

Using the DataContractSerializer ...96
Exception Handling ..110

Durable Services ..114
Why Durable Services? ..114
Implementing Durable Services ..115

Summary ...122
References..123

4 Sessions, Reliable Sessions, Queues, and Transactions 125

Reliable Sessions..125
Reliable Sessions in Action ..127

Session Management ..129
Queued Delivery ...130

Enhancements in Windows Vista ...132
Transactions ..134
Summary ...143

Part II Introducing the Windows Workflow Foundation

5 Fundamentals of the Windows Workflow Foundation 147

What Is Windows Workflow Foundation?...147
What Windows Workflow Foundation Is Not148

Activities..149
Out of the Box Activities ...151
Creating Custom Activities ...152
Communicating with Activities ..160
Design Behavior...167
Transactions and Compensation...170

Workflow Models ..172
Sequential Workflows ..175
State Machine Workflows..183
Custom Root Activities..184

Workflow Hosting...184
Hosting the Runtime ...185
Runtime Services..186
Custom Services...196

Rules Engine..199
Rules as Conditions ...200
The ConditionedActivityGroup Activity...202
Rules as Policy..204

Summary ...207
References..207

Contents v

6 Using the Windows Communication Foundation
and the Windows Workflow Foundation Together 209

Consuming Services..210
Calling Services in a Custom Activity...210
Using the Send Activity (the 3.5 Approach)214
Extending the Send Activity..217

Orchestrating Services...219
Exposing Workflows as Services ...220

Hosting Inside a WCF Service (.NET 3.0)..220
Exposing a Workflow as a Service (.NET 3.5)....................................226
Creating a Workflow Service ...233
Context ..234
Patterns of Communication..237

Summary ...248
References..248

Part III Security

7 Security Basics 251

Basic Tasks in Securing Communications ..251
Transport Security and Message Security ...252
Using Transport Security...253

Installing Certificates...253
Identifying the Certificate the Server Is to Provide255
Configuring the Identity of the Server ...256
Transport Security in Action ...257

Using Message Security...263
Impersonation and Authorization..269
Impersonation...269
Authorization ..272
Reversing the Changes to Windows...281

Uninstalling the Certificates ...281
Removing the SSL Configuration from IIS282
Removing the SSL Configuration from HTTP.SYS283
Restoring the Identity of the Server ..283

Summary ...283
References..284

8 Windows CardSpace, Information Cards, and the Identity Metasystem 285

The Role of Identity ..285
Microsoft Passport and Other Identity Solutions288
The Laws of Identity ...290

Windows Communication Foundation 3.5 Unleashedvi

The Identity Metasystem ..291
Information Cards and CardSpace ...297
Managing Information Cards ...299
Architecture, Protocols, and Security ...306
CardSpace and the Enterprise...319
New Features in .NET Framework 3.5 ..322
HTTP Support in .NET Framework 3.5 ...324
Summary ...326
References..327

9 Securing Applications with Information Cards 329

Developing for the Identity Metasystem..329
Simple Demonstration of CardSpace..331
Prerequisites for the CardSpace Samples ..332

1) Enable Internet Information Services and ASP.NET 2.0333
2) Get X.509 Certificates ...333
3) Import the Certificates into the Certificate Store.........................334
4) Update the Hosts File with DNS Entries to Match

the Certificates ..334
5) Internet Information Services Setup...335
6) Certificate Private Key Access ...335
7) HTTP Configuration..336

Adding Information Cards to a WCF Application.....................................337
Adding Information Cards ...342
Using a Federation Binding ..347
Catching Exceptions ...348
Processing the Issued Token ...350
Using the Metadata Resolver ..351
Adding Information Cards to Browser Applications..................................353
Creating a Managed Card ...364
Building a Simple Security Token Service ..367
Using CardSpace over HTTP ...370
Summary ...370
References..370

10 Advanced Security 371

Prelude...371
Securing Resources with Claims ...372

Claims-Based Authorization Versus Role-Based Authorization373
Claims-Based Authorization Versus Access Control Lists374

Contents vii

Leveraging Claims-Based Security Using XSI ...377
Authorizing Access to an Intranet Resource Using

Windows Identity..377
Improving the Initial Solution ..384
Adding STSs as the Foundation for Federation.................................391
Reconfiguring the Resource Access Service405
Reconfiguring the Client ...408
Experiencing the Power of Federated,

Claims-Based Identity with XSI ..411
Claims-Based Security and Federated Security ...412
Summary ...413
References..414

Part IV Integration and Interoperability

11 Legacy Integration 417

COM+ Integration...417
Supported Interfaces ..418
Selecting the Hosting Mode ..419

Using the COM+ Service Model Configuration Tool.................................419
Exposing a COM+ Component as a Windows

Communication Foundation Web Service...421
Referencing in the Client ..426

Calling a Windows Communication Foundation Service from COM428
Building the Service...428
Building the Client ..431
Building the VBScript File ...433
Testing the Solution...433

Integrating with MSMQ..433
Creating a Windows Communication Foundation Service

That Integrates with MSMQ...434
Creating the Request ...434
Creating the Service...435
Creating the Client..438
Testing..442

Summary ...443

12 Interoperability 445

Summary ...448
References..448

Windows Communication Foundation 3.5 Unleashedviii

Part V Extending the Windows Communication Foundation

13 Custom Behaviors 451

Extending the Windows Communication Foundation451
Extending the Service Model with Custom Behaviors452

Declare What Sort of Behavior You Are Providing453
Attach the Custom Behavior to an Operation or Endpoint.............457
Inform the Windows Communication Foundation

of the Custom Behavior ..457
Implementing a Custom Behavior ...458

Declare the Behavior ...458
Attach...458
Inform..459

Implementing Each Type of Custom Behavior ..467
Operation Selector ...467
Parameter Inspector...469
Message Formatter ...471
Message Inspector..473
Instance Context Provider...476
Instance Provider ...477
Operation Invokers..478

Implementing a WSDL Export Extension ..479
Implementation Steps ...480

Custom Behaviors in Action...482
Summary ...483
References..483

14 Custom Channels 485

Binding Elements..485
Outbound Communication ..486
Inbound Communication ...487

Channels Have Shapes..488
Channels Might Be Required to Support Sessions490
Matching Contracts to Channels ...490
Communication State Machines ..492
Building Custom Binding Elements ...493

Understand the Starting Point ..493
Provide a Custom Binding Element That Supports

Outbound Communication ..495
Amend the Custom Binding Element to Support

Inbound Communication...502

Contents ix

Applying a Custom Binding Element Through
Configuration ..508

Summary ...511

15 Custom Transports 513

Transport Channels...513
Inbound Communication ...514
Outbound Communication ..514

Message Encoders..514
Completing the Stack ...514
Implementing a Transport Binding Element and an

Encoder Binding Element...516
The Scenario ..516
The Requirements..517
The TcpListener and the TcpClient Classes.......................................517

Implementing Custom Binding Elements to Support
an Arbitrary TCP Protocol ..520

The Configuration ...520
The Custom Transport Binding Element ..522
The Channel Listener ..525
The Transport Channel ...528
The Message Encoder...530
Using the Custom Transport Binding Element.................................532

Summary ...532
References..533

Part VI Special Cases

16 Publish/Subscribe Systems 537

Publish/Subscribe Using Callback Contracts..538
Publish/Subscribe Using MSMQ Pragmatic Multicasting544
Publish/Subscribe Using Streaming ..552

The Streamed Transfer Mode...553
Transmitting a Custom Stream with the Streamed

Transfer Mode..557
Implementing Publish/Subscribe Using the Streamed

Transfer Mode and a Custom Stream ...561
Summary ...565
References..566

Windows Communication Foundation 3.5 Unleashedx

17 Peer Communication 567

Using Structured Data in Peer-to-Peer Applications567
Leveraging the Windows Peer-to-Peer Networking

Development Platform ...568
Understanding Windows Peer-to-Peer Networks569
Using Peer Channel ..569

Endpoints...569
Binding ..570
Address ...574
Contract ...574
Implementation...575

Peer Channel in Action ..575
Envisaging the Solution ..575
Designing the Data Structures...579
Defining the Service Contracts ...581
Implementing the Service Contracts ..584
Configuring the Endpoints ...585
Directing Messages to a Specific Peer..587
Custom Peer Name Resolution..590
Seeing Peer Channel Work ..595

Peer Channel and People Near Me...598
Summary ...598
References..598

18 Representational State Transfer and Plain XML Services 599

Representational State Transfer ..599
REST Services...600
REST Services and Plain XML ...600
The Virtues and Limitations of REST Services..601
Building REST POX Services with the Windows

Communication Foundation ...602
The Address of a REST POX Service Endpoint..................................602
The Binding of a REST POX Service Endpoint..................................602
The Contract of a REST POX Service Endpoint603
Implementation...604
A Sample Application ..604

RSS and ATOM Syndication in .NET Framework 3.5.................................609
JSON ..615

A Sample ASP.NET AJAX+JSON Application616
Summary ...620
References..620

Contents xi

Part VII The Lifecycle of Windows Communication Foundation Applications

19 Manageability 623

Instrumentation and Tools ...624
The Configuration System and the Configuration Editor................625
The Service Configuration Editor..627
Configurable Auditing of Security Events...633
Message Logging, Activity Tracing, and the Service Trace Viewer636
Performance Counters ...647
WMI Provider ..649

Completing the Management Facilities ...658
Summary ...659

20 Versioning 661

Versioning Nomenclature ...662
The Universe of Versioning Problems ..662

Adding a New Operation...662
Changing an Operation...664
Deleting an Operation...668
Changing a Binding ..669
Deciding to Retire an Endpoint ..669
Changing the Address of a Service Endpoint670

Centralized Lifecycle Management ..670
Summary ...673
References..673

Part VIII Guidance

21 Guidance 677

Adopting the Windows Communication Foundation...............................677
Working with Windows Communication Foundation Addresses679
Working with Windows Communication Foundation Bindings681
Working with Windows Communication Foundation Contracts.............684

Working with Structural Contracts ...687
Working with Behavioral Contracts..689

Working with Windows Communication Foundation Services691
Ensuring Manageability...695

Working with Windows Communication Foundation Clients699
Working with Large Amounts of Data ...705
Debugging Windows Communication Foundation Applications707
Summary ...708
References..709

Index 711

Windows Communication Foundation 3.5 Unleashedxii

Acknowledgments
Many people contributed to this book. The authors would like to thank Joe Long, Eric
Zinda, Angela Mills, Omri Gazitt, Steve Swartz, Steve Millet, Mike Vernal, Doug Purdy,
Eugene Osvetsky, Daniel Roth, Ford McKinstry, Craig McLuckie, Alex Weinert, Shy Cohen,
Yasser Shohoud, Kenny Wolf, Anand Rajagopalan, Jim Johnson, Andy Milligan, Steve
Maine, Ram Pamulapati, Ravi Rao, Mark Garbara, Andy Harjanto, T. R. Vishwanath, Doug
Walter, Martin Gudgin, Marc Goodner, Giovanni Della-Libera, Kirill Gavrylyuk, Krish
Srinivasan, Mark Fussell, Richard Turner, Ami Vora, Ari Bixhorn, Steve Cellini, Neil
Hutson, Steve DiMarco, Gianpaolo Carraro, Steve Woodward, James Conard, Nigel
Watling, Vittorio Bertocci, Blair Shaw, Jeffrey Schlimmer, Matt Tavis, Mauro Ottoviani,
John Frederick, Mark Renfrow, Sean Dixon, Matt Purcell, Cheri Clark, Mauricio Ordonez,
Neil Rowe, Donovan Follette, Pat Altimore, Tim Walton, Manu Puri, Ed Pinto, Erik Weiss,
Suwat Chitphakdibodin, Govind Ramanathan, Ralph Squillace, John Steer, Brad
Severtson, Gary Devendorf, Kavita Kamani, George Kremenliev, Somy Srinivasan, Natasha
Jethanandani, Ramesh Seshadri, Lorenz Prem, Laurence Melloul, Clemens Vasters, Joval
Lowy, John Justice, David Aiken, Larry Buerk, Wenlong Dong, Nicholas Allen, Carlos
Figueira, Ram Poornalingam, Mohammed Makarechian, David Cliffe, David Okonak,
Atanu Banerjee, Steven Metsker, Antonio Cruz, Steven Livingstone, Vadim Meleshuk,
Elliot Waingold, Yann Christensen, Scott Mason, Jan Alexander, Johan Lindfors, Hanu
Kommalapati, Steve Johnson, Tomas Restrepo, Tomasz Janczuk, Garrett Serack, Jeff Baxter,
Arun Nanda, Luke Melton, and Al Lee.

