

Algorithms
C++in

T H I R D E D I T I O N

PART 5
GRAPH ALGORITHMS

Robert Sedgewick
Princeton University

Addison-Wesley

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to dis-
tinguish their products are claimed as trademarks. Where those des-
ignations appear in this book and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital
letters or all capitals.

The author and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and as-
sume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity
for special sales. For more information, please contact: Pearson Ed-
ucation Corporate Sales Division, 201 W. 103rd Street, Indianapolis,
IN 46290, (800) 428-5331, corpsales@pearsontechgroup.com.

Visit AW on the Web at www.awl.com/cseng/ .

Library of Congress Cataloging-in-Publication Data

Sedgewick, Robert, 1946 –
Algorithms in C++ / Robert Sedgewick. — 3d ed.

p. cm.
Includes bibliographical references and index.
Contents: v. 2, pt. 5. Graph algorithms
1. C++ (Computer program language) 2. Computer algorithms.

I. Title.
QA76.73.C15S38 2002
005.13’3—dc20 92-901

CIP

Copyright c© 2002 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

ISBN 0-201-36118-3

Text printed on recycled paper
7 8 9 10 – DOH – 070605
Seventh printing, February 2006

www.awl.com/cseng/

Preface

GRAPHS AND GRAPH algorithms are pervasive in modern com-
puting applications. This book describes the most important

known methods for solving the graph-processing problems that arise
in practice. Its primary aim is to make these methods and the basic
principles behind them accessible to the growing number of people in
need of knowing them. The material is developed from first principles,
starting with basic information and working through classical methods
up through modern techniques that are still under development. Care-
fully chosen examples, detailed figures, and complete implementations
supplement thorough descriptions of algorithms and applications.

Algorithms

This book is the second of three volumes that are intended to survey
the most important computer algorithms in use today. The first volume
(Parts 1–4) covers fundamental concepts (Part 1), data structures (Part
2), sorting algorithms (Part 3), and searching algorithms (Part 4);
this volume (Part 5) covers graphs and graph algorithms; and the
(yet to be published) third volume (Parts 6–8) covers strings (Part
6), computational geometry (Part 7), and advanced algorithms and
applications (Part 8).

The books are useful as texts early in the computer science cur-
riculum, after students have acquired basic programming skills and
familiarity with computer systems, but before they have taken spe-
cialized courses in advanced areas of computer science or computer
applications. The books also are useful for self-study or as a refer-
ence for people engaged in the development of computer systems or
applications programs because they contain implementations of useful
algorithms and detailed information on these algorithms’ performance
characteristics. The broad perspective taken makes the series an ap-
propriate introduction to the field.

P R E F A C E

Together the three volumes comprise the Third Edition of a book
that has been widely used by students and programmers around the
world for many years. I have completely rewritten the text for this
edition, and I have added thousands of new exercises, hundreds of
new figures, dozens of new programs, and detailed commentary on all
the figures and programs. This new material provides both coverage of
new topics and fuller explanations of many of the classic algorithms. A
new emphasis on abstract data types throughout the books makes the
programs more broadly useful and relevant in modern object-oriented
programming environments. People who have read previous editions
will find a wealth of new information throughout; all readers will
find a wealth of pedagogical material that provides effective access to
essential concepts.

These books are not just for programmers and computer science
students. Everyone who uses a computer wants it to run faster or to
solve larger problems. The algorithms that we consider represent a
body of knowledge developed during the last 50 years that is the basis
for the efficient use of the computer for a broad variety of applications.
From N -body simulation problems in physics to genetic-sequencing
problems in molecular biology, the basic methods described here have
become essential in scientific research; and from database systems to
Internet search engines, they have become essential parts of modern
software systems. As the scope of computer applications becomes more
widespread, so grows the impact of basic algorithms, particularly the
fundamental graph algorithms covered in this volume. The goal of this
book is to serve as a resource so that students and professionals can
know and make intelligent use of graph algorithms as the need arises
in whatever computer application they might undertake.

Scope

This book, Algorithms in C++, Third Edition, Part 5: Graph Algo-
rithms, contains six chapters that cover graph properties and types,
graph search, directed graphs, minimal spanning trees, shortest paths,
and networks. The descriptions here are intended to give readers an
understanding of the basic properties of as broad a range of funda-
mental graph algorithms as possible.

iv

You will most appreciate the material here if you have had a
course covering basic principles of algorithm design and analysis and
programming experience in a high-level language such as C++, Java, or
C. Algorithms in C++, Third Edition, Parts 1–4 is certainly adequate
preparation. This volume assumes basic knowledge about arrays,
linked lists, and ADT design, and makes use of priority-queue, symbol-
table, and union-find ADTs—all of which are described in detail in
Parts 1–4 (and in many other introductory texts on algorithms and
data structures).

Basic properties of graphs and graph algorithms are developed
from first principles, but full understanding often can lead to deep and
difficult mathematics. Although the discussion of advanced mathe-
matical concepts is brief, general, and descriptive, you certainly need a
higher level of mathematical maturity to appreciate graph algorithms
than you do for the topics in Parts 1–4. Still, readers at various levels of
mathematical maturity will be able to profit from this book. The topic
dictates this approach: some elementary graph algorithms that should
be understood and used by everyone differ only slightly from some
advanced algorithms that are not understood by anyone. The primary
intent here is to place important algorithms in context with other meth-
ods throughout the book, not to teach all of the mathematical material.
But the rigorous treatment demanded by good mathematics often leads
us to good programs, so I have tried to provide a balance between the
formal treatment favored by theoreticians and the coverage needed by
practitioners, without sacrificing rigor.

Use in the Curriculum

There is a great deal of flexibility in how the material here can be
taught, depending on the taste of the instructor and the preparation
of the students. The algorithms described have found widespread
use for years, and represent an essential body of knowledge for both
the practicing programmer and the computer science student. There
is sufficient coverage of basic material for the book to be used in a
course on data structures and algorithms, and there is sufficient detail
and coverage of advanced material for the book to be used for a
course on graph algorithms. Some instructors may wish to emphasize

v

P R E F A C E

implementations and practical concerns; others may wish to emphasize
analysis and theoretical concepts.

For a more comprehensive course, this book is also available in
a special bundle with Parts 1–4; thereby instructors can cover funda-
mentals, data structures, sorting, searching, and graph algorithms in
one consistent style. A set of slide masters for use in lectures, sam-
ple programming assignments, interactive exercises for students, and
other course materials may be found by accessing the book’s home
page.

The exercises—nearly all of which are new to this edition—fall
into several types. Some are intended to test understanding of material
in the text, and simply ask readers to work through an example or
to apply concepts described in the text. Others involve implementing
and putting together the algorithms, or running empirical studies to
compare variants of the algorithms and to learn their properties. Still
other exercises are a repository for important information at a level of
detail that is not appropriate for the text. Reading and thinking about
the exercises will pay dividends for every reader.

Algorithms of Practical Use

Anyone wanting to use a computer more effectively can use this book
for reference or for self-study. People with programming experience
can find information on specific topics throughout the book. To a large
extent, you can read the individual chapters in the book independently
of the others, although, in some cases, algorithms in one chapter make
use of methods from a previous chapter.

The orientation of the book is to study algorithms likely to be of
practical use. The book provides information about the tools of the
trade to the point that readers can confidently implement, debug, and
put to work algorithms to solve a problem or to provide functionality
in an application. Full implementations of the methods discussed are
included, as are descriptions of the operations of these programs on
a consistent set of examples. Because we work with real code, rather
than write pseudo-code, the programs can be put to practical use
quickly. Program listings are available from the book’s home page.