A particular debt of gratitude is owed to John Lambert for reviewing the drafts. No one is
better qualified to screen the text of a book on a programming technology than an expe-
rienced professional software tester. Any mistakes in the pages that follow are solely the
fault of the writers, however.

The authors are especially grateful for the support of their wives. They are Marta
MacNeill, Kathryn Mercuri, Sylvie Watling, and Libby Winkler. Matt, the only parent so
far, would also like to thank his daughter, Grace.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: neil.rowe@pearson.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/title/9780672330247 for
convenient access to any updates, downloads, or errata that might be available for this
book.

www.informit.com/title/9780672330247

Introduction

The Windows Communication Foundation, which was
code-named Indigo, is a technology that allows pieces of
software to communicate with one another. There are many
other such technologies, including the Component Object
Model (COM) and Distributed Component Object Model
(DCOM), Remote Method Invocation (RMI), Microsoft
Message Queuing (MSMQ), and WebSphere MQ. Each of
those works well in a particular scenario, not so well in
others, and is of no use at all in some cases. The Windows
Communication Foundation is meant to work well in any
circumstance in which a Microsoft .NET assembly must
exchange data with any other software entity. In fact, the
Windows Communication Foundation is meant to always
be the very best option. Its performance is at least on par
with that of any other alternative and is usually better; it
offers at least as many features and probably several more.
It is certainly always the easiest solution to program.

Concretely, the Windows Communication Foundation
consists of a small number of .NET libraries with several
new sets of classes that it adds to the Microsoft .NET
Framework class library, for use with version 2.0 and later of
the .NET Common Language Runtime. It also adds some
facilities for hosting Windows Communication Foundation
solutions to the 5.1 and later versions of Internet
Information Services (IIS), the web server built into
Windows operating systems.

The Windows Communication Foundation is distributed
free of charge as part of a set that includes several other
technologies, including the Windows Presentation
Foundation, which was code-named Avalon, Windows
CardSpace, which was code-named InfoCard, and the

2 Introduction

Windows Workflow Foundation. Prior to its release, that group of technologies was called
WinFX, but it was renamed the .NET Framework 3.0 in June 2006. Despite that name, the
.NET Framework 3.0 and 3.5 is still primarily just a collection of classes added to the .NET
Framework 2.0 for use with the 2.0 version of the .NET Common Language Runtime,
along with some enhancements to the Windows operating system, as shown in Figure I.1.

You can install the .NET Framework 3.0 and 3.5 on Windows XP Service Pack 2,
Windows Server 2003, and Windows Server 2003 R2. The runtime components are prein-
stalled on Windows Vista. On Windows Server 2008 you can add the .NET Framework
3.0 via the Application Server Foundation role service. Only a very small number of
features of the .NET Framework 3.0 are available exclusively on Windows Vista and later
operating systems.

The .NET Framework 3.5 builds incrementally on top of .NET Framework 3.0. Features
relevant to this book include web protocol support for building Windows Communication
Foundation services, including AJAX, JSON, REST, POX, RSS and ATOM, workflow-enabled
services and full tooling support in Visual Studio 2008. During development, .the NET
Framework 3.5 was factored into “red” bits and “green” bits. The red bits were features
from .NET Framework 3.0 and the goal was to provide Service Pack levels of compatibility.
All the code that worked in 3.0 will work in 3.5. The green bits provide new, additional
functionality. Again, the addition of an assembly containing new functionality should
have no effect on existing code. The bottom line is that all the code in this book will work
with .NET Framework 3.5 and all the code in this book (except the new features intro-
duced in .NET Framework 3.5) should work in .NET Framework 3.0.

This book does not serve as an encyclopedic reference to the Windows Communication
Foundation. Instead, it provides the understanding and knowledge required for most prac-
tical applications of the technology.

.NET Base Class Library 2.0

.NET Common Language Runtime 2.0

Windows Operating System
(Windows Server 2003 or Windows XP SP2 or Windows Vista and later)

ASP.NET 2.0 Windows Forms
Windows

Presentation
Foundation

Windows
Workflow

Foundation

.NET Framework 3.0

Windows
Communication

Foundation

Window
CardSpace

FIGURE I.1 The .NET Framework 3.0.

3Introduction

The book explains the Windows Communication Foundation while showing how to use
it. So, typically, each chapter provides the precise steps for building a solution that
demonstrates a particular aspect of the technology, along with a thorough explanation of
each step. Readers who can program in C#, and who like to learn by doing, will be able to
follow the steps. Those who prefer to just read will get a detailed account of the features of
the Windows Communication Foundation and see how to use them.

To follow the steps in the chapters, you should have installed any version of Visual Studio
2005 or 2008 that includes the C# compiler. Free copies are available at http://msdn.
microsoft.com/vstudio/express/. You should also have IIS, ASP.NET, and MSMQ installed.

The .NET Framework 3.0 or 3.5 is required, as you might expect. You can download them
from http://www.microsoft.com/downloads/. The instructions in the chapters assume that
all the runtime and developer components of the .NET Framework 3.0 or 3.5 have been
installed. It is the runtime components that are preinstalled on Windows Vista and that
can be added via the Server Manager on Windows Server 2008. The developer compo-
nents consist of a Software Development Kit (SDK) and two enhancements to Visual
Studio 2005. The SDK provides documentation, some management tools, and a large
number of very useful samples. The enhancements to Visual Studio 2005 augment the
support provided by IntelliSense for editing configuration files, and provide a visual
designer for Windows Workflow Foundation workflows. These features are included in
Visual Studio 2008.

To fully utilize Windows CardSpace, which is also covered in this book, you should
install Internet Explorer 7. Internet Explorer 7 is also available from http://www.
microsoft.com/downloads.

Starting points for the solutions built in each of the chapters are available for download
from the book’s companion page on the publisher’s website, as well as from http://www.
cryptmaker.com/WindowsCommunicationFoundationUnleashed. To ensure that Visual
Studio does not complain about the sample code being from a location that is not fully
trusted, you can, after due consideration, right-click the downloaded archive, choose
Properties from the context menu, and click on the button labeled Unblock, shown in
Figure I.2, before extracting the files from the archive.

Note that development on the Vista operating system is supported for Visual Studio 2008
and for Visual Studio 2005 with the Visual Studio 2005 Service Pack 1 Update for
Windows Vista. This update is also available from http://www.microsoft.com/downloads.
Developers working with an earlier version of Visual Studio 2005 on the Vista operating
system should anticipate some compatibility issues. To minimize those issues, they can do
two things. The first is to disable Vista’s User Account Protection feature. The second is to
always start Visual Studio 2005 by right-clicking on the executable or the shortcut, select-
ing Run As from the context menu that appears, and selecting the account of an adminis-
trator from the Run As dialog.

http://msdn.microsoft.com/vstudio/express/
http://msdn.microsoft.com/vstudio/express/
http://www.microsoft.com/downloads/
http://www.microsoft.com/downloads
http://www.microsoft.com/downloads
http://www.cryptmaker.com/WindowsCommunicationFoundationUnleashed
http://www.cryptmaker.com/WindowsCommunicationFoundationUnleashed
http://www.microsoft.com/downloads

4

FIGURE I.2 Unblocking a downloaded source code archive.

As with the .NET Framework 3.5 when compared to the .NET Framework 3.0, this book is
very similar to its predecessor. Changes include the addition of Visual Studio 2008 support
and Chapter 3, “Data Representation and Durable Services,” now covers durable services.
The chapters on Windows CardSpace show the updated user interface and cover new
features. Chapter 18, “Representational State Transfer and Plain XML Services,” on REST
and POX, includes details on the new syndication and JSON APIs. Perhaps the most signif-
icant change is a complete rewrite of Chapter 6, “Using the Windows Communication
Foundation and the Windows Workflow Foundation Together,” covering the much
improved integration between Windows Workflow Foundation and the Windows
Communication Foundation.

Many people contributed to this book. The authors would like to thank Joe Long, Eric
Zinda, Angela Mills, Omri Gazitt, Steve Swartz, Steve Millet, Mike Vernal, Doug Purdy,
Eugene Osvetsky, Daniel Roth, Ford McKinstry, Craig McLuckie, Alex Weinert, Shy Cohen,
Yasser Shohoud, Kenny Wolf, Anand Rajagopalan, Jim Johnson, Andy Milligan, Steve
Maine, Ram Pamulapati, Ravi Rao, Mark Garbara, Andy Harjanto, T. R. Vishwanath, Doug
Walter, Martin Gudgin, Marc Goodner, Giovanni Della-Libera, Kirill Gavrylyuk, Krish
Srinivasan, Mark Fussell, Richard Turner, Ami Vora, Ari Bixhorn, Steve Cellini, Neil
Hutson, Steve DiMarco, Gianpaolo Carraro, Steve Woodward, James Conard, Nigel
Watling, Vittorio Bertocci, Blair Shaw, Jeffrey Schlimmer, Matt Tavis, Mauro Ottoviani,
John Frederick, Mark Renfrow, Sean Dixon, Matt Purcell, Cheri Clark, Mauricio Ordonez,
Neil Rowe, Donovan Follette, Pat Altimore, Tim Walton, Manu Puri, Ed Pinto, Erik Weiss,
Suwat Chitphakdibodin, Govind Ramanathan, Ralph Squillace, John Steer, Brad Severtson,
Gary Devendorf, Kavita Kamani, George Kremenliev, Somy Srinivasan, Natasha
Jethanandani, Ramesh Seshadri, Lorenz Prem, Laurence Melloul, Clemens Vasters, Joval
Lowy, John Justice, David Aiken, Larry Buerk, Wenlong Dong, Nicholas Allen, Carlos

Introduction

5Introduction

Figueira, Ram Poornalingam, Mohammed Makarechian, David Cliffe, David Okonak,
Atanu Banerjee, Steven Metsker, Antonio Cruz, Steven Livingstone, Vadim Meleshuk,
Elliot Waingold, Yann Christensen, Scott Mason, Jan Alexander, Johan Lindfors, Hanu
Kommalapati, Steve Johnson, Tomas Restrepo, Tomasz Janczuk, Garrett Serack, Jeff Baxter,
Arun Nanda, Luke Melton, and Al Lee.

A particular debt of gratitude is owed to John Lambert for reviewing the drafts. No one is
better qualified to screen the text of a book on a programming technology than an experi-
enced professional software tester. Any mistakes in the pages that follow are solely the
fault of the writers, however.

The authors are especially grateful for the support of their wives. They are Marta MacNeill,
Kathryn Mercuri, Sylvie Watling, and Libby Winkler. Matt, the only parent so far, would
also like to thank his daughter, Grace.

This page intentionally left blank

PART I

Introducing the
Windows
Communication
Foundation

IN THIS PART

CHAPTER 1 Prerequisites

CHAPTER 2 The Fundamentals

CHAPTER 3 Data Representation and Durable
Services

CHAPTER 4 Sessions, Reliable Sessions, Queues,
and Transactions

This page intentionally left blank

CHAPTER 1

Prerequisites

IN THIS CHAPTER

. Partial Types

. Generics

. Nullable Value Types

. The Lightweight Transaction
Manager

. Role Providers

To properly understand and work effectively with the
Windows Communication Foundation, you should be
familiar with certain facilities of the 2.0 versions of the
.NET Framework and the .NET common language runtime.
This chapter introduces them: partial types, generics,
nullable value types, the Lightweight Transaction Manager,
and role providers. The coverage of these features is not
intended to be exhaustive, but merely sufficient to clarify
their use in the chapters that follow.

Partial Types
Microsoft Visual C# 2005 allows the definition of a type to
be composed from multiple partial definitions distributed
across any number of source code files for the same module.
That option is made available via the modifier partial,
which can be added to the definition of a class, an interface,
or a struct. Therefore, this part of the definition of a class

public partial MyClass

{

private string myField = null;

public string MyProperty

{

get

{

return this.myField;

}

}

}

10 CHAPTER 1 Prerequisites

and this other part

public partial MyClass

{

public MyClass()

{

}

public void MyMethod()

{

this.myField = “Modified by my method.”;

}

}

can together constitute the definition of the type MyClass. This example illustrates just
one use for partial types, which is to organize the behavior of a class and its data into
separate source code files.

Generics
“Generics are classes, structures, interfaces, and methods that have placeholders for one or
more of the types they store or use” (Microsoft 2006). Here is an example of a generic class
introduced in the System.Collections.Generic namespace of the .NET Framework 2.0
Class Library:

public class List<T>

Among the methods of that class is this one:

public Add(T item)

Here, T is the placeholder for the type that an instance of the generic class
System.Collections.Generic.List<T> will store. In defining an instance of the generic
class, you specify the actual type that the instance will store:

List<string> myListOfStrings = new List<string>();

Then you can use the Add() method of the generic class instance like so:

myListOfStrings.Add(“Hello, World”);

Generics enable the designer of the List<T> class to define a collection of instances of the
same unspecified type—in other words, to provide the template for a type-safe collection.
A user of List<T> can employ it to contain instances of a type of the user’s choosing,
without the designer of List<T> having to know which type the user might choose. Note
as well that whereas a type derived from a base type is meant to derive some of the func-
tionality it requires from the base, with the remainder still having to be programmed,
List<string> comes fully equipped from List<T>.

11Generics

1

The class, System.Collections.Generic.List<T>, is referred to as a generic type definition.
The placeholder, T, is referred to as a generic type parameter. Declaring

List<string> myListOfStrings;

yields System.Collections.Generic.List<string> as a constructed type, and string as a
generic type argument.

Generics can have any number of generic type parameters. For example,
System.Collections.Generic.Dictionary<TKey,TValue> has two.

The designer of a generic may use constraints to restrict the types that can be used as
generic type arguments. This generic type definition

public class MyGenericType<T> where T: IComparable, new()

constrains the generic type arguments to types with a public, parameter-less constructor
that implements the IComparable interface. This less restrictive generic type definition

public class MyGenericType<T> where T: class

merely constrains generic type arguments to reference types. Note that T: class includes
both classes and interfaces.

Both generic and nongeneric types can have generic methods. Here is an example of a
nongeneric type with a generic method:

using System;

public class Printer

{

public void Print<T>(T argument)

{

Console.WriteLine(argument.ToString());

}

static void Main(string[] arguments)

{

Printer printer = new Printer();

printer.Print<string>(“Hello, World”);

Console.WriteLine(“Done”);

Console.ReadKey();

}

}

In programming a generic, it is often necessary to determine the type of generic argument
that has been substituted for a generic type parameter. This revision to the preceding
example shows how you can make that determination:

12 CHAPTER 1 Prerequisites

public class Printer

{

public void Print<T>(T argument)

{

if(typeof(T) == typeof(string))

{

Console.WriteLine(argument);

}

else

{

Console.WriteLine(argument.ToString());

}

}

static void Main(string[] arguments)

{

Printer printer = new Printer();

printer.Print<string>(“Hello, World”);

Console.WriteLine(“Done”);

Console.ReadKey();

}

}

A generic interface may be implemented by a generic type or a nongeneric type. Also,
both generic and nongeneric types may inherit from generic base types.

public interface IMyGenericInterface<T>

{

void MyMethod(T input);

}

public class MyGenericImplementation<T>: IMyGenericInterface<T>

{

public void MyMethod(T input)

{

}

}

public class MyGenericDescendant<T> : MyGenericImplementation<T>

{

}

public class MyNonGenericImplementation : IMyGenericInterface<string>

{

public void MyMethod(string input)

{

13Nullable Value Types

1

}

}

public class MyNonGenericDescendant : MyGenericImplementation<string>

{

}

Nullable Value Types
According to the Common Language Infrastructure specification, there are two ways of
representing data in .NET: by a value type or by a reference type (Ecma 2006, 18).
Although instances of value types are usually allocated on a thread’s stack, instances of
reference types are allocated from the managed heap, and their values are the addresses of
the allocated memory (Richter 2002, 134–5).

Whereas the default value of a reference type variable is null, indicating that it has yet to
be assigned the address of any allocated memory, a value type variable always has a value
of the type in question and can never have the value null. Therefore, although you can
determine whether a reference type has been initialized by checking whether its value is
null, you cannot do the same for a value type.

However, there are two common circumstances in which you would like to know whether
a value has been assigned to an instance of a value type. The first is when the instance
represents a value in a database. In such a case, you would like to be able to examine the
instance to ascertain whether a value is indeed present in the database. The other circum-
stance, which is more pertinent to the subject matter of this book, is when the instance
represents a data item received from some remote source. Again, you would like to deter-
mine from the instance whether a value for that data item was received.

The .NET Framework 2.0 incorporates a generic type definition that provides for cases like
these in which you want to assign null to an instance of a value type, and test whether
the value of the instance is null. That generic type definition is System.Nullable<T>,
which constrains the generic type arguments that may be substituted for T to value types.
Instances of types constructed from System.Nullable<T> can be assigned a value of null;
indeed, their values are null by default. Thus, types constructed from System.Nullable<T>
are referred to as nullable value types.

System.Nullable<T> has a property, Value, by which the value assigned to an instance of
a type constructed from it can be obtained if the value of the instance is not null.
Therefore, you can write

System.Nullable<int> myNullableInteger = null;

myNullableInteger = 1;

if (myNullableInteger != null)

{

Console.WriteLine(myNullableInteger.Value);

}

14 CHAPTER 1 Prerequisites

The C# programming language provides an abbreviated syntax for declaring types
constructed from System.Nullable<T>. That syntax allows you to abbreviate

System.Nullable<int> myNullableInteger;

to

int? myNullableInteger;

The compiler will prevent you from attempting to assign the value of a nullable value type
to an ordinary value type in this way:

int? myNullableInteger = null;

int myInteger = myNullableInteger;

It prevents you from doing so because the nullable value type could have the value null,
which it actually would have in this case, and that value cannot be assigned to an ordi-
nary value type. Although the compiler would permit this code,

int? myNullableInteger = null;

int myInteger = myNullableInteger.Value;

the second statement would cause an exception to be thrown because any attempt to
access the System.Nullable<T>.Value property is an invalid operation if the type
constructed from System.Nullable<T> has not been assigned a valid value of T, which has
not happened in this case.

One proper way to assign the value of a nullable value type to an ordinary value type is to
use the System.Nullable<T>.HasValue property to ascertain whether a valid value of T has
been assigned to the nullable value type:

int? myNullableInteger = null;

if (myNullableInteger.HasValue)

{

int myInteger = myNullableInteger.Value;

}

Another option is to use this syntax:

int? myNullableInteger = null;

int myInteger = myNullableInteger ?? -1;

by which the ordinary integer myInteger is assigned the value of the nullable integer
myNullableInteger if the latter has been assigned a valid integer value; otherwise,
myInteger is assigned the value of -1.

The Lightweight Transaction Manager
In computing, a transaction is a discrete activity—an activity that is completed in its
entirety or not at all. A resource manager ensures that if a transaction is initiated on some

15The Lightweight Transaction Manager

1

resource, the resource is restored to its original state if the transaction is not fully
completed. A distributed transaction is one that spans multiple resources and therefore
involves more than a single resource manager. A manager for distributed transactions has
been incorporated into Windows operating systems for many years. It is the Microsoft
Distributed Transaction Coordinator.

.NET Framework versions 1.0 and 1.1 provided two ways of programming transactions.
One way was provided by ADO.NET. That technology’s abstract
System.Data.Common.DbConnection class defined a BeginTransaction() method by which
you could explicitly initiate a transaction controlled by the particular resource manager
made accessible by the concrete implementation of DbConnection. The other way of
programming a transaction was provided by Enterprise Services. It provided the
System.EnterpriseServices.Transaction attribute that could be added to any subclass of
System.EnterpriseServices.ServicedComponent to implicitly enlist any code executing in
any of the class’s methods into a transaction managed by the Microsoft Distributed
Transaction Coordinator.

ADO.NET provided a way of programming transactions explicitly, whereas Enterprise
Services allowed you to do it declaratively. However, in choosing between the explicit style
of programming transactions offered by ADO.NET and the declarative style offered by
Enterprise Services, you were also forced to choose how a transaction would be handled.
With ADO.NET, transactions were handled by a single resource manager, whereas with
Enterprise Services, a transaction incurred the overhead of involving the Microsoft
Distributed Transaction Coordinator, regardless of whether the transaction was actually
distributed.

.NET 2.0 introduced the Lightweight Transaction Manager,
System.Transactions.TransactionManager. As its name implies, the Lightweight
Transaction Manager has minimal overhead: “...[p]erformance benchmarking done by
Microsoft with SQL Server 2005, comparing the use of a [Lightweight Transaction Manager
transaction] to using a native transaction directly found no statistical differences between
using the two methods” (Lowy 2005, 12). If only a single resource manager is enlisted in
the transaction, the Lightweight Transaction Manager allows that resource manager to
manage the transaction and the Lightweight Transaction Manager merely monitors it.
However, if the Lightweight Transaction Manager detects that a second resource manager
has become involved in the transaction, the Lightweight Transaction Manager has the
original resource manager relinquish control of the transaction and transfers that control
to the Distributed Transaction Coordinator. Transferring control of a transaction in
progress to the Distributed Transaction Coordinator is called promotion of the transaction.

The System.Transactions namespace allows you to program transactions using the
Lightweight Transaction Manager either explicitly or implicitly. The explicit style uses the
System.Transactions.CommitableTransaction class:

CommitableTransaction transaction = new CommittableTransaction();

using(SqlConnection myConnection = new SqlConnection(myConnectionString))

16 CHAPTER 1 Prerequisites

{

myConnection.Open();

myConnection.EnlistTransaction(tx);

//Do transactional work

//Commit the transaction:

transaction.Close();

}

The alternative, implicit style of programming, which is preferable because it is more flexi-
ble, uses the System.Transactions.TransactionScope class:

using(TransactionScope scope = new TransactionScope)

{

//Do transactional work:

//...

//Since no errors have occurred, commit the transaction:

scope.Complete();

}

This style of programming a transaction is implicit because code that executes within the
using block of the System.Transactions.TransactionScope instance is implicitly enrolled
in a transaction. The Complete() method of a System.Transactions.TransactionScope
instance can be called exactly once, and if it is called, the transaction will commit.

The System.Transactions namespace also provides a means for programming your own
resource managers. However, knowing the purpose of the Lightweight Transaction
Manager and the implicit style of transaction programming provided with the
System.Transactions.TransactionScope class will suffice for the purpose of learning
about the Windows Communication Foundation.

Role Providers
Role providers are classes that derive from the abstract class
System.Web.Security.RoleProvider. That class has the interface shown in Listing 1.1. It
defines ten simple methods for managing roles, including ascertaining whether a given
user has been assigned a particular role. Role providers, in implementing those abstract
methods, will read and write a particular store of role information. For example, one of
the concrete implementations of System.Web.Security.RoleProvider included in the
.NET Framework 2.0 is System.Web.Security.AuthorizationStoreRoleProvider, which
uses an Authorization Manager Authorization Store as its repository of role information.
Another concrete implementation, System.Web.Security.SqlRoleProvider, uses a SQL
Server database as its store. However, because the System.Web.Security.RoleProvider has

17Role Providers

1

such a simple set of methods for managing roles, if none of the role providers included in
the .NET Framework 2.0 is suitable, you can readily provide your own implementation to
use whatever store of role information you prefer. Role providers hide the details of how
role data is stored behind a simple, standard interface for querying and updating that
information. Although System.Web.Security.RoleProvider is included in the System.Web
namespaces of ASP.NET, role providers can be used in any .NET 2.0 application.

LISTING 1.1 System.Web.Security.RoleProvider

public abstract class RoleProvider : ProviderBase

{

protected RoleProvider();

public abstract string ApplicationName { get; set; }

public abstract void AddUsersToRoles(

string[] usernames, string[] roleNames);

public abstract void CreateRole(

string roleName);

public abstract bool DeleteRole(

string roleName, bool throwOnPopulatedRole);

public abstract string[] FindUsersInRole(

string roleName, string usernameToMatch);

public abstract string[] GetAllRoles();

public abstract string[] GetRolesForUser(

string username);

public abstract string[] GetUsersInRole(

string roleName);

public abstract bool IsUserInRole(

string username, string roleName);

public abstract void RemoveUsersFromRoles(

string[] usernames, string[] roleNames);

public abstract bool RoleExists(string roleName);

}

The static class, System.Web.Security.Roles, provides yet another layer of encapsulation
for role management. Consider this code snippet:

if (!Roles.IsUserInRole(userName, “Administrator”))

{

[...]

}

Here, the static System.Web.Security.Roles class is used to inquire whether a given user
has been assigned to the Administrator role. What is interesting about this snippet is that
the inquiry is made without an instance of a particular role provider having to be created

18 CHAPTER 1 Prerequisites

first. The static System.Web.Security.Roles class hides the interaction with the role
provider. The role provider it uses is whichever one is specified as being the default in the
configuration of the application. Listing 1.2 is a sample configuration that identifies the
role provider named MyRoleProvider, which is an instance of the
System.Web.Security.AuthorizationStoreRoleProvider class, as the default role provider.