Indeed, one practical application of the algorithms has been to
produce the hundreds of figures throughout the book. Many algo-

vi

rithms are brought to light on an intuitive level through the visual
dimension provided by these figures.

Characteristics of the algorithms and of the situations in which
they might be useful are discussed in detail. Connections to the analysis
of algorithms and theoretical computer science are developed in con-
text. When appropriate, empirical and analytic results are presented
to illustrate why certain algorithms are preferred. When interesting,
the relationship of the practical algorithms being discussed to purely
theoretical results is described. Specific information on performance
characteristics of algorithms and implementations is synthesized, en-
capsulated, and discussed throughout the book.

Programming Language

The programming language used for all of the implementations is C++.
The programs use a wide range of standard C++ idioms, and the text
includes concise descriptions of each construct.

Chris Van Wyk and I developed a style of C++ programming
based on classes, templates, and overloaded operators that we feel
is an effective way to present the algorithms and data structures as
real programs. We have striven for elegant, compact, efficient, and
portable implementations. The style is consistent whenever possible,
so that programs that are similar look similar.

A goal of this book is to present the algorithms in as simple and
direct a form as possible. For many of the algorithms, the similari-
ties remain regardless of which language is used: Dijkstra’s algorithm
(to pick one prominent example) is Dijkstra’s algorithm, whether ex-
pressed in Algol-60, Basic, Fortran, Smalltalk, Ada, Pascal, C, C++,
Modula-3, PostScript, Java, or any of the countless other programming
languages and environments in which it has proved to be an effective
graph-processing method. On the one hand, our code is informed by
experience with implementing algorithms in these and numerous other
languages (a C version of this book is also available, and a Java version
will appear soon); on the other hand, some of the properties of some of
these languages are informed by their designers’ experience with some
of the algorithms and data structures that we consider in this book.
In the end, we feel that the code presented in the book both precisely
defines the algorithms and is useful in practice.

vii

P R E F A C E

Acknowledgments

Many people gave me helpful feedback on earlier versions of this
book. In particular, thousands of students at Princeton and Brown
have suffered through preliminary drafts over the years. Special thanks
are due to Trina Avery and Tom Freeman for their help in producing
the first edition; to Janet Incerpi for her creativity and ingenuity in
persuading our early and primitive digital computerized typesetting
hardware and software to produce the first edition; to Marc Brown for
his part in the algorithm visualization research that was the genesis of
the figures in the book; to Dave Hanson and Andrew Appel for their
willingness to answer my questions about programming languages;
and to Kevin Wayne, for patiently answering my basic questions about
networks. Kevin urged me to include the network simplex algorithm
in this book, but I was not persuaded that it would be possible to
do so until I saw a presentation by Ulrich Lauther at Dagstuhl of
the ideas on which the implementations in Chapter 22 are based. I
would also like to thank the many readers who have provided me with
detailed comments about various editions, including Guy Almes, Jon
Bentley, Marc Brown, Jay Gischer, Allan Heydon, Kennedy Lemke, Udi
Manber, Dana Richards, John Reif, M. Rosenfeld, Stephen Seidman,
Michael Quinn, and William Ward.

To produce this new edition, I have had the pleasure of working
with Peter Gordon and Helen Goldstein at Addison-Wesley, who pa-
tiently shepherded this project as it has evolved from a standard update
to a massive rewrite. It has also been my pleasure to work with several
other members of the professional staff at Addison-Wesley. The na-
ture of this project made the book a somewhat unusual challenge for
many of them, and I much appreciate their forbearance. In particular,
Marilyn Rash did an outstanding job managing the book’s production
within a very tightly compressed schedule.

I have gained three new mentors in writing this book, and partic-
ularly want to express my appreciation to them. First, Steve Summit
carefully checked early versions of the manuscript on a technical level,
and provided me with literally thousands of detailed comments, partic-
ularly on the programs. Steve clearly understood my goal of providing
elegant, efficient, and effective implementations, and his comments not
only helped me to provide a measure of consistency across the imple-

viii

mentations, but also helped me to improve many of them substantially.
Second, Lyn Dupré also provided me with thousands of detailed com-
ments on the manuscript, which were invaluable in helping me not only
to correct and avoid grammatical errors, but also—more important—
to find a consistent and coherent writing style that helps bind together
the daunting mass of technical material here. Third, Chris Van Wyk
implemented and debugged all my algorithms in C++, answered nu-
merous questions about C++, helped to develop an appropriate C++
programming style, and carefully read the manuscript twice. Chris
also patiently stood by as I took apart many of his C++ programs and
then, as I learned more and more about C++ from him, had to put
them back together much as he had written them. I am extremely
grateful for the opportunity to learn from Steve, Lyn, and Chris—their
input was vital in the development of this book.

Much of what I have written here I have learned from the teaching
and writings of Don Knuth, my advisor at Stanford. Although Don had
no direct influence on this work, his presence may be felt in the book,
for it was he who put the study of algorithms on the scientific footing
that makes a work such as this possible. My friend and colleague
Philippe Flajolet, who has been a major force in the development of
the analysis of algorithms as a mature research area, has had a similar
influence on this work.

I am deeply thankful for the support of Princeton University,
Brown University, and the Institut National de Recherce en Informa-
tique et Automatique (INRIA), where I did most of the work on the
books; and of the Institute for Defense Analyses and the Xerox Palo
Alto Research Center, where I did some work on the books while
visiting. Many parts of these books are dependent on research that
has been generously supported by the National Science Foundation
and the Office of Naval Research. Finally, I thank Bill Bowen, Aaron
Lemonick, and Neil Rudenstine for their support in building an aca-
demic environment at Princeton in which I was able to prepare this
book, despite my numerous other responsibilities.

Robert Sedgewick
Marly-le-Roi, France, 1983
Princeton, New Jersey, 1990
Jamestown, Rhode Island, 2001

ix

P R E F A C E

C++ Consultant’s Preface
Bob Sedgewick and I wrote many versions of most of these programs
in our quest to implement graph algorithms in clear and natural pro-
grams. Because there are so many kinds of graphs and so many differ-
ent questions to ask about them, we agreed early on not to pursue a
single class scheme that would work across the whole book. Remark-
ably, we ended up using only two schemes: a simple one in Chapters
17 through 19, where the edges of a graph are either present or absent;
and an approach similar to STL containers in Chapters 20 through 22,
where more information is associated with edges.

C++ classes offer many advantages for presenting graph algo-
rithms. We use classes to collect useful generic functions on graphs (like
input/output). In Chapter 18, we use classes to factor out the opera-
tions common to several different graph-search methods. Throughout
the book, we use an iterator class on the edges emanating from a vertex
so that the programs work no matter how the graph is stored. Most
important, we package graph algorithms in classes whose constructor
processes the graph and whose member functions give us access to
the answers discovered. This organization allows graph algorithms to
readily use other graph algorithms as subroutines—see, for example,
Program 19.13 (transitive closure via strong components), Program
20.8 (Kruskal’s algorithm for minimum spanning tree), Program 21.4
(all shortest paths via Dijkstra’s algorithm), Program 21.6 (longest
path in a directed acyclic graph). This trend culminates in Chapter 22,
where most of the programs are built at a higher level of abstraction,
using classes that are defined earlier in the book.