LISTING 1.2 Role Provider Configuration

<configuration>

<connectionStrings>

<add name=”AuthorizationServices”

`connectionString=”msxml://~\App_Data\SampleStore.xml” />

</connectionStrings>

<system.web>

<roleManager defaultProvider=”MyRoleProvider”

enabled=”true”

cacheRolesInCookie=”true”

cookieName=”.ASPROLES”

cookieTimeout=”30”

cookiePath=”/”

cookieRequireSSL=”false”

cookieSlidingExpiration=”true”

cookieProtection=”All” >

<providers>

<clear />

<add

name=”MyRoleProvider”

type=”System.Web.Security.AuthorizationStoreRoleProvider”

connectionStringName=”AuthorizationServices”

applicationName=”SampleApplication”

cacheRefreshInterval=”60”

scopeName=”” />

</providers>

</roleManager>

</system.web>

</configuration>

Summary
This chapter introduced some programming tools that were new in .NET 2.0 and that are
prerequisites for understanding and working effectively with the Windows
Communication Foundation:

. The new partial keyword in C# allows the definitions of types to be composed
from any number of parts distributed across the source code files of a single module.

19References

1

. Generics are templates from which any number of fully preprogrammed classes can
be created.

. Nullable value types are value types that can be assigned a value of null and
checked for null values.

. The Lightweight Transaction Manager ensures that transactions are managed as effi-
ciently as possible. An elegant new syntax has been provided for using it.

. Role providers implement a simple, standard interface for managing the roles to
which users are assigned that is independent of how the role information is stored.

References
Ecma International. 2006. ECMA-335: Common Language Infrastructure (CLI) Partitions
I–VI. Geneva: Ecma.

Lowy, Juval. Introducing System.Transactions.
http://www.microsoft.com/downloads/details.aspx?familyid=11632373-BC4E-4C14-AF25-
0F32AE3C73A0&displaylang=en. Accessed July 27, 2008.

Microsoft 2006. Overview of Generics in the .NET Framework. http://msdn2.microsoft.com/
en-us/library/ms172193.aspx. Accessed August 20, 2006.

Richter, Jeffrey. 2002. Applied Microsoft .NET Framework Programming. Redmond, WA:
Microsoft Press.

http://www.microsoft.com/downloads/details.aspx?familyid=11632373-BC4E-4C14-AF25-0F32AE3C73A0&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=11632373-BC4E-4C14-AF25-0F32AE3C73A0&displaylang=en
http://msdn2.microsoft.com/en-us/library/ms172193.aspx
http://msdn2.microsoft.com/en-us/library/ms172193.aspx

This page intentionally left blank

CHAPTER 2

The Fundamentals

IN THIS CHAPTER

. Background

. Enter Services

. Windows Communication
Foundation

. The Service Model

. Visual Studio 2008 Tool
SupportBackground

Dealing with something as an integrated whole is self-
evidently easier than having to understand and manipulate
all of its parts. Thus, to make programming easier, it is
commonplace to define classes that serve as integrated
wholes, keeping their constituents hidden. Doing so is called
encapsulation, which is characteristic of what is known as
object-oriented programming.

The C++ programming language provided syntax for encap-
sulation that proved very popular. In C++, you can write a
class like this one:

class Stock

{

private:

char symbol[30];

int number;

double price;

double value;

void SetTotal()

{

this->value = this->number * this->price;

}

public:

Stock(void);

~Stock(void);

void Acquire(const char* symbol, int number,

double price);

void Sell(int number, double price);

};

22 CHAPTER 2 The Fundamentals

The class hides away its data members—symbol, number, price, and value—as well as the
method SetTotal(), but exposes the methods Acquire() and Sell() for use.

Some refer to the exposed surface of a class as its interface, and to invocations of the
methods of a class as messages. David A. Taylor does so in his book Object-Oriented
Information Systems: Planning and Integration (1992, 118).

Using C++ classes to define interfaces and messages has an important shortcoming,
however, as Don Box explains in Essential COM (1998, 11). There is no standard way for
C++ compilers to express the interfaces in binary format. Consequently, sending a
message to a class in a dynamic link library (DLL) is not guaranteed to work if the calling
code and the intended recipient class were built using different compilers.

That shortcoming is significant because it restricts the extent to which the class in the
DLL can be reused in code written by other programmers. The reuse of code written by
one programmer within code written by another is fundamental not only to programming
productivity, but also to software as a commercial enterprise, to being able to sell what a
programmer produces.

Two important solutions to the problem were pursued. One was to define interfaces using
C++ abstract base classes. An abstract base class is a class with pure virtual functions, and,
as Box explains, “[t]he runtime implementation of virtual functions in C++ takes the
[same] form…in virtually all production compilers” (1998, 15). You can write, in C++, the
code given in Listing 2.1.

LISTING 2.1 Abstract Base Class

//IStock.h

class IStock

{

public:

virtual void DeleteInstance(void);

virtual void Acquire(const char* symbol, int number, double price) = 0;

virtual void Sell(int number, double price) = 0;

};

extern “C”

IStock* CreateStock(void);

//Stock.h

#include “IStock.h”

class Stock: public IStock

{

private:

char symbol[30];

int number;

double price;

23Background

double value;

void SetTotal()

{

this->value = this->number * this->price;

}

public:

Stock(void);

~Stock(void);

void DeleteInstance(void);

void Acquire(const char* symbol, int number, double price);

void Sell(int number, double price);

};

In that code, IStock is an interface defined using a C++ abstract virtual class. IStock is an
abstract virtual class because it has the pure virtual functions Acquire() and Sell(), their
nature as pure virtual functions being denoted by having both the keyword, virtual, and
the suffix, = 0, in their declarations. A programmer wanting to use a class with the IStock
interface within a DLL can write code that retrieves an instance of such a class from the
DLL using the global function CreateStock() and sends messages to that instance. That
code will work even if the programmer is using a different compiler than the one used by
the programmer of the DLL.

Programming with interfaces defined as C++ abstract virtual classes is the foundation of a
Microsoft technology called the Component Object Model, or COM. More generally, it is the
foundation of what became known as component-oriented programming.

Component-oriented programming is a style of software reuse in which the interface of the
reusable class consists of constructors, property getter and setter methods, methods, and
events. Programmers using the class “...follow[] a pattern of instantiating a type with a
default or relatively simple constructor, setting some instance properties, and finally,
[either] calling simple instance methods” or handling the instance’s events (Cwalina and
Abrams 2006, 237).

Another important solution to the problem of there being no standard way for C++
compilers to express the interfaces of classes in binary format is to define a standard for
the output of compilers. The Java Virtual Machine Specification defines a standard format
for the output of compilers, called the class file format (Lindholm and Yellin 1997, 61).
Files in that format can be translated into the instructions specific to a particular
computer processor by a Java Virtual Machine. One programmer can provide a class in the
class file format to another programmer who will be able to instantiate that class and send
messages to it using any compiler and Java Virtual Machine compliant with the Java
Virtual Machine Specification.

Similarly, the Common Language Infrastructure Specification defines the Common
Intermediate Language as a standard format for the output of compilers (ECMA

24 CHAPTER 2 The Fundamentals

International 2005). Files in that format can be translated into instructions to a particular
computer processor by Microsoft’s Common Language Runtime, which is the core of
Microsoft’s .NET technology, as well as by Mono.

Enter Services
Despite these ways of making classes written by one programmer reusable by others, the
business of software was still restricted. The use of COM and .NET is widespread, as is the
use of Java, and software developed using Java cannot be used together easily with soft-
ware developed using COM or .NET. More importantly, the component-oriented style of
software reuse that became prevalent after the introduction of COM, and which was also
widely used by Java and .NET programmers, is grossly inefficient when the instance of the
class that is being reused is remote, perhaps on another machine, or even just in a differ-
ent process. It is so inefficient because, in that scenario, each operation of instantiating
the object, of assigning values to its properties, and of calling its methods or handling its
events, requires communication back and forth across process boundaries, and possibly
also over the network.

“Since [the two separate processes] each have their own memory space, they have to
copy the data [transmitted between them] from one memory space to the other. The data
is usually transmitted as a byte stream, the most basic form of data. This means that the
first process must marshal the data into byte form, and then copy it from the first process
to the second one; the second process must unmarshal the data back into its original
form, such that the second process then has a copy of the original data in the first
process.” (Hohpe and Woolf 2004, 66).

Besides the extra work involved in marshalling data across the process boundaries,

“...security may need to be checked, packets may need to be routed through switches. If
the two processes are running on machines on opposite sides of the globe, the speed of
light may be a factor. The brutal truth is that that any inter-process call is orders of magni-
tude more expensive than an in-process call—even if both processes are on the same
machine. Such a performance effect cannot be ignored.” (Fowler 2003, 388).

The Web Services Description Language (WSDL) provided a general solution to the first
restriction, the problem of using software developed using Java together with software
developed using COM or .NET. WSDL provides a way of defining software interfaces using
the Extensible Markup Language (XML), a format that is exceptionally widely adopted,
and for which processors are readily available. Classes that implement WSDL interfaces are
generally referred to as services.

Concomitantly, an alternative to component-oriented programming that is suitable for
the reuse of remote instances of classes became progressively more common in practice,
although writers seem to have had a remarkably difficult time formalizing its tenets.
Thomas Erl, for instance, published two vast books ostensibly on the subject, but never
managed to provide a noncircuitous definition of the approach in either of them (Erl

25Enter Services

2004, 2005). That alternative to component-oriented programming is service-oriented
programming.

Service-oriented programming is a style of software reuse in which the reusable classes are
services—classes that implement network facing programming interfaces (WSDL being
one way to describe these interfaces)—and the services are designed so as to minimize
the number of calls to be made to them, by packaging the data to be transmitted back
and forth into messages. A message is a particular kind of data transfer object. A data
transfer object is

“...little more than a bunch of fields and the getters and setters for them. The value of
[this type of object] is that it allows you to move several pieces of information over a
network in a single call—a trick that’s essential for distributed systems. [...] Other than
simple getters and setters, the data transfer object is [...] responsible for serializing itself
into some format that will go over the wire.” (Fowler 2003, 401–403).

Messages are data transfer objects that consist of two parts: a header that provides informa-
tion pertinent to the operation of transmitting the data and a body that contains the
actual data to be transmitted. Crucially, the objects into which the content of a message is
read on the receiving side are never assumed to be of the same type as the objects from
which the content of the message was written on the sending side. Hence, the sender and
the receiver of a message do not have to share the same types, and are said to be loosely
coupled by their shared knowledge of the format of the message, rather than tightly coupled
by their shared knowledge of the same types (Box 2004). By virtue of being loosely
coupled, the sender and the receiver of the message can evolve independently of one
another.

A definition of the term service-oriented architecture is warranted here for the sake of disam-
biguation. Service-oriented architecture is an approach to organizing the software of an
enterprise by providing service facades for all of that software, and publishing the descrip-
tion for those services in a central repository. One example of a repository is a Universal
Description Discovery and Integration (UDDI) registry. Having interfaces to all the soft-
ware of an enterprise expressed in a standard format and catalogued in a central repository
is desirable because then, in theory, its availability for reuse can be known. Also, policies
defining requirements, capabilities, and sundry other properties of a service can be associ-
ated with the service using WSDL or by making suitable entries in the registry. That fact
leads enterprise architects to anticipate the prospect of the registry serving as a central
point of control through which they could issue decrees about how every software entity
in their organization is to function by associating policies with the services that provide
facades for all of their other software resources. Furthermore, measurements of the perfor-
mance of the services can be published in the registry, too, so the registry could also serve
as a monitoring locus.

Note that service-oriented architecture does not refer to the process of designing software
that is to be composed from parts developed using service-oriented programming. There
are at least two reasons why not. The first is simply because that is not how the term is
actually used, and Ludwig Wittgenstein established in his Philosophical Investigations that
the meaning of terms is indeed determined by how they are customarily used by a

26 CHAPTER 2 The Fundamentals

community (Wittgenstein 1958, 93). The second reason is that the community really
could not use the term to refer to a process of designing software composed from parts
developed using service-oriented programming because the process of doing that is in no
way distinct from the process of designing software composed using parts developed in
some other fashion. More precisely, the correct patterns to choose as guides in designing
the solution would be the same regardless of whether or not the parts of the solution were
developed using service-oriented programming.

Now, Microsoft provided support for service-oriented programming to COM programmers
with the Microsoft SOAP Toolkit, and to .NET programmers with the classes in the
System.Web.Services namespace of the .NET Framework Class Library. Additions to the
latter were provided by the Web Services Enhancements for Microsoft .NET. Java program-
mers can use Apache Axis for service-oriented programming.

Windows Communication Foundation
Yet service-oriented programming has been limited by the lack of standard ways of secur-
ing message transmissions, handling failures, and coordinating transactions. Standards
have now been developed, and the Windows Communication Foundation provides imple-
mentations thereof.

So, the Windows Communication Foundation delivers a more complete infrastructure for
service-oriented programming than was available to .NET software developers. Providing
that infrastructure is important because service-oriented programming transcends limits
on the reuse of software between Java programmers and COM and .NET programmers that
had been hampering the software business.

Today, even with the Windows Communication Foundation, service-oriented program-
ming is still suitable only for interactions with remote objects, just as component-oriented
programming is suitable only for interacting with local objects. A future goal for the team
that developed the Windows Communication Foundation is to extend the technology to
allow the service-oriented style of programming to be equally efficient for both scenarios.

Even so, to understand the Windows Communication Foundation as merely being
Microsoft’s once and future infrastructure for service-oriented programming severely
underestimates its significance. The Windows Communication Foundation provides some-
thing far more useful than just another way of doing service-oriented programming. It
provides a software factory template for software communication.

The concept of software factory templates is introduced by Jack Greenfield and Keith
Short in their book Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools (Greenfield and others 2004). It provides a new approach to model-
driven software development.

The notion of model-driven software development has been popular for many years. It is
the vision of being able to construct a model of a software solution from which the soft-
ware itself can be generated after the model has been scrutinized to ensure that it covers

27Windows Communication Foundation

all the functional and nonfunctional requirements. That vision has been pursued using
general-purpose modeling languages, the Unified Modeling Language (UML) in particular.

A serious shortcoming in using general-purpose modeling languages for model-driven soft-
ware development is that general-purpose modeling languages are inherently imprecise.
They cannot represent the fine details of requirements that can be expressed in a natural
language such as English. They also are not sufficiently precise to cover things such as
memory management, thread synchronization, auditing, and exception management. If
they were, they would be programming languages, rather than general-purpose modeling
languages, yet memory management, thread synchronization, auditing, and exception
management are precisely the sorts of things that bedevil programmers.

Greenfield and Short argue that progress in model-driven development depends on
eschewing general-purpose modeling languages in favor of domain-specific languages, or
DSLs. A DSL models the concepts found in a specific domain. DSLs should be used in
conjunction with a corresponding class framework, a set of classes specifically designed to
cover the same domain. Then, if the DSL is used to model particular ways in which those
classes can be used, it should be possible to generate the software described in the model
from the class framework (Greenfield and others 2004, 144).

The combination of a DSL and a corresponding class framework constitute the core of a
software factory template (Greenfield and others 2004, 173). Software factory templates
serve as the software production assets of a software factory from which many varieties of
the same software product can be readily fabricated.

A fine example of a software factory template is the Windows Forms Designer in Microsoft
Visual Studio .NET and subsequent versions of Microsoft Visual Studio. In that particular
case, the Windows Forms Designer is the DSL, the Toolbox and Property Editor being
among the terms of the language, and the classes in the System.Windows.Forms name-
space of the .NET Framework Class Library constitute the class framework. Users of the
Windows Forms Designer use it to model software that is generated from those classes.

Programmers have been using the Windows Forms Designer and tools like it in other
integrated development environments for many years to develop software user interfaces.
So, Greenfield and Short, in introducing the concept of software factory templates, are
not proposing a new approach. Rather, they are formalizing one that has already proven
to be very successful, and suggesting that it be used to develop other varieties of software
besides user interfaces.

The Windows Communication Foundation is a software factory template for software
communication. It consists of a DSL, called the Service Model, and a class framework, called
the Channel Layer. The Service Model consists of the classes of the System.ServiceModel
namespace, and an XML configuration language. The Channel Layer consists of the classes
in the System.ServiceModel.Channel namespace. Developers model how a piece of soft-
ware is to communicate using the Service Model, and the communication components
they need to have included in their software are generated from the Channel Layer, in

28 CHAPTER 2 The Fundamentals

accordance with their model. Later, if they need to change or supplement how their soft-
ware communicates, they make alterations to their model, and the modifications or addi-
tions to their software are generated. If they want to model a form of communication that
is not already supported by the Channel Layer, they can build or buy a suitable channel to
add to the Channel Layer, and proceed to generate their software as usual, just as a user of
the Windows Forms Designer can build or buy controls to add to the Windows Forms
Designer’s Toolbox.

That the Windows Communication Foundation provides a complete infrastructure for
service-oriented programming is very nice because sometimes programmers do need to do
that kind of programming, and service-oriented programming will likely remain popular
for a while. However, software developers are always trying to get pieces of software to
communicate, and they always will need to do that because software is reused by sending
and receiving data, and the business of software depends on software reuse. So, the fact
that the Windows Communication Foundation provides a software factory template for
generating, modifying, and supplementing software communication facilities from a
model is truly significant.

The Service Model
The key terms in the language of the Windows Communication Foundation Service Model
correspond closely to the key terms of WSDL. In WSDL, a piece of software that can
respond to communications over a network is called a service. A service is described in an
XML document with three primary sections:

. The service section indicates where the service is located.

. The binding section specifies which of various standard communication protocols
the service understands.

. The third primary section, the portType section, lists all the operations that the ser-
vice can perform by defining the messages that it will emit in response to messages
it receives.

Thus, the three primary sections of a WSDL document tell you where a service is located,
how to communicate with it, and what it will do.

Those three things are exactly what you specify in using the Windows Communication
Foundation Service Model to model a service: where it is, how to communicate with it,
and what it will do. Instead of calling those things service, binding, and portType, as they
are called in the WSDL specification, they are named address, binding, and contract in the
Windows Communication Foundation Service Model. Consequently, the handy abbrevia-
tion a, b, c can serve as a reminder of the key terms of the Windows Communication
Foundation Service Model and, thereby, as a reminder of the steps to follow in using it to
enable a piece of software to communicate.

More precisely, in the Windows Communication Foundation Service Model, a piece of
software that responds to communications is a service. A service has one or more
endpoints to which communications can be directed. An endpoint consists of an address,

29The Service Model

a binding, and a contract. How a service handles communications internally, behind the
external surface defined by its endpoints, is determined by a family of control points
called behaviors.

This chapter explains, in detail, how to use the Windows Communication Foundation
Service Model to enable a piece of software to communicate. Lest the details provided
obscure how simple this task is to accomplish, here is an overview of the steps involved.

A programmer begins by defining the contract. That simple task is begun by writing an
interface in a .NET programming language:

public interface IEcho

{

string Echo(string input);

}

It is completed by adding attributes from the Service Model that designate the interface as
a Windows Communication Foundation contract, and one or more of its methods as
being included in the contract:

[ServiceContract]

public interface IEcho

{

[OperationContract]

string Echo(string input);

}

The next step is to implement the contract, which is done simply by writing a class that
implements the interface:

public class Service : IEcho

{

public string Echo(string input)

{

return input;

}

}

A class that implements an interface that is designated as a Windows Communication
Foundation contract is called a service type. How the Windows Communication
Foundation conveys data that has been received from the outside via an endpoint to the
service type can be controlled by adding behaviors to the service type definition using the
ServiceBehavior attribute:

[ServiceBehavior(ConcurrencyMode=ConcurrencyMode.Multiple)]

public class Service : IEcho

30 CHAPTER 2 The Fundamentals

{

public string Echo(string input)

{

return input;

}

}

For example, the concurrency mode behavior attribute controls whether the Windows
Communication Foundation can convey data to the service type on more than one
concurrent thread. This behavior is set via an attribute because it is one that a program-
mer, as opposed to an administrator, should control. After all, it is the programmer of the
service type who would know whether the service type is programmed in such a way as to
accommodate concurrent access by multiple threads.

The final step for the programmer is to provide for hosting the service within an applica-
tion domain. IIS can provide an application domain for hosting the service, and so can
any .NET application. Hosting the service within an arbitrary .NET application is easily
accomplished using the ServiceHost class provided by the Windows Communication
Foundation Service Model:

using (ServiceHost host = new ServiceHost(typeof(Service))

{

host.Open();

Console.WriteLine(“The service is ready.”);

Console.ReadKey(true);

host.Close();

}

Now the administrator takes over. The administrator defines an endpoint for the service
type by associating an address and a binding with the Windows Communication
Foundation contracts that the service type implements. An editing tool, called the
Service Configuration Editor, shown in Figure 2.1, that also includes wizards, is provided
for that purpose.

Whereas the programmer could use attributes to modify the behaviors that a programmer
should control, the administrator, as shown in Figure 2.2, can use the Service
Configuration Editor to modify the behaviors that are properly within an administrator’s
purview. All output from the tool takes the form of a .NET application configuration file.

Now that the address, binding, and contract of an endpoint have been defined, the
contract has been implemented, and a host for the service has been provided, the service
can be made available for use. The administrator executes the host application. The
Windows Communication Foundation examines the address, binding, and contract of the
endpoint that have been specified in the language of the Service Model, as well as the

31The Service Model

FIGURE 2.1 Defining an address and a binding.

FIGURE 2.2 Adding behaviors to a service.

32 CHAPTER 2 The Fundamentals

behaviors, and generates the necessary components by which the service can receive and
respond to communications from the Channel Layer.

One of the behaviors that the administrator can control is whether the service exposes
WSDL to describe its endpoints for the outside world. If the administrator configures the
service to do so, the Windows Communication Foundation will automatically generate the
WSDL and offer it up in response to requests for it. A programmer developing an applica-
tion to communicate with the service can download the WSDL, and generate code for
exchanging data with the service, as well as an application configuration file with the
endpoint information. That can be done with a single command

svcutil http://localhost:8000/EchoService?wsdl

wherein svcutil is the name of the Windows Communication Foundation’s Service
Model Metadata Tool, and http://localhost:8000/EchoService?wsdl is the address from
which the metadata of a service can be downloaded. Having employed the tool to produce
the necessary code and configuration, the programmer can proceed to use them to
communicate with the service:

using(EchoProxy echoProxy = new EchoProxy())

{

echoProxy.Open();

string response = echoProxy.Echo(“Hello, World!”);

echoProxy.Close();

}

The preceding steps are all that is involved in using the Windows Communication
Foundation. In summary, those simple steps are merely these:

1. The service programmer defines a contract using a .NET interface.

2. The service programmer implements that interface in a class, a service type.

3. The service programmer optionally modifies Windows Communication Foundation
behaviors by applying attributes to the service type or to its methods.

4. The service programmer makes provisions for the service to be hosted. If the service
is to be hosted within a .NET application, the programmer develops that application.

5. The service administrator uses the Service Configuration Editor to configure the
service’s endpoints by associating addresses and bindings with the contracts imple-
mented by the service type.

6. The service administrator optionally uses the Service Configuration Editor to modify
Windows Communication Foundation behaviors.

7. The programmer of a client application uses the Service Model Metadata Tool to
download WSDL describing the service and to generate code and a configuration file
for communicating with the service.

33The Service Model

8. The programmer of the client application uses generated code and configuration to
exchange data with the service.

At last, the promise of model-driven development might have actually yielded some-
thing tangible: a software factory template by which the communications system of an
application can be manufactured from a model. The value of using this technology is at
least threefold.

First, developers can use the same simple modeling language provided by the Service
Model to develop solutions to all kinds of software communications problems. Until now,
a .NET developer would typically use .NET web services to exchange data between a .NET
application and a Java application, but use .NET Remoting for communication between
two .NET applications, and the classes of the System.Messaging namespace to transmit
data via a queue. The Windows Communication Foundation provides developers with a
single, easy-to-use solution that works well for all of those scenarios. Because, as will be
shown in Part V, “Extending the Windows Communication Foundation,” the variety of
bindings and behaviors supported by the Windows Communication Foundation is indefi-
nitely extensible, the technology will also work as a solution for any other software
communication problem that is likely to occur. Consequently, the cost and risk involved
in developing solutions to software communications problems decreases because rather
than expertise in a different specialized technology being required for each case, the devel-
opers’ skill in using the Windows Communication Foundation is reusable in all of them.

Second, in many cases, the administrator is able to modify how the service communicates
simply by modifying the binding, without the code having to be changed, and the admin-
istrator is thereby able to make the service communicate in a great variety of significantly
different ways. The administrator can choose, for instance, to have the same service
communicate with clients on the internal network they all share in a manner that is
optimal for those clients, and can also have it communicate with Internet clients in a
different manner that is suitable for them. When the service’s host executes again after any
modifications the administrator has made to the binding, the Windows Communication
Foundation generates the communications infrastructure for the new or modified
endpoints. Thus, investments in software built using the Windows Communications
Foundation yield increased returns by being adaptable to a variety of scenarios.