For consistency with Algorithms in C++, Third Edition, Parts 1–
4 our programs rely on the stack and queue classes defined there, and
we write explicit pointer operations on singly-linked lists in two low-
level implementations. We have adopted two stylistic changes from
Parts 1–4: Constructors use initialization rather than assignment and
we use STL vectors instead of arrays. Here is a summary of the STL
vector functions we use in our programs:

• The default constructor creates an empty vector.
• The constructor vec(n) creates a vector of n elements.
• The constructor vec(n, x) creates a vector of n elements each

initialized to the value x.

x

• Member function vec.assign(n, x) makes vec a vector of n
elements each initialized to the value x.

• Member function vec.resize(n) grows or shrinks vec to have
capacity n.

• Member function vec.resize(n, x) grows or shrinks vec to
have capacity n and initializes any new elements to the value x.

The STL also defines the assignment operator, copy constructor, and
destructor needed to make vectors first-class objects.

Before I started working on these programs, I had read informal
descriptions and pseudocode for many of the algorithms, but had only
implemented a few of them. I have found it very instructive to work
out the details needed to turn algorithms into working programs, and
fun to watch them in action. I hope that reading and running the
programs in this book will also help you to understand the algorithms
better.

Thanks: to Jon Bentley, Brian Kernighan, and Tom Szymanski,
from whom I learned much of what I know about programming;
to Debbie Lafferty, who asked whether I would be interested in this
project; and to Drew University, Lucent Technologies, and Princeton
University, for institutional support.

Christopher Van Wyk
Chatham, New Jersey, 2001

xi

This page intentionally left blank

To Adam, Andrew, Brett, Robbie,
and especially Linda

This page intentionally left blank

Notes on Exercises
Classifying exercises is an activity fraught with peril, because readers
of a book such as this come to the material with various levels of
knowledge and experience. Nonetheless, guidance is appropriate, so
many of the exercises carry one of four annotations, to help you decide
how to approach them.

Exercises that test your understanding of the material are marked
with an open triangle, as follows:

! 18.34 Consider the graph

3-7 1-4 7-8 0-5 5-2 3-8 2-9 0-6 4-9 2-6 6-4.

Draw its DFS tree and use the tree to find the graph’s bridges and
edge-connected components.

Most often, such exercises relate directly to examples in the text. They
should present no special difficulty, but working them might teach you
a fact or concept that may have eluded you when you read the text.

Exercises that add new and thought-provoking information to the
material are marked with an open circle, as follows:

◦ 19.106 Write a program that counts the number of different
possible results of topologically sorting a given DAG.

Such exercises encourage you to think about an important concept
that is related to the material in the text, or to answer a question that
may have occurred to you when you read the text. You may find it
worthwhile to read these exercises, even if you do not have the time to
work them through.

Exercises that are intended to challenge you are marked with a black
dot, as follows:

• 20.73 Describe how you would find the MST of a graph so large
that only V edges can fit into main memory at once.

Such exercises may require a substantial amount of time to complete,
depending on your experience. Generally, the most productive ap-
proach is to work on them in a few different sittings.

A few exercises that are extremely difficult (by comparison with
most others) are marked with two black dots, as follows:

•• 20.37 Develop a reasonable generator for random graphs with V
vertices and E edges such that the running time of the heap-based
PFS implementation of Dijkstra’s algorithm is superlinear.

xv

These exercises are similar to questions that might be addressed in the
research literature, but the material in the book may prepare you to
enjoy trying to solve them (and perhaps succeeding).

The annotations are intended to be neutral with respect to your
programming and mathematical ability. Those exercises that require
expertise in programming or in mathematical analysis are self-evident.
All readers are encouraged to test their understanding of the algorithms
by implementing them. Still, an exercise such as this one is straight-
forward for a practicing programmer or a student in a programming
course, but may require substantial work for someone who has not
recently programmed:

• 17.74 Write a program that generates V random points in the
plane, then builds a network with edges (in both directions) con-
necting all pairs of points within a given distance d of one another
(see Program 3.20), setting each edge’s weight to the distance be-
tween the two points that it connects. Determine how to set d so
that the expected number of edges is E.

In a similar vein, all readers are encouraged to strive to appreciate
the analytic underpinnings of our knowledge about properties of al-
gorithms. Still, an exercise such as this one is straightforward for a
scientist or a student in a discrete mathematics course, but may require
substantial work for someone who has not recently done mathematical
analysis:

◦ 19.5 How many digraphs correspond to each undirected graph
with V vertices and E edges?

There are far too many exercises for you to read and assimilate them
all; my hope is that there are enough exercises here to stimulate you
to strive to come to a broader understanding of the topics that interest
you than you could glean by simply reading the text.

xvi

Contents

Graph Algorithms

Chapter 17. Graph Properties and Types 3
17.1 Glossary · 7

17.2 Graph ADT · 16

17.3 Adjacency-Matrix Representation · 25

17.4 Adjacency-Lists Representation · 31

17.5 Variations, Extensions, and Costs · 36

17.6 Graph Generators · 46

17.7 Simple, Euler, and Hamilton Paths · 56

17.8 Graph-Processing Problems · 70

Chapter 18. Graph Search 81
18.1 Exploring a Maze · 82

18.2 Depth-First Search · 87

18.3 Graph-Search ADT Functions · 91

18.4 Properties of DFS Forests · 98

T A B L E O F C O N T E N T S

18.5 DFS Algorithms · 105

18.6 Separability and Biconnectivity · 112

18.7 Breadth-First Search · 121

18.8 Generalized Graph Search · 131

18.9 Analysis of Graph Algorithms · 140

Chapter 19. Digraphs and DAGs 149

19.1 Glossary and Rules of the Game · 152

19.2 Anatomy of DFS in Digraphs · 160

19.3 Reachability and Transitive Closure · 169

19.4 Equivalence Relations and Partial Orders · 182

19.5 DAGs · 186

19.6 Topological Sorting · 191

19.7 Reachability in DAGs · 201

19.8 Strong Components in Digraphs · 205

19.9 Transitive Closure Revisited · 216

19.10 Perspective · 221

Chapter 20. Minimum Spanning Trees 227

20.1 Representations · 230

20.2 Underlying Principles of MST Algorithms · 240

20.3 Prim’s Algorithm and Priority-First Search · 247

20.4 Kruskal’s Algorithm · 258

20.5 Boruvka’s Algorithm · 264

20.6 Comparisons and Improvements · 267

20.7 Euclidean MST · 274

xviii

Chapter 21. Shortest Paths 277
21.1 Underlying Principles · 285

21.2 Dijkstra’s Algorithm · 293

21.3 All-Pairs Shortest Paths · 304

21.4 Shortest Paths in Acyclic Networks · 313

21.5 Euclidean Networks · 322

21.6 Reduction · 328

21.7 Negative Weights · 345

21.8 Perspective · 363

Chapter 22. Network Flow 367
22.1 Flow Networks · 373

22.2 Augmenting-Path Maxflow Algorithms · 382

22.3 Preflow-Push Maxflow Algorithms · 410

22.4 Maxflow Reductions · 425

22.5 Mincost Flows · 443

22.6 Network Simplex Algorithm · 453

22.7 Mincost-Flow Reductions · 472

22.8 Perspective · 482

References for Part Five 487

Index 489

This page intentionally left blank

P A R T
F I V E

Graph Algorithms

This page intentionally left blank

C H A P T E R S E V E N T E E N

Graph Properties and Types

M ANY COMPUTATIONAL APPLICATIONS naturally involve
not just a set of items, but also a set of connections between

pairs of those items. The relationships implied by these connections
lead immediately to a host of natural questions: Is there a way to get
from one item to another by following the connections? How many
other items can be reached from a given item? What is the best way to
get from this item to this other item?