Third, as will be shown in Part VII, “The Lifecycle of Windows Communication
Foundation Applications,” the Windows Communication Foundation provides a variety of
powerful tools for managing applications built using the technology. Those tools reduce
the cost of operations by saving the cost of having to develop custom management solu-
tions, and by reducing the risk, frequency, duration, and cost of downtime.

The foregoing provides a brief overview of working with the Windows Communication
Foundation Service Model. Read on for a much more detailed, step-by-step examination.
That account starts right from the beginning, with building some software with which
you might like other software to be able to communicate. To be precise, it starts with
developing some software to calculate the value of derivatives.

34 CHAPTER 2 The Fundamentals

A Software Resource

A derivative is a financial entity whose value is derived from that of another. Here is an
example. The value of a single share of Microsoft Corporation stock was $24.41 on
October 11, 2005. Given that value, you might offer for sale an option to buy 1,000 of
those shares, for $25 each, one month later, on November 11, 2005. Such an option,
which is known as a call, might be purchased by someone who anticipates that the price
of the shares will rise above $25 by November 11, 2005, and sold by someone who antici-
pates that the price of the shares will drop. The call is a derivative, its value being derived
from the value of Microsoft Corporation stock.

Pricing a derivative is a complex task. Indeed, estimating the value of derivatives is
perhaps the most high-profile problem in modern microeconomics.

In the foregoing example, clearly the quantity of the stock and the current and past prices
of the Microsoft Corporation stock are factors to consider. But other factors might be
based on analyses of the values of quantities that are thought to affect the prices of the
stock, such as the values of various stock market indices, or the interest rate of the U.S.
Federal Reserve Bank. In fact, you can say that, in general, the price of a derivative is some
function of one or more quantities, one or more market values, and the outcome of one
or more quantitative analytical functions.

Although actually writing software to calculate the value of derivatives is beyond the
scope of this book, you can pretend to do so by following these steps (note, if you are
using VS 2008, one can easily create a service by picking a template under the WCF node
in the “Create new project” dialog):

1. Open Microsoft Visual Studio, choose File, New, Project from the menus, and create
a new blank solution called DerivativesCalculatorSolution in the folder
C:\WCFHandsOn\Fundamentals, as shown in Figure 2.3.

2. Choose File, New, Project again, and add a C# Class Library project called
DerivativesCalculator to the solution, as shown in Figure 2.4.

3. Rename the class file Class1.cs in the DerivativesCalculator project to
Calculator.cs, and modify its content to look like this:

using System;

using System.Collections.Generic;

using System.Text;

namespace DerivativesCalculator

{

public class Calculator

{

public decimal CalculateDerivative(

string[] symbols,

decimal[] parameters,

string[] functions)

{

35The Service Model

FIGURE 2.3 Creating a blank Visual Studio solution.

FIGURE 2.4 Adding a Class Library project to the solution.

36 CHAPTER 2 The Fundamentals

//Pretend to calculate the value of a derivative.

return (decimal)(System.DateTime.Now.Millisecond);

}

}

}

This simple C# class purports to calculate the value of derivatives, and will serve to
represent a piece of software with which you might like other software to be able to
communicate. Certainly, if the class really could calculate the value of derivatives, its
capabilities would be in extraordinary demand, and you could quickly earn a fortune by
charging for access to it.

Building a Service for Accessing the Resource

To allow other software to communicate with the class, you can use the Windows
Communication Foundation Service Model to add communication facilities to it. You do
so by building a Windows Communication Foundation service with an endpoint for
accessing the facilities of the derivatives calculator class. Recall that, in the language of the
Windows Communication Foundation Service Model, an endpoint consists of an address,
a binding, and a contract.

Defining the Contract
In using the Windows Communication Foundation Service Model, you usually begin by
defining the contract. The contract specifies the operations that are available at the
endpoint. After the contract has been defined, the next step is to implement the contract,
to actually provide the operations it defines.

Defining and implementing Windows Communication Foundation contracts is simple. To
define a contract, you merely write an interface in your favorite .NET programming
language, and adds attributes to it to indicate that the interface is also a Windows
Communication Foundation contract. Then, to implement the contract, you simply
program a class that implements the .NET interface that you defined. This consists of the
following steps:

1. Choose File, New, Project from the Visual Studio menus again, and add another C#
Class Library project to the solution, called DerivativesCalculatorService.

2. Rename the class file Class1.cs in the DerivativesCalculatorService project to
IDerivativesCalculator.

3. Modify the contents of the IDerivatesCalculator.cs file to look like so:

using System;

using System.Collections.Generic;

using System.Text;

namespace DerivativesCalculator

{

public interface IDerivativesCalculator

{

37The Service Model

decimal CalculateDerivative(

string[] symbols,

decimal[] parameters,

string[] functions);

void DoNothing();

}

}

IDerivativesCalculator is an ordinary C# interface, with two methods,
CalculateDerivative() and DoNothing(). Now it will be made into a Windows
Communication Foundation contract.

4. Choose Project, Add Reference from the Visual Studio menus. Select
System.ServiceModel from the assemblies listed on the .NET tab of the Add Reference
dialog that appears, as shown in Figure 2.5, and click on the OK button.
System.ServiceModel is the most important of the new .NET class libraries included
in the Windows Communication Foundation.

5. Modify the IDerivativesCalculator interface in the IDerivativesCalculator.cs
module to import the classes in the System.ServiceModel namespace that is incor-
porated in the System.ServiceModel assembly:

using System;

using System.Collections.Generic;

using System.ServiceModel;

using System.Text;

namespace DerivativesCalculator

FIGURE 2.5 Adding a reference to the System.ServiceModel assembly.

38 CHAPTER 2 The Fundamentals

{

public interface IDerivativesCalculator

{

decimal CalculateDerivative(

string[] symbols,

decimal[] parameters,

string[] functions);

void DoNothing();

}

}

6. Now designate the IDerivativesCalculator interface as a Windows Communication
Foundation contract by adding the ServiceContract attribute that is included in the
System.ServiceModel namespace:

using System;

using System.Collections.Generic;

using System.ServiceModel;

using System.Text;

namespace DerivativesCalculator

{

[ServiceContract]

public interface IDerivativesCalculator

{

decimal CalculateDerivative(

string[] symbols,

decimal[] parameters,

string[] functions);

void DoNothing();

}

}

7. Use the OperationContract attribute to designate the CalculateDerivative()
method of the IDerivativesCalculator interface as one of the methods of the inter-
face that is to be included as an operation in the Windows Communication
Foundation contract:

using System;

using System.Collections.Generic;

using System.ServiceModel;

using System.Text;

namespace DerivativesCalculator

{

[ServiceContract]

39The Service Model

public interface IDerivativesCalculator

{

[OperationContract]

decimal CalculateDerivative(

string[] symbols,

decimal[] parameters,

string[] functions);

void DoNothing();

}

}

By default, the namespace and name of a Windows Communication Foundation
contract are the namespace and name of the interface to which the ServiceContract
attribute is added. Also, the name of an operation included in a Windows
Communication Foundation contract is the name of the method to which the
OperationContract attribute is added. You can alter the default name of a contract
using the Namespace and Name parameters of the ServiceContract attribute, as in

[ServiceContract(Namespace=”MyNamespace”,Name=”MyContract”)]

public interface IMyInterface

You can alter the default name of an operation with the Name parameter of the
OperationContract attribute:

[OperationContract(Name=”MyOperation”]

string MyMethod();

8. Returning to the derivatives calculator solution in Visual Studio, now that a Windows
Communication Foundation contract has been defined, the next step is to implement
it. In the DerivativesCalculatorService project, choose Project, Add, New Class from
the Visual Studio menus, and add a class called
DerivativesCalculatorServiceType.cs to the project, as shown in Figure 2.6.

9. Modify the contents of the DerivativesCalculatorServiceType.cs class file to
look like this:

using System;

using System.Collections.Generic;

using System.Text;

namespace DerivativesCalculator

{

public class DerivativesCalculatorServiceType: IDerivativesCalculator

{

#region IDerivativesCalculator Members

decimal IDerivativesCalculator.CalculateDerivative(

string[] symbols,

decimal[] parameters,

40 CHAPTER 2 The Fundamentals

FIGURE 2.6 Adding a class to a project.

string[] functions)

{

throw new Exception(

“The method or operation is not implemented.”);

}

void IDerivativesCalculator.DoNothing()

{

throw new Exception(

“The method or operation is not implemented.”);

}

#endregion

}

}

As mentioned earlier, in the language of the Windows Communication Foundation,
the name service type is used to refer to any class that implements a service contract.
So, in this case, the DerivativesCalculatorServiceType is a service type because it
implements the IDerivativesCalculator interface, which has been designated as a
Windows Communication Foundation service contract.

A class can be a service type not only by implementing an interface that is a service
contract, but also by having the ServiceContract attribute applied directly to the
class. However, by applying the ServiceContract attribute to an interface and then
implementing the interface with a class, as in the foregoing, you yield a service
contract that can be implemented with any number of service types. In particular,
one service type that implements the service contract can be discarded in favor of
another. If the service contract attribute is instead applied directly to a class, that

41The Service Model

class and its descendants will be the only service types that can implement that
particular service contract, and discarding the class will mean discarding the service
contract.

10. At this point, the DerivativesCalculatorServiceType implements the
IDerivativesCalculator interface in name only. Its methods do not actually
perform the operations described in the service contract. Rectify that now by return-
ing to the DerivativesCalculatorService project in Visual Studio, and choosing
Project, Add Reference from the menus. Select the Projects tab, select the entry for
the DerivativesCalculator project, shown in Figure 2.7, and click on the OK button.

11. Now program the CalculateDerivative() method of the
DerivativesCalculatorServiceType to delegate the work of calculating the value of
a derivative to the Calculator class of the DerivativesCalculator project, which was
the original class with which other pieces of software were to communicate. Also
modify the DoNothing() method of the DerivativesCalculatorServiceType so that
it no longer throws an exception:

using System;

using System.Collections.Generic;

using System.Text;

namespace DerivativesCalculator

{

public class DerivativesCalculatorServiceType: IDerivativesCalculator

{

#region IDerivativesCalculator Members

decimal IDerivativesCalculator.CalculateDerivative(

FIGURE 2.7 Adding a reference to the DerivativesCalculator project.

42 CHAPTER 2 The Fundamentals

string[] symbols,

decimal[] parameters,

string[] functions)

{

return new Calculator().CalculateDerivative(

symbols, parameters, functions);

}

void IDerivativesCalculator.DoNothing()

{

return;

}

#endregion

}

}

12. Choose Build, Build Solution from the Visual Studio menu to ensure that there are no
programming errors.

Hosting the Service
Recall that the purpose of this exercise has been to use the Windows Communication
Foundation to provide a means by which other software can make use of the facilities
provided by the derivatives calculator class written at the outset. That requires making a
Windows Communication Foundation service by which the capabilities of the derivatives
calculator class are made available. Windows Communication Foundation services are
collections of endpoints, with each endpoint consisting of an address, a binding, and a
contract. At this point, the contract portion of an endpoint for accessing the facilities of
the derivatives calculator has been completed, the contract having been defined and
implemented.

The next step is to provide for hosting the service within an application domain.
Application domains are the containers that Microsoft’s Common Language Runtime
provides for .NET assemblies. So, in order to get an application domain to host a Windows
Communication Foundation service, some Windows process will need to initialize the
Common Language Runtime on behalf of the service. Any .NET application can be
programmed to do that. IIS can also be made to have Windows Communication
Foundation services hosted within application domains. To begin with, the derivatives
calculator service will be hosted in an application domain within a .NET application, and
then, later, within an application domain in IIS:

1. Choose File, New, Project from the Visual Studio menus, and add a C# console appli-
cation called Host to the derivatives calculator solution, as shown in Figure 2.8.

2. Select Project, Add Reference from Visual Studio menus, and, from the .NET tab of
the Add Reference dialog, add a reference to the System.ServiceModel assembly, as

43The Service Model

FIGURE 2.8 Adding a Host console application to the solution.

shown earlier in Figure 2.5. Add a reference to the System.Configuration assembly
in the same way.

3. Choose Project, Add Reference from the Visual Studio menus, and, from the Projects
tab, add a reference to the DerivativesCalculatorService project.

4. Modify the contents of the Program.cs class module in the Host project to match
Listing 2.2.

LISTING 2.2 A Host for a Service

using System;

using System.Collections.Generic;

using System.Configuration;

using System.ServiceModel;

using System.Text;

namespace DerivativesCalculator

{

public class Program

{

public static void Main(string[] args)

{

44 CHAPTER 2 The Fundamentals

Type serviceType = typeof(DerivativesCalculatorServiceType);

using(ServiceHost host = new ServiceHost(

serviceType))

{

host.Open();

Console.WriteLine(

“The derivatives calculator service is available.”

);

Console.ReadKey(true);

host.Close();

}

}

}

}

The key lines in that code are these:

using(ServiceHost host = new ServiceHost(

serviceType))

{

host.Open();

...

host.Close();

}

ServiceHost is the class provided by the Windows Communication Foundation
Service Model for programming .NET applications to host Windows Communication
Foundation endpoints within application domains. In Listing 2.2, a constructor of
the ServiceHost class is given information to identify the service type of the service
to be hosted.

5. Choose Build, Build Solution from the Visual Studio menu to ensure that there are
no programming errors.

Specifying an Address and a Binding
A Windows Communication Foundation endpoint consists of an address, a binding, and a
contract. A contract has been defined and implemented for the endpoint that will be used
to provide access to the derivatives calculator class. To complete the endpoint, it is neces-
sary to provide an address and a binding.

Specifying an address and a binding for an endpoint does not require writing any code,
and is customarily the work of an administrator rather than a programmer. Providing an
address and a binding can be done in code. However, that would require having to modify

45The Service Model

the code in order to change the address and the binding of the endpoint. A key innova-
tion of the Windows Communication Foundation is to separate how software is
programmed from how it communicates, which is what the binding specifies. So, gener-
ally, you avoid the option of specifying the addresses and bindings of endpoints in code,
and instead specifies them in configuring the host.

As indicated previously, an editing tool, the Service Configuration Editor, is provided, by
which administrators can do the configuration. The use of that tool is covered in detail in
Chapter 19, “Manageability.” Here, to facilitate a detailed understanding of the configura-
tion language, the configuration will be done by hand with the following steps:

1. Use the Project, Add Item menu to add an application configuration file named
app.config to the DerivativesCalculatorService project, as shown in Figure 2.9.

2. Modify the contents of the app.config file to look as shown in Listing 2.3.

LISTING 2.3 Adding an Address and a Binding

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<system.serviceModel>

<services>

<service name=

“DerivativesCalculator.DerivativesCalculatorServiceType”>

<host>

<baseAddresses>

<add baseAddress=

“http://localhost:8000/Derivatives/”/>

FIGURE 2.9 Adding an application configuration file.

46 CHAPTER 2 The Fundamentals

<add baseAddress=

“net.tcp://localhost:8010/Derivatives/”/>

</baseAddresses>

</host>

<endpoint

address=”Calculator”

binding=”basicHttpBinding”

contract=

“DerivativesCalculator.IDerivativesCalculator”

/>

</service>

</services>

</system.serviceModel>

</configuration>

2. Choose Build, Build Solution from Visual Studio.

In the XML in Listing 2.3,

<service name=

“DerivativesCalculator.DerivativesCalculatorServiceType”>

identifies the service type hosted by the Host application to which the configuration
applies. By default, the name by which the service type is identified in the configuration
file is matched to the name of a .NET type compiled into the host assembly. In this case,
it will be matched to the name of the DerivativesCalculatorServiceType class in the
DerivativesCalculator namespace. Why isn’t the service type identified by the name of
a type in the standard .NET format, which is called the assembly-qualified name format?
That format identifies a class not only by its name and namespace, but also by the display
name of the assembly containing the type. Those assembly display names consist of the
name of the assembly, the version number, a public key token, and a culture identifier.
So, the assembly-qualified name of a class might look like this (.NET Framework Class
Library 2006):

TopNamespace.SubNameSpace.ContainingClass+NestedClass, MyAssembly,

Version=1.3.0.0, Culture=neutral, PublicKeyToken=b17a5c561934e089

The assembly-qualified names for types are the standard mechanism for unambiguously
identifying a type to be loaded by reflection from any assembly that the Common
Language Runtime Loader can locate. Also, they are commonly used in .NET configuration
languages for identifying types. Nonetheless, assembly-qualified names are terribly
unwieldy to use, for they are not only long, difficult to remember, and easy to mistype,
but any errors in entering them also go undetected by the compiler. So, it is a blessing
that the Windows Communication Foundation has mostly eschewed their use in its
configuration language, and it is to be hoped that the designers of other .NET libraries will

47The Service Model

follow that example. Furthermore, although the names used to identify service types in
the Windows Communication Foundation configuration language are matched, by
default, to the names of types, they are really just strings that custom service hosts can
interpret in any fashion, not necessarily treating them as the names of .NET types.

This section of the configuration supplies base addresses for the service host in the form of
Uniform Resource Identifiers (URIs):

<host>

<baseAddresses>

<add baseAddress=

“http://localhost:8000/Derivatives/”/>

<add baseAddress=

“net.tcp://localhost:8010/Derivatives/”/>

</baseAddresses>

</host>

The addresses provided for the service’s endpoints will be addresses relative to these base
addresses. The term preceding the initial colon of a URI is called the scheme, so the
schemes of the two URIs provided as base addresses in this case are http and tcp. Each
base address provided for Windows Communication Foundation services must have a
different scheme.

The configuration defines a single endpoint at which the facilities exposed by the service
type will be available. The address, the binding, and the contract constituents of the
endpoint are all specified:

<endpoint

address=”Calculator”

binding=”basicHttpBinding”

contract=“DerivativesCalculator.IDerivativesCalculator”

/>

The contract constituent is identified by giving the name of the interface that defines the
service contract implemented by the service type. That interface is
IDerivativesCalculator.

The binding constituent of the endpoint is specified in this way:

binding=”basicHttpBinding”

To understand what that signifies, you must understand Windows Communication
Foundation bindings. A Windows Communication Foundation binding defines a combi-
nation of protocols for communicating with a service. Each protocol is represented by a
single binding element, and a binding is simply a collection of binding elements. Binding

48 CHAPTER 2 The Fundamentals

elements are the primary constituents provided by the Windows Communication
Foundation’s Channel Layer.

One special category of binding element consists of those that implement protocols for
transporting messages. One of those is the binding element that implements the
Hypertext Transport Protocol (HTTP). Another is the binding element that implements the
Transmission Control Protocol (TCP).

Another special category of binding element consists of those that implement protocols
for encoding messages. The Windows Communication Foundation provides three such
binding elements. One is for encoding SOAP messages as text. Another is for encoding
SOAP messages in a binary format. The third is for encoding SOAP messages in accordance
with the SOAP Message Transmission Optimization Mechanism (MTOM), which is suitable
for messages that incorporate large quantities of binary data.

Examples of Windows Communication Foundation binding elements that are neither
transport protocol binding elements nor message-encoding binding elements are the
binding elements that implement the WS-Security protocol and the WS-ReliableMessaging
protocol. One of the most important ways in which the capabilities of the Windows
Communication Foundation can be extended is with the addition of new binding
elements that might be provided by Microsoft, or its partners, or by any software devel-
oper. Later chapters show how to program custom binding elements, including custom
message-encoding binding elements and custom transport protocol binding elements.

A Windows Communication Foundation binding is a set of binding elements that must
include at least one transport protocol binding element and zero or more other binding
elements. If no message-encoding binding element is specified, the transport protocol
binding element will apply its default message-encoding protocol.

Bindings can be defined by selecting individual binding elements, either in code or in
configuration. However, the Windows Communication Foundation provides several
classes that represent common selections of binding elements. Those classes are referred to
as the predefined bindings.

One of the predefined bindings is the BasicHttpBinding. The BasicHttpBinding repre-
sents the combination of the HTTP transport binding element and the binding element
for encoding SOAP messages in text format. The BasicHttpBinding class configures those
binding elements in accordance with the WS-I Basic Profile Specification 1.1, which is a
combination of web service specifications chosen to promote interoperability among web
services and consumers of web services on different platforms.

All the current predefined bindings are listed in Table 2.1. They each derive, directly or
indirectly, from the class System.ServiceModel.Channels.Binding.

49The Service Model

TABLE 2.1 Windows Communication Foundation Predefined Bindings

Name Purpose

BasicHttpBinding Maximum interoperability through conformity
to the WS-BasicProfile 1.1

WSHttpBinding HTTP communication in conformity with WS-
* protocols

WS2007HttpBinding HTTP communication in conformity with WS-
* protocols, updated to reflect ratified stan-
dards

WSDualHttpBinding Duplex HTTP communication, by which the
receiver of an initial message will not reply
directly to the initial sender, but may trans-
mit any number of responses over a period

WSFederationBinding HTTP communication, in which access to
the resources of a service can be controlled
based on credentials issued by an explicitly
identified credential provider

WS2007FederationBinding HTTP communication, in which access to
the resources of a service can be controlled
based on credentials issued by an explicitly
identified credential provider, updated to
reflect ratified standards

NetTcpBinding Secure, reliable, high-performance communi-
cation between Windows Communication
Foundation software entities across a
network

NetNamedPipeBinding Secure, reliable, high-performance communi-
cation between Windows Communication
Foundation software entities on the same
machine

NetMsmqBinding Communication between Windows
Communication Foundation software entities
via Microsoft Message Queuing (MSMQ)

MsmqIntegrationBinding Communication between a Windows
Communication Foundation software entity
and another software entity via MSMQ

NetPeerTcpBinding Communication between Windows
Communication Foundation software entities
via Windows Peer-to-Peer Networking

WebHttpBinding HTTP Communication in conformity with
standard HTTP functionality, used with
RESTful architectural styles, POX (plain old
XML) and JSON (JavaScript Object Notation)
services

50 CHAPTER 2 The Fundamentals

This specification, in the configuration of the endpoint for the
DerivativesCalculatorService in Listing 2.3

binding=”basicHttpBinding”

identifies the BasicHttpBinding as the binding for that endpoint. The lowercase of the
initial letter, b, is in conformity with a convention of using camel-casing in configuration
files.

You can adjust the settings of a predefined binding by adding a binding configuration to
the definition of the endpoint like so:

<system.serviceModel>

<services>

<service type=

“DerivativesCalculator.DerivativesCalculatorServiceType”>

<endpoint

address=”Calculator”

binding=”basicHttpBinding”

bindingConfiguration=”bindingSettings”

contract=

“DerivativesCalculator.IDerivativesCalculator”

/>

</service>

</services>

<bindings>

<basicHttpBinding>

<binding name=”bindingSettings” messageEncoding=”Mtom”/>

</basicHttpBinding>

</bindings>

</system.serviceModel>

In this case, the settings for the predefined BasicHttpBinding are adjusted so as to use the
MTOM message-encoding binding element rather than the default text message-encoding
binding element.

The address specified for the endpoint in the configuration of the
DerivativesCalculatorService in Listing 2.3 is Calculator. That address for the endpoint is
relative to a base address. Which of the base addresses defined for a service is the base
address for the endpoint? It is determined based on the scheme of the base address and

51The Service Model

the transport protocol implemented by the transport-binding element of the endpoint, as
shown in Table 2.2. The transport protocol implemented by the transport-binding element
of the endpoint is the HTTP protocol, so, based on the information in Table 2.2, the base
address for the endpoint is http://localhost:8000/Derivatives/. Therefore, the absolute
address for the endpoint is http://localhost:8000/Derivatives/Calculator.

Anyone who would like to know the complete Windows Communication Foundation
configuration language should study the XML Schema file containing the definition of the
configuration language. Assuming that Visual Studio 2008 has been installed, that XML
Schema file should be \Program Files\Microsoft Visual Studio
9.0\Xml\Schemas\DotNetConfig.xsd, on the disc where Visual Studio 2008 is installed. If
that file seems to be missing, search for a file with the extension .xsd, containing the
expression system.serviceModel.

Deploying the Service
Now an address, a binding, and a contract have been provided for the Windows
Communication Foundation endpoint at which the facilities of the derivatives calculator
class will be made available. An application domain for hosting the service incorporating
that endpoint has also been provided, or, to be more precise, it will be provided as soon as
the Host console application is executed:

1. Execute that application now by right-clicking on the Host entry in the Visual
Studio Solution Explorer, and selecting Debug, Start New Instance from the context
menu. After a few seconds, the console application window of the host should
appear, as in Figure 2.10.

TABLE 2.2 Mapping of Base Address Schemes to Transport Protocols

Base Address Scheme Transport Protocol

http HTTP

net.tcp TCP

net.pipe Named Pipes

net.msmq MSMQ

52 CHAPTER 2 The Fundamentals

FIGURE 2.10 The Host console application running.

The Windows Communication Foundation has examined the code in the Host and
DerivativesCalculatorService assemblies, as well as the contents of the Host
assembly’s configuration file. The code and the configuration use the Windows
Communication Foundation’s Service Model to define a service for accessing the
derivatives calculator class. From that code and that configuration, the Windows
Communication Foundation generates and configures the service using the program-
ming framework constituted by the classes of the Channel Layer. In particular, it
employs the binding element classes used by the BasicProfileBinding class that
was selected as the binding for the service. Then the Windows Communication
Foundation loads the service into the default application domain of the Host
console application.