To model such situations, we use abstract objects called graphs.
In this chapter, we examine basic properties of graphs in detail, setting
the stage for us to study a variety of algorithms that are useful for
answering questions of the type just posed. These algorithms make
effective use of many of the computational tools that we considered in
Parts 1 through 4. They also serve as the basis for attacking problems in
important applications whose solution we could not even contemplate
without good algorithmic technology.

Graph theory, a major branch of combinatorial mathematics,
has been studied intensively for hundreds of years. Many important
and useful properties of graphs have been proved, yet many difficult
problems remain unresolved. In this book, while recognizing that there
is much still to be learned, we draw from this vast body of knowledge
about graphs what we need to understand and use a broad variety of
useful and fundamental algorithms.

Like so many of the other problem domains that we have studied,
the algorithmic investigation of graphs is relatively recent. Although
a few of the fundamental algorithms are old, the majority of the in-
teresting ones have been discovered within the last few decades. Even

3

4 C H A P T E R S E V E N T E E N

the simplest graph algorithms lead to useful computer programs, and
the nontrivial algorithms that we examine are among the most elegant
and interesting algorithms known.

To illustrate the diversity of applications that involve graph pro-
cessing, we begin our exploration of algorithms in this fertile area by
considering several examples.

Maps A person who is planning a trip may need to answer
questions such as, “What is the least expensive way to get from Prince-
ton to San Jose?” A person more interested in time than in money may
need to know the answer to the question "What is the fastest way
to get from Princeton to San Jose?" To answer such questions, we
process information about connections (travel routes) between items
(towns and cities).

Hypertexts When we browse the Web, we encounter docu-
ments that contain references (links) to other documents, and we move
from document to document by clicking on the links. The entire web
is a graph, where the items are documents and the connections are
links. Graph-processing algorithms are essential components of the
search engines that help us locate information on the web.

Circuits An electric circuit comprises elements such as transis-
tors, resistors, and capacitors that are intricately wired together. We
use computers to control machines that make circuits, and to check
that the circuits perform desired functions. We need to answer simple
questions such as, “Is a short-circuit present?” as well as complicated
questions such as, “Can we lay out this circuit on a chip without mak-
ing any wires cross?” In this case, the answer to the first question
depends on only the properties of the connections (wires), whereas the
answer to the second question requires detailed information about the
wires, the items that those wires connect, and the physical constraints
of the chip.

Schedules A manufacturing process requires a variety of tasks
to be performed, under a set of constraints that specifies that certain
tasks cannot be started until certain other tasks have been completed.
We represent the constraints as connections between the tasks (items),
and we are faced with a classical scheduling problem: How do we
schedule the tasks such that we both respect the given constraints and
complete the whole process in the least amount of time?

G R A P H P R O P E R T I E S A N D T Y P E S 5

Transactions A telephone company maintains a database of
telephone-call traffic. Here the connections represent telephone calls.
We are interested in knowing about the nature of the interconnection
structure because we want to lay wires and build switches that can
handle the traffic efficiently. As another example, a financial institution
tracks buy/sell orders in a market. A connection in this situation
represents the transfer of cash between two customers. Knowledge of
the nature of the connection structure in this instance may enhance
our understanding of the nature of the market.

Matching Students apply for positions in selective institutions
such as social clubs, universities, or medical schools. Items correspond
to the students and the institutions; connections correspond to the
applications. We want to discover methods for matching interested
students with available positions.

Networks A computer network consists of interconnected sites
that send, forward, and receive messages of various types. We are
interested not just in knowing that it is possible to get a message from
every site to every other site, but also in maintaining this connectivity
for all pairs of sites as the network changes. For example, we might
wish to check a given network to be sure that no small set of sites or
connections is so critical that losing it would disconnect any remaining
pair of sites.

Program structure A compiler builds graphs to represent the
call structure of a large software system. The items are the various
functions or modules that comprise the system; connections are asso-
ciated either with the possibility that one function might call another
(static analysis) or with actual calls while the system is in operation
(dynamic analysis). We need to analyze the graph to determine how
best to allocate resources to the program most efficiently.

These examples indicate the range of applications for which
graphs are the appropriate abstraction and also the range of computa-
tional problems that we might encounter when we work with graphs.
Such problems will be our focus in this book. In many of these applica-
tions as they are encountered in practice, the volume of data involved
is truly huge, and efficient algorithms make the difference between
whether or not a solution is at all feasible.

We have already encountered graphs, briefly, in Part 1. Indeed,
the first algorithms that we considered in detail, the union-find algo-

6 C H A P T E R S E V E N T E E N

rithms in Chapter 1, are prime examples of graph algorithms. We
also used graphs in Chapter 3 as an illustration of applications of two-
dimensional arrays and linked lists, and in Chapter 5 to illustrate the
relationship between recursive programs and fundamental data struc-
tures. Any linked data structure is a representation of a graph, and
some familiar algorithms for processing trees and other linked struc-
tures are special cases of graph algorithms. The purpose of this chapter
is to provide a context for developing an understanding of graph al-
gorithms ranging from the simple ones in Part 1 to the sophisticated
ones in Chapters 18 through 22.

As always, we are interested in knowing which are the most
efficient algorithms that solve a particular problem. The study of the
performance characteristics of graph algorithms is challenging because

• The cost of an algorithm depends not just on properties of the
set of items, but also on numerous properties of the set of con-
nections (and global properties of the graph that are implied by
the connections).

• Accurate models of the types of graphs that we might face are
difficult to develop.

We often work with worst-case performance bounds on graph algo-
rithms, even though they may represent pessimistic estimates on actual
performance in many instances. Fortunately, as we shall see, a number
of algorithms are optimal and involve little unnecessary work. Other
algorithms consume the same resources on all graphs of a given size.
We can predict accurately how such algorithms will perform in specific
situations. When we cannot make such accurate predictions, we need
to pay particular attention to properties of the various types of graphs
that we might expect in practical applications and must assess how
these properties might affect the performance of our algorithms.

We begin by working through the basic definitions of graphs
and the properties of graphs, examining the standard nomenclature
that is used to describe them. Following that, we define the basic
ADT (abstract data type) interfaces that we use to study graph algo-
rithms and the two most important data structures for representing
graphs—the adjacency-matrix representation and the adjacency-lists
representation, and various approaches to implementing basic ADT
functions. Then, we consider client programs that can generate ran-
dom graphs, which we can use to test our algorithms and to learn

G R A P H P R O P E R T I E S A N D T Y P E S §17.1 7

properties of graphs. All this material provides a basis for us to intro-
duce graph-processing algorithms that solve three classical problems
related to finding paths in graphs, which illustrate that the difficulty
of graph problems can differ dramatically even when they might seem
similar. We conclude the chapter with a review of the most important
graph-processing problems that we consider in this book, placing them
in context according to the difficulty of solving them.

17.1 Glossary

A substantial amount of nomenclature is associated with graphs. Most
of the terms have straightforward definitions, and, for reference, it is
convenient to consider them in one place: here. We have already used
some of these concepts when considering basic algorithms in Part 1;
others of them will not become relevant until we address associated
advanced algorithms in Chapters 18 through 22.

Definition 17.1 A graph is a set of vertices and a set of edges that
connect pairs of distinct vertices (with at most one edge connecting
any pair of vertices).

We use the names 0 through V-1 for the vertices in a V -vertex graph.
The main reason that we choose this system is that we can access
quickly information corresponding to each vertex, using vector index-
ing. In Section 17.6, we consider a program that uses a symbol table
to establish a 1–1 mapping to associate V arbitrary vertex names with
the V integers between 0 and V − 1. With that program in hand, we
can use indices as vertex names (for notational convenience) without
loss of generality. We sometimes assume that the set of vertices is
defined implicitly, by taking the set of edges to define the graph and
considering only those vertices that are included in at least one edge.
To avoid cumbersome usage such as “the ten-vertex graph with the
following set of edges,” we do not explicitly mention the number of
vertices when that number is clear from the context. By convention,
we always denote the number of vertices in a given graph by V , and
denote the number of edges by E.

We adopt as standard this definition of a graph (which we first
encountered in Chapter 5), but note that it embodies two technical
simplifications. First, it disallows duplicate edges (mathematicians

8 §17.1 C H A P T E R S E V E N T E E N

sometimes refer to such edges as parallel edges, and a graph that can
contain them as a multigraph). Second, it disallows edges that connect
vertices to themselves; such edges are called self-loops. Graphs that
have no parallel edges or self-loops are sometimes referred to as simple
graphs.

We use simple graphs in our formal definitions because it is easier
to express their basic properties and because parallel edges and self-
loops are not needed in many applications. For example, we can
bound the number of edges in a simple graph with a given number of
vertices.

Property 17.1 A graph with V vertices has at most V (V −1)/2 edges.

Proof : The total of V 2 possible pairs of vertices includes V self-loops
and accounts twice for each edge between distinct vertices, so the
number of edges is at most (V 2 − V)/2 = V (V − 1)/2.

No such bound holds if we allow parallel edges: a graph that is not
simple might consist of two vertices and billions of edges connecting
them (or even a single vertex and billions of self-loops).

For some applications, we might consider the elimination of par-
allel edges and self-loops to be a data-processing problem that our
implementations must address. For other applications, ensuring that
a given set of edges represents a simple graph may not be worth the
trouble. Throughout the book, whenever it is more convenient to ad-
dress an application or to develop an algorithm by using an extended
definition that includes parallel edges or self-loops, we shall do so.
For example, self-loops play a critical role in a classical algorithm that
we will examine in Section 17.4; and parallel edges are common in
the applications that we address in Chapter 22. Generally, it is clear
from the context whether we intend the term “graph” to mean “simple
graph” or “multigraph” or “multigraph with self-loops.”

Mathematicians use the words vertex and node interchangeably,
but we generally use vertex when discussing graphs and node when
discussing representations—for example, in C++ data structures. We
normally assume that a vertex can have a name and can carry other
associated information. Similarly, the words arc, edge, and link are all
widely used by mathematicians to describe the abstraction embodying
a connection between two vertices, but we consistently use edge when
discussing graphs and link when discussing C++ data structures.

G R A P H P R O P E R T I E S A N D T Y P E S §17.1 9

0

1 2

3
4

5

6 7 8

9 10

11 12

0
1

2

3

45

6

7

8 9 10

11

12

Figure 17.1
Three different representa-

tions of the same graph

0-5 5-4 7-8
4-3 0-2 9-11
0-1 11-12 5-3

9-12 9-10
6-4 0-6

A graph is defined by its vertices
and its edges, not by the way that
we choose to draw it. These two
drawings depict the same graph,
as does the list of edges (bottom),
given the additional information
that the graph has 13 vertices la-
beled 0 through 12.

When there is an edge connecting two vertices, we say that the
vertices are adjacent to one another and that the edge is incident on
both vertices. The degree of a vertex is the number of edges incident
on it. We use the notation v-w to represent an edge that connects v
and w; the notation w-v is an alternative way to represent the same
edge.

A subgraph is a subset of a graph’s edges (and associated vertices)
that constitutes a graph. Many computational tasks involve identifying
subgraphs of various types. If we identify a subset of a graph’s vertices,
we call that subset, together with all edges that connect two of its
members, the induced subgraph associated with those vertices.

We can draw a graph by marking points for the vertices and draw-
ing lines connecting them for the edges. A drawing gives us intuition
about the structure of the graph; but this intuition can be misleading,
because the graph is defined independently of the representation. For
example, the two drawings in Figure 17.1 and the list of edges repre-
sent the same graph, because the graph is only its (unordered) set of
vertices and its (unordered) set of edges (pairs of vertices)—nothing
more. Although it suffices to consider a graph simply as a set of edges,
we examine other representations that are particularly suitable as the
basis for graph data structures in Section 17.4.

Placing the vertices of a given graph on the plane and drawing
them and the edges that connect them is known as graph drawing.
The possible vertex placements, edge-drawing styles, and aesthetic
constraints on the drawing are limitless. Graph-drawing algorithms
that respect various natural constraints have been studied heavily and
have many successful applications (see reference section). For example,
one of the simplest constraints is to insist that edges do not intersect. A
planar graph is one that can be drawn in the plane without any edges
crossing. Determining whether or not a graph is planar is a fascinating
algorithmic problem that we discuss briefly in Section 17.8. Being
able to produce a helpful visual representation is a useful goal, and
graph drawing is a fascinating field of study, but successful drawings
are often difficult to realize. Many graphs that have huge numbers of
vertices and edges are abstract objects for which no suitable drawing
is feasible.

For some applications, such as graphs that represent maps or
circuits, a graph drawing can carry considerable information because

10 §17.1 C H A P T E R S E V E N T E E N

0

1 2

3
4

5

6 7 8

9 10

11 12

0

1
2

3

45

6
7

8

9

10

11
12

0

1 2

3
4

5

6 7 8

9 10

11 12

Figure 17.2
Graph isomorphism examples
The top two graphs are isomorphic
because we can relabel the ver-
tices to make the two sets of edges
identical (to make the middle
graph the same as the top graph,
change 10 to 4, 7 to 3, 2 to 5, 3 to
1, 12 to 0, 5 to 2, 9 to 11, 0 to 12,
11 to 9, 1 to 7, and 4 to 10). The
bottom graph is not isomorphic to
the others because there is no way
to relabel the vertices to make its
set of edges identical to either.

the vertices correspond to points in the plane and the distances between
them are relevant. We refer to such graphs as Euclidean graphs. For
many other applications, such as graphs that represent relationships
or schedules, the graphs simply embody connectivity information, and
no particular geometric placement of vertices is ever implied. We
consider examples of algorithms that exploit the geometric information
in Euclidean graphs in Chapters 20 and 21, but we primarily work with
algorithms that make no use of any geometric information, and stress
that graphs are generally independent of any particular representation
in a drawing or in a computer.

Focusing solely on the connections themselves, we might wish to
view the vertex labels as merely a notational convenience, and to regard
two graphs as being the same if they differ in only the vertex labels.
Two graphs are isomorphic if we can change the vertex labels on one
to make its set of edges identical to the other. Determining whether
or not two graphs are isomorphic is a difficult computational problem
(see Figure 17.2 and Exercise 17.5). It is challenging because there are
V ! possible ways to label the vertices—far too many for us to try all
the possibilities. Therefore, despite the potential appeal of reducing
the number of different graph structures that we have to consider by
treating isomorphic graphs as identical structures, we rarely do so.

As we saw with trees in Chapter 5, we are often interested in
basic structural properties that we can deduce by considering specific
sequences of edges in a graph.

Definition 17.2 A path in a graph is a sequence of vertices in which
each successive vertex (after the first) is adjacent to its predecessor in
the path. In a simple path, the vertices and edges are distinct. A cycle
is a path that is simple except that the first and final vertices are the
same.