This is the step at which folks using the Vista operating system with a version of
Visual Studio 2005 that does not have the Vista compatibility update installed could
run into difficulty. They might encounter a namespace reservation exception, due to
their service being denied the right to use the address they have specified for its
endpoint. In that case, it will be necessary for them to grant permission to have a
service use the address to the NETWORK SERVICE user account. The official tool for
that purpose is Microsoft’s Httpcfg.exe. A more usable one is Steve Johnson’s HTTP
configuration utility, which, unlike the Microsoft tool and several others for the
same job, sports a graphical user interface. His utility is available at http://www.
StevesTechSpot.com. Using Visual Studio 2008, the autohosting capability will elimi-
nate the need for this step.

2. Confirm that the Windows Communication Foundation service for accessing the
capabilities of the derivatives calculator class is available by directing a browser to
the HTTP base address that was specified for the service in the host’s application
configuration file: http://localhost:8000/Derivatives/. A page like the one shown
in Figure 2.11 should be opened in the browser.

A similar page can be retrieved for any Windows Communications Foundation
service with a host that has been provided with a base address with the scheme
http. It is not necessary that the service have any endpoints with addresses relative
to that base address. Note, though, that the page cautions that metadata publishing

http://www.StevesTechSpot.com
http://www.StevesTechSpot.com

53The Service Model

FIGURE 2.11 Help page for a service.

for the service is disabled. Metadata publishing is disabled by default for the sake of
maximizing security so that nothing is made known about a service except what is
deliberately chosen by its developers and administrators. To deliberately opt to have
the service publish its metadata, it will be necessary to reconfigure it.

3. Choose Debug, Stop Debugging from the Visual Studio menus to terminate the
instance of the Host console application so that its configuration can be modified.

4. The configuration needs to be modified to include a behavior setting by which
metadata publishing is activated. Edit the app.config file in the Host project of the
DerivativesCalculator Solution so that its content matches that of Listing 2.4.

LISTING 2.4 Enabling Metadata Publication

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<system.serviceModel>

<services>

<service name=

“DerivativesCalculator.DerivativesCalculatorServiceType”

behaviorConfiguration=

“DerivativesCalculatorService”>

<host>

<baseAddresses>

<add baseAddress=

“http://localhost:8000/Derivatives/”/>

<add baseAddress=

54 CHAPTER 2 The Fundamentals

“net.tcp://localhost:8010/Derivatives/”/>

</baseAddresses>

</host>

<endpoint

address=”Calculator”

binding=”basicHttpBinding”

contract=

“DerivativesCalculator.IDerivativesCalculator”

/>

</service>

</services>

<behaviors>

<serviceBehaviors>

<behavior name=

“DerivativesCalculatorService”>

<serviceMetadata

httpGetEnabled=”true” />

</behavior>

</serviceBehaviors>

</behaviors>

</system.serviceModel>

</configuration>

The additions to the configuration of the Windows Communication Foundation
service signify that behaviors that apply to a service, rather than to one of its
endpoints, are being modified:

<behaviors>

<serviceBehaviors>

...

</serviceBehaviors>

</behaviors>

The modification is made to the service’s ServiceMetadata behavior, and the nature
of the modification is to have the service generate its metadata in response to a
request for it in the form of an HTTP GET:

<serviceMetadata httpGetEnabled=”true” />

To associate this behavior configuration with the DerivativesCalculator service, the
behavior is given a name

<behavior name=”DerivativesCalculatorService”>

...

</behavior>

and identified by that name as a behavior configuration that applies to the service:

<service name=

“DerivativesCalculator.DerivativesCalculatorServiceType”

55The Service Model

behaviorConfiguration=”DerivativesCalculatorService”>

...

</service>

5. Execute the Host console application again by right-clicking on the Host entry in
the Visual Studio Solution Explorer, and selecting Debug, Start New Instance from
the context menu.

6. Add the query wsdl to the URI at which the browser is pointing, by aiming the
browser at http://localhost:8000/Derivatives/?wsdl, as in Figure 2.12, and the WSDL
for the service should be displayed.

Using the Service

Now a Windows Communication Foundation service is available for accessing the facilities
of the derivatives calculator class. The Windows Communication Foundation can be
employed to construct a client for the derivatives calculator, a software entity that uses the
facilities of the derivatives calculator via the service. Different ways to build the client
with the Windows Communication Foundation are shown, as well as ways to build a
client in Java for the same Windows Communication Foundation service.

Using the Service with a Windows Communication Foundation Client
For the following steps, access to the tools provided with the Windows Communication
Foundation from a .NET command prompt will be required. Assuming a complete and

FIGURE 2.12 Examining the WSDL for a service.

56 CHAPTER 2 The Fundamentals

normal installation of the Microsoft Windows SDK for the .NET Framework 3.0, that
access is provided by a command prompt that should be accessible from the Windows
Start menu by choosing All Programs, Microsoft Windows SDK, CMD Shell. That
command prompt will be referred to as the SDK Command Prompt. From that prompt, the
Windows Communication Foundation’s Service Metadata Tool, SvcUtil.exe, will be used
to generate components of the client for the derivatives calculator as seen in the following
steps:

1. If the Host console application had been shut down, start an instance of it, as before.

2. Open the SDK Command Prompt.

3. Enter

:C:

and then

:cd c:\WCFHandsOn\Fundamentals\DerivativesCalculatorSolution

at that prompt to make the derivatives calculator solution folder the current directory.

4. Next, enter

:svcutil http://localhost:8000/Derivatives/ /out:Client.cs /config:app.con-
fig

The output should be as shown in Figure 2.13.

The command executes the Windows Communication Foundation’s Service
Metadata Tool, passing it a base address of a service that has the scheme http. In this
case, it is passed the base address of the derivatives calculator service constructed by
the earlier steps in this chapter. Given a base address of a Windows Communication
Foundation service, provided it is an address with the scheme http, and provided
metadata publishing via HTTP GET is enabled for the service, the Service Metadata
Tool can retrieve the WSDL for the service and other associated metadata. By default,
it also generates the C# code for a class that can serve as a proxy for communicating
with the service, as well as a .NET application-specific configuration file containing

FIGURE 2.13 Using the Service Metadata Tool.

57The Service Model

the definition of the service’s endpoints. The switches /out:Client.cs and
/config:app.config used in the foregoing command specify the names to be used
for the file containing the C# code and for the configuration file. In the next few
steps, the output from the Service Metadata Tool will be used to complete the client
for the derivatives calculator.

5. Choose Debug, Stop Debugging from the Visual Studio menus to terminate the
instance of the Host console application so that the solution can be modified.

6. Select File, New, Project from Visual Studio menus to add a C# Console Application
project called Client to the DerivativesCalculator solution.

7. Choose Project, Add Reference from the Visual Studio menus, and add a reference to
the Windows Communication Foundation’s System.ServiceModel .NET assembly to
the client project.

8. Select Project, Add Existing Item from the Visual Studio menus, and add the files
Client.cs and app.config, in the folder
C:\WCFHandsOn\Fundamentals\DerivativesCalculatorSolution, to the Client
project, as shown in Figure 2.14. Those are the files that should have been emitted
by the Service Metadata Tool.

9. Alter the code in the Program.cs file of the Client project of the derivatives calcula-
tor solution to use the class generated by the Service Metadata Tool as a proxy for
communicating with the derivatives calculator service. The code in the Program.cs
file should be the code in Listing 2.5.

LISTING 2.5 Using the Generated Client Class

using System;

FIGURE 2.14 Adding output from the Service Metadata Tool to a project.

58 CHAPTER 2 The Fundamentals

using System.Collections.Generic;

using System.Text;

namespace Client

{

public class Program

{

public static void Main(string[] args)

{

Console.WriteLine(“Press any key when the service is ready.”);

Console.ReadKey(true);

decimal result = 0;

using (DerivativesCalculatorProxy proxy =

new DerivativesCalculatorProxy(

“BasicHttpBinding_IDerivativesCalculator”))

{

proxy.Open();

result = proxy.CalculateDerivative(

new string[] { “MSFT” },

new decimal[] { 3 },

new string[] { });

proxy.Close();

}

Console.WriteLine(string.Format(“Result: {0}”, result));

Console.WriteLine(“Press any key to exit.”);

Console.ReadKey(true);

}

}

}

In Listing 2.5, the statement

DerivativesCalculatorProxy proxy =

new DerivativesCalculatorProxy(

“BasicHttpBinding_IDerivativesCalculator”))

creates an instance of the class generated by the Service Metadata Tool to serve as a
proxy for the derivatives calculator service. The string parameter passed to the
constructor of the class, BasicHttpBinding_IDerivativesCalculator, identifies which
definition of an endpoint in the application’s configuration file is the definition of
the endpoint with which this instance of the class is to communicate. Therefore, an
endpoint definition in the configuration file must be named accordingly.

59The Service Model

The app.config file added to the Client project in step 8 should contain this defini-
tion of an endpoint, with a specification of an address, a binding, and a contract:

<client>

<endpoint

address=”http://localhost:8000/Derivatives/Calculator”

binding=”basicHttpBinding”

bindingConfiguration=”BasicHttpBinding_IDerivativesCalculator”

contract=”IDerivativesCalculator”

name=”BasicHttpBinding_IDerivativesCalculator” />

</client>

Notice that the name provided for this endpoint definition matches the name that is
passed to the constructor of the proxy class.

The binding configuration named BasicHttpBinding_IDerivativesCalculator to
which this endpoint configuration refers, explicitly specifies the default values for
the properties of the predefined BasicHttpBinding:

<basicHttpBinding>

<binding

name=”BasicHttpBinding_IDerivativesCalculator”

closeTimeout=”00:01:00”

openTimeout=”00:01:00”

receiveTimeout=”00:10:00”

sendTimeout=”00:01:00”

allowCookies=”false”

bypassProxyOnLocal=”false”

hostNameComparisonMode=”StrongWildcard”

maxBufferSize=”65536”

maxBufferPoolSize=”524288”

maxReceivedMessageSize=”65536”

messageEncoding=”Text”

textEncoding=”utf-8”

transferMode=”Buffered”

useDefaultWebProxy=”true”>

<readerQuotas

maxDepth=”32”

maxStringContentLength=”8192”

maxArrayLength=”16384”

maxBytesPerRead=”4096”

maxNameTableCharCount=”16384” />

<security mode=”None”>

<transport

clientCredentialType=”None”

proxyCredentialType=”None”

realm=”” />

<message

60 CHAPTER 2 The Fundamentals

clientCredentialType=”UserName”

algorithmSuite=”Default” />

</security>

</binding>

</basicHttpBinding>

Those default values were left implicit in the service’s configuration of the endpoint.
The Service Metdata Tool diligently avoided the assumption that the configuration
of the binding that it derived from the metadata is the default configuration.

10. Prepare to have the client use the derivatives calculator by modifying the startup
project properties of the derivatives calculator solution as shown in Figure 2.15.

11. Choose Debug, Start Debugging from the Visual Studio menus.

12. When there is activity in the console for the Host application, enter a keystroke into
the console for the Client application. The client should obtain an estimate of the
value of a derivative from the derivatives calculator service, as shown in Figure 2.16.
Note that the value shown in the Client application console might vary from the value
shown in Figure 2.16 due to variations in prevailing market conditions over time.

13. In Visual Studio, choose Debug, Stop Debugging from the menus.

Different Ways of Coding Windows Communication Clients
In the preceding steps for building a client for the derivatives calculator service, the code
for the client was generated using the Windows Communication Foundation’s Service
Metadata Tool. The generated code consists of a version of the IDerivativesProxy inter-

FIGURE 2.15 Startup project properties of the derivatives calculator solution.

61The Service Model

FIGURE 2.16 Using the derivatives calculator via a service.

face, and the code of a proxy class for communicating with the derivatives calculator
service. The latter code is in Listing 2.6.

LISTING 2.6 Generated Proxy Class

[System.Diagnostics.DebuggerStepThroughAttribute()]

[System.CodeDom.Compiler.GeneratedCodeAttribute(

“System.ServiceModel”, “3.0.0.0”)]

public partial class DerivativesCalculatorClient :

System.ServiceModel.ClientBase<IDerivativesCalculator>,

IDerivativesCalculator

{

public DerivativesCalculatorClient()

{

}

public DerivativesCalculatorClient(

string endpointConfigurationName) :

base(endpointConfigurationName)

{

}

public DerivativesCalculatorClient(

string endpointConfigurationName,

string remoteAddress) :

base(endpointConfigurationName, remoteAddress)

{

}