We sometimes use the term cyclic path to refer to a path whose first
and final vertices are the same (and is otherwise not necessarily simple);
and we use the term tour to refer to a cyclic path that includes every
vertex. An equivalent way to define a path is as the sequence of
edges that connect the successive vertices. We emphasize this in our
notation by connecting vertex names in a path in the same way as we
connect them in an edge. For example, the simple paths in Figure 17.1
include 3-4-6-0-2, and 9-12-11, and the cycles in the graph include

G R A P H P R O P E R T I E S A N D T Y P E S §17.1 11

clique

cycle

spanning tree

vertex

edge

path

tree

Figure 17.3
Graph terminology
This graph has 55 vertices, 70
edges, and 3 connected compo-
nents. One of the connected com-
ponents is a tree (right). The graph
has many cycles, one of which is
highlighted in the large connected
component (left). The diagram also
depicts a spanning tree in the small
connected component (center).
The graph as a whole does not
have a spanning tree, because it
is not connected.

0-6-4-3-5-0 and 5-4-3-5. We define the length of a path or a cycle
to be its number of edges.

We adopt the convention that each single vertex is a path of
length 0 (a path from the vertex to itself with no edges on it, which
is different from a self-loop). Apart from this convention, in a graph
with no parallel edges and no self-loops, a pair of vertices uniquely
determines an edge, paths must have on them at least two distinct
vertices, and cycles must have on them at least three distinct edges and
three distinct vertices.

We say that two simple paths are disjoint if they have no vertices
in common other than, possibly, their endpoints. Placing this condition
is slightly weaker than insisting that the paths have no vertices at all in
common, and is useful because we can combine simple disjoint paths
from s to t and t to u to get a simple disjoint path from s to u if s and
u are different (and to get a cycle if s and u are the same). The term
vertex disjoint is sometimes used to distinguish this condition from the
stronger condition of edge disjoint, where we require that the paths
have no edge in common.

Definition 17.3 A graph is a connected graph if there is a path
from every vertex to every other vertex in the graph. A graph that is
not connected consists of a set of connected components, which are
maximal connected subgraphs.

The term maximal connected subgraph means that there is no path
from a subgraph vertex to any vertex in the graph that is not in the
subgraph. Intuitively, if the vertices were physical objects, such as

12 §17.1 C H A P T E R S E V E N T E E N

0

1

2
3

4

5

6
7

8

0

1
2

3

4

5
6

7

0

1
2

3

4

5
6

0

1 2

3

45

0

1
2

3
4

Figure 17.4
Complete graphs
These complete graphs, with ev-
ery vertex connected to every other
vertex, have 10, 15, 21, 28, and
36 edges (bottom to top). Every
graph with between 5 and 9 ver-
tices (there are more than 68 bil-
lion such graphs) is a subgraph of
one of these graphs.

knots or beads, and the edges were physical connections, such as strings
or wires, a connected graph would stay in one piece if picked up by
any vertex, and a graph that is not connected comprises two or more
such pieces.

Definition 17.4 An acyclic connected graph is called a tree (see Chap-
ter 4). A set of trees is called a forest. A spanning tree of a connected
graph is a subgraph that contains all of that graph’s vertices and is a
single tree. A spanning forest of a graph is a subgraph that contains
all of that graph’s vertices and is a forest.

For example, the graph illustrated in Figure 17.1 has three con-
nected components, and is spanned by the forest 7-8 9-10 9-11 9-12
0-1 0-2 0-5 5-3 5-4 4-6 (there are many other spanning forests).
Figure 17.3 highlights these and other features in a larger graph.

We explore further details about trees in Chapter 4, and look at
various equivalent definitions. For example, a graph G with V vertices
is a tree if and only if it satisfies any of the following four conditions:

• G has V − 1 edges and no cycles.
• G has V − 1 edges and is connected.
• Exactly one simple path connects each pair of vertices in G.
• G is connected, but removing any edge disconnects it.

Any one of these conditions is necessary and sufficient to prove the
other three, and we can develop other combinations of facts about
trees from them (see Exercise 17.1). Formally, we should choose one
condition to serve as a definition; informally, we let them collectively
serve as the definition, and freely engage in usage such as the “acyclic
connected graph” choice in Definition 17.4.

Graphs with all edges present are called complete graphs (see
Figure 17.4). We define the complement of a graph G by starting with
a complete graph that has the same set of vertices as the original graph
and then removing the edges of G. The union of two graphs is the
graph induced by the union of their sets of edges. The union of a
graph and its complement is a complete graph. All graphs that have
V vertices are subgraphs of the complete graph that has V vertices.
The total number of different graphs that have V vertices is 2V (V −1)/2

(the number of different ways to choose a subset from the V (V − 1)/2
possible edges). A complete subgraph is called a clique.

Most graphs that we encounter in practice have relatively few
of the possible edges present. To quantify this concept, we define the

G R A P H P R O P E R T I E S A N D T Y P E S §17.1 13

0

1 2

3
4

5

6 7 8

9 10

11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 17.5
A bipartite graph
All edges in this graph connect
odd-numbered vertices with even-
numbered ones, so it is bipartite.
The bottom diagram makes the
property obvious.

density of a graph to be the average vertex degree, or 2E/V . A dense
graph is a graph whose average vertex degree is proportional to V ; a
sparse graph is a graph whose complement is dense. In other words,
we consider a graph to be dense if E is proportional to V 2 and sparse
otherwise. This asymptotic definition is not necessarily meaningful for
a particular graph, but the distinction is generally clear: A graph that
has millions of vertices and tens of millions of edges is certainly sparse,
and a graph that has thousands of vertices and millions of edges is
certainly dense. We might contemplate processing a sparse graph with
billions of vertices, but a dense graph with billions of vertices would
have an overwhelming number of edges.

Knowing whether a graph is sparse or dense is generally a key
factor in selecting an efficient algorithm to process the graph. For
example, for a given problem, we might develop one algorithm that
takes about V 2 steps and another that takes about E lg E steps. These
formulas tell us that the second algorithm would be better for sparse
graphs, whereas the first would be preferred for dense graphs. For
example, a dense graph with millions of edges might have only thou-
sands of vertices: in this case V 2 and E would be comparable in value,
and the V 2 algorithm would be 20 times faster than the E lg E algo-
rithm. On the other hand, a sparse graph with millions of edges also
has millions of vertices, so the E lg E algorithm could be millions of
times faster than the V 2 algorithm. We could make specific tradeoffs
on the basis of analyzing these formulas in more detail, but it generally
suffices in practice to use the terms sparse and dense informally to help
us understand fundamental performance characteristics.

When analyzing graph algorithms, we assume that V/E is
bounded above by a small constant, so that we can abbreviate ex-
pressions such as V (V + E) to V E. This assumption comes into play
only when the number of edges is tiny in comparison to the number of
vertices—a rare situation. Typically, the number of edges far exceeds
the number of vertices (V/E is much less than 1).

A bipartite graph is a graph whose vertices we can divide into
two sets such that all edges connect a vertex in one set with a vertex
in the other set. Figure 17.5 gives an example of a bipartite graph.
Bipartite graphs arise in a natural way in many situations, such as the
matching problems described at the beginning of this chapter. Any
subgraph of a bipartite graph is bipartite.

14 §17.1 C H A P T E R S E V E N T E E N

0

1 2

3
4

5

6 7 8

9 10

11 12

0

1 2

3
4

5

6 7 8

9 10

11 12

Figure 17.6
Two digraphs
The drawing at the top is a rep-
resentation of the example graph
in Figure 17.1 interpreted as a di-
rected graph, where we take the
edges to be ordered pairs and rep-
resent them by drawing an arrow
from the first vertex to the sec-
ond. It is also a DAG. The drawing
at the bottom is a representation
of the undirected graph from Fig-
ure 17.1 that indicates the way that
we usually represent undirected
graphs: as digraphs with two edges
corresponding to each connection
(one in each direction).

Graphs as defined to this point are called undirected graphs. In
directed graphs, also known as digraphs, edges are one-way: we con-
sider the pair of vertices that defines each edge to be an ordered pair
that specifies a one-way adjacency where we think about having the
ability to get from the first vertex to the second but not from the second
vertex to the first. Many applications (for example, graphs that rep-
resent the Web, scheduling constraints, or telephone-call transactions)
are naturally expressed in terms of digraphs.

We refer to edges in digraphs as directed edges, though that
distinction is generally obvious in context (some authors reserve the
term arc for directed edges). The first vertex in a directed edge is called
the source; the second vertex is called the destination. (Some authors
use the terms tail and head, respectively, to distinguish the vertices in
directed edges, but we avoid this usage because of overlap with our
use of the same terms in data-structure implementations.) We draw
directed edges as arrows pointing from source to destination, and often
say that the edge points to the destination. When we use the notation
v-w in a digraph, we mean it to represent an edge that points from v to
w; it is different from w-v, which represents an edge that points from w
to v. We speak of the indegree and outdegree of a vertex (the number
of edges where it is the destination and the number of edges where it
is the source, respectively).

Sometimes, we are justified in thinking of an undirected graph
as a digraph that has two directed edges (one in each direction); other
times, it is useful to think of undirected graphs simply in terms of
connections. Normally, as discussed in detail in Section 17.4, we
use the same representation for directed and undirected graphs (see
Figure 17.6). That is, we generally maintain two representations of
each edge for undirected graphs, one pointing in each direction, so
that we can immediately answer questions such as, “Which vertices
are connected to vertex v?”

Chapter 19 is devoted to exploring the structural properties of
digraphs; they are generally more complicated than the corresponding
properties for undirected graphs. A directed cycle in a digraph is a
cycle in which all adjacent vertex pairs appear in the order indicated
by (directed) graph edges. A directed acyclic graph (DAG) is a digraph
that has no directed cycles. A DAG (an acyclic digraph) is not the same
as a tree (an acyclic undirected graph). Occasionally, we refer to the

G R A P H P R O P E R T I E S A N D T Y P E S §17.1 15

underlying undirected graph of a digraph, meaning the undirected
graph defined by the same set of edges, but where these edges are not
interpreted as directed.

Chapters 20 through 22 are generally concerned with algorithms
for solving various computational problems associated with graphs
in which other information is associated with the vertices and edges.
In weighted graphs, we associate numbers (weights) with each edge,
which generally represents a distance or cost. We also might associate
a weight with each vertex, or multiple weights with each vertex and
edge. In Chapter 20 we work with weighted undirected graphs; in
Chapters 21 and 22 we study weighted digraphs, which we also refer
to as networks. The algorithms in Chapter 22 solve classic problems
that arise from a particular interpretation of networks known as flow
networks.

As was evident even in Chapter 1, the combinatorial structure
of graphs is extensive. This extent of this structure is all the more
remarkable because it springs forth from a simple mathematical ab-
straction. This underlying simplicity will be reflected in much of the
code that we develop for basic graph processing. However, this sim-
plicity sometimes masks complicated dynamic properties that require
deep understanding of the combinatorial properties of graphs them-
selves. It is often far more difficult to convince ourselves that a graph
algorithm works as intended than the compact nature of the code
might suggest.

Exercises
17.1 Prove that any acyclic connected graph that has V vertices has V − 1
edges.

!17.2 Give all the connected subgraphs of the graph

0-1 0-2 0-3 1-3 2-3.

!17.3 Write down a list of the nonisomorphic cycles of the graph in Fig-
ure 17.1. For example, if your list contains 3-4-5-3, it should not contain
3-5-4-3, 4-5-3-4, 4-3-5-4, 5-3-4-5, or 5-4-3-5.

17.4 Consider the graph

3-7 1-4 7-8 0-5 5-2 3-8 2-9 0-6 4-9 2-6 6-4.

Determine the number of connected components, give a spanning forest, list
all the simple paths with at least three vertices, and list all the nonisomorphic
cycles (see Exercise 17.3).

16 §17.2 C H A P T E R S E V E N T E E N

◦17.5 Consider the graphs defined by the following four sets of edges:

0-1 0-2 0-3 1-3 1-4 2-5 2-9 3-6 4-7 4-8 5-8 5-9 6-7 6-9 7-8
0-1 0-2 0-3 0-3 1-4 2-5 2-9 3-6 4-7 4-8 5-8 5-9 6-7 6-9 7-8
0-1 1-2 1-3 0-3 0-4 2-5 2-9 3-6 4-7 4-8 5-8 5-9 6-7 6-9 7-8
4-1 7-9 6-2 7-3 5-0 0-2 0-8 1-6 3-9 6-3 2-8 1-5 9-8 4-5 4-7.

Which of these graphs are isomorphic to one another? Which of them are
planar?

17.6 Consider the more than 68 billion graphs referred to in the caption to
Figure 17.4. What percentage of them has fewer than nine vertices?

!17.7 How many different subgraphs are there in a given graph with V ver-
tices and E edges?

• 17.8 Give tight upper and lower bounds on the number of connected com-
ponents in graphs that have V vertices and E edges.

◦17.9 How many different undirected graphs are there that have V vertices
and E edges?

••• 17.10 If we consider two graphs to be different only if they are not isomorphic,
how many different graphs are there that have V vertices and E edges?

17.11 How many V -vertex graphs are bipartite?

17.2 Graph ADT

We develop our graph-processing algorithms using an ADT that defines
the fundamental tasks, using the standard mechanisms introduced in
Chapter 4. Program 17.1 is the ADT interface that we use for this
purpose. Basic graph representations and implementations for this
ADT are the topic of Sections 17.3 through 17.5. Later in the book,
whenever we consider a new graph-processing problem, we consider
the algorithms that solve it and their implementations in the context
of client programs and ADTs that access graphs through this inter-
face. This scheme allows us to address graph-processing tasks ranging
from elementary maintenance functions to sophisticated solutions of
difficult problems.

The interface is based on our standard mechanism that hides
representations and implementations from client programs (see Sec-
tion 4.8). It also includes a simple structure type definition that allows
our programs to manipulate edges in a uniform way. The interface
provides the basic mechanisms that allow clients to build graphs (by
constructing the graph and then adding the edges), to maintain the

G R A P H P R O P E R T I E S A N D T Y P E S §17.2 17

Program 17.1 Graph ADT interface

This interface is a starting point for implementing and testing graph
algorithms. It defines two data types: a trivial Edge data type, including
a constructor function that creates an Edge from two given vertices; and
a GRAPH data type, which is defined with the standard representation-
independent ADT interface methodology from Chapter 4.

The GRAPH constructor takes two arguments: an integer giving
the number of vertices and a boolean that tells whether the graph is
undirected or directed (a digraph), with undirected the default.

The basic operations that we use to process graphs and digraphs
are ADT functions to create and destroy them; to report the number
of vertices and edges; and to add and delete edges. The iterator class
adjIterator allows clients to process each of the vertices adjacent to
any given vertex. Programs 17.2 and 17.3 illustrate its use.

struct Edge
{ int v, w;
Edge(int v = -1, int w = -1) : v(v), w(w) { }

};
class GRAPH
{ private:

// Implementation-dependent code
public:

GRAPH(int, bool);
~GRAPH();
int V() const;
int E() const;
bool directed() const;
int insert(Edge);
int remove(Edge);
bool edge(int, int);
class adjIterator
{
public:
adjIterator(const GRAPH &, int);
int beg();
int nxt();
bool end();

};
};

18 §17.2 C H A P T E R S E V E N T E E N

graphs (by removing some edges and adding others), and to examine
the graphs (using an iterator for processing the vertices adjacent to any
given vertex).

The ADT in Program 17.1 is primarily a vehicle to allow us to
develop and test algorithms; it is not a general-purpose interface. As
usual, we work with the simplest interface that supports the basic
graph-processing operations that we wish to consider. Defining such
an interface for use in practical applications involves making numerous
tradeoffs among simplicity, efficiency, and generality. We consider a
few of these tradeoffs next; we address many others in the context of
implementations and applications throughout this book.

The graph constructor takes the maximum possible number of
vertices in the graph as an argument, so that implementations can
allocate memory accordingly. We adopt this convention solely to make
the code compact and readable. A more general graph ADT might
include in its interface the capability to add and remove vertices as
well as edges; this would impose more demanding requirements on the
data structures used to implement the ADT. We might also choose to
work at an intermediate level of abstraction, and consider the design
of interfaces that support higher-level abstract operations on graphs
that we can use in implementations. We revisit this idea briefly in
Section 17.5, after we consider several concrete representations and
implementations.

A general graph ADT needs to take into account parallel edges
and self-loops, because nothing prevents a client program from calling
insert with an edge that is already present in the graph (parallel edge)
or with an edge whose two vertex indices are the same (self-loop). It
might be necessary to disallow such edges in some applications, de-
sirable to include them in other applications, and possible to ignore
them in still other applications. Self-loops are trivial to handle, but
parallel edges can be costly to handle, depending on the graph repre-
sentation. In certain situations, including a remove parallel edges ADT
function might be appropriate; then, implementations can let parallel
edges collect, and clients can remove or otherwise process parallel
edges when warranted. We will revisit these issues when we examine
graph representations in Sections 17.3 and 17.4.

Program 17.2 is a function that illustrates the use of the iter-
ator class in the graph ADT. It is a function that extracts a graph’s

G R A P H P R O P E R T I E S A N D T Y P E S §17.2 19

Program 17.2 Example of a graph-processing client function

This function shows one way to use the graph ADT to implement a basic
graph-processing operation in a manner independent of the representa-
tion. It returns all the graph’s edges in a vector.

This implementation illustrates the basis for most of the programs
that we consider: we process each edge in the graph by checking all the
vertices adjacent to each vertex. We generally do not call beg, end,
and nxt except as illustrated here, so that we can better understand the
performance characteristics of our implementations (see Section 17.5).

template <class Graph>
vector <Edge> edges(Graph &G)
{ int E = 0;
vector <Edge> a(G.E());
for (int v = 0; v < G.V(); v++)

{
typename Graph::adjIterator A(G, v);
for (int w = A.beg(); !A.end(); w = A.nxt())
if (G.directed() || v < w)
a[E++] = Edge(v, w);

}
return a;

}

set of edges and returns it in a C++ Standard Template Library (STL)
vector. A graph is nothing more nor less than its set of edges, and
we often need a way to retrieve a graph in this form, regardless of
its internal representation. The order in which the edges appear in
the vector is immaterial and will differ from implementation to imple-
mentation. We use a template for such functions to allow for using
multiple implementations of the graph ADT.

Program 17.3 is another example of the use of the iterator class
in the graph ADT, to print out a table of the vertices adjacent to each
vertex, as shown in Figure 17.7. The code in these two examples is
quite similar and is similar to the code in numerous graph-processing
algorithms. Remarkably, we can build all of the algorithms that we
consider in this book on this basic abstraction of processing all the
vertices adjacent to each vertex (which is equivalent to processing all
the edges in the graph), as in these functions.

20 §17.2 C H A P T E R S E V E N T E E N

Figure 17.7
Adjacency lists format

0: 1 2 5 6
1: 0
2: 0
3: 4 5
4: 3 5 6
5: 0 3 4
6: 0 4
7: 8
8: 7
9: 10 11 12
10: 9
11: 9 12
12: 9 11

This table illustrates yet another
way to represent the graph in Fig-
ure 17.1: we associate each ver-
tex with its set of adjacent vertices
(those connected to it by a single
edge). Each edge affects two sets:
for every edge u-v in the graph, u
appears in v’s set and v appears in
u’s set.

Program 17.3 A client function that prints a graph

This implementation of the show function from the io class of Pro-
gram 17.4 uses the graph ADT to print a table of the vertices adjacent
to each graph vertex. The order in which the vertices appear depends
upon the graph representation and the ADT implementation (see Fig-
ure 17.7).

template <class Graph>
void IO<Graph>::show(const Graph &G)
{

for (int s = 0; s < G.V(); s++)
{
cout.width(2); cout << s << ":";
typename Graph::adjIterator A(G, s);
for (int t = A.beg(); !A.end(); t = A.nxt())
{ cout.width(2); cout << t << " "; }

cout << endl;
}

}

As discussed in Section 17.5, we often package related graph-
processing functions into a single class. Program 17.4 is an interface
for such a class. It defines the show function of Program 17.3 and two
functions for inserting into a graph edges taken from standard input
(see Exercise 17.12 and Program 17.14 for implementations of these
functions).

Generally, the graph-processing tasks that we consider in this
book fall into one of three broad categories:

• Compute the value of some measure of the graph.
• Compute some subset of the edges of the graph.
• Answer queries about some property of the graph.

Examples of the first are the number of connected components and the
length of the shortest path between two given vertices in the graph;
examples of the second are a spanning tree and the longest cycle con-
taining a given vertex; examples of the third are whether two given
vertices are in the same connected component. Indeed, the terms that
we defined in Section 17.1 immediately bring to mind a host of com-
putational problems.

G R A P H P R O P E R T I E S A N D T Y P E S §17.2 21

Program 17.4 Graph-processing input/output interface

This class illustrates how we might package related graph-processing
functions together in a single class. It defines functions for printing a
graph (see Program 17.3); inserting edges defined by pairs of integers
on standard input (see Exercise 17.12); and inserting edges defined by
pairs of symbols on standard input (see Program 17.14).

template <class Graph>
class IO
{
public:

static void show(const Graph &);
static void scanEZ(Graph &);
static void scan(Graph &);

};

Our convention for addressing such tasks will be to build ADTs
that are clients of the basic ADT in Program 17.1, but that, in turn,
allow us to separate client programs that need to solve the problem
from implementations. For example, Program 17.5 is an interface for
a graph-connectivity ADT. We can write client programs that use this
ADT to create objects that can provide the number of connected com-
ponents in the graph and that can test whether or not any two vertices
are in the same connected component. We describe implementations
of this ADT and their performance characteristics in Section 18.5, and
we develop similar ADTs throughout the book. Typically, such ADTs
include a preprocessing public member function (usually the construc-
tor), private data members that keep information learned during the
preprocessing, and query public member functions that use this infor-
mation to provide clients with information about the graph.

In this book, we generally work with static graphs, which have
a fixed number of vertices V and edges E. Generally, we build the
graphs by executing E calls to insert, then process them either by
calling some ADT function that takes a graph as argument and returns
some information about that graph, or by using objects of the kind just
described to preprocess the graph so as to be able to efficiently answer
queries about it. In either case, changing the graph by calling insert
or remove necessitates reprocessing the graph. Dynamic problems,

22 §17.2 C H A P T E R S E V E N T E E N

Program 17.5 Connectivity interface

This ADT interface illustrates a typical paradigm that we use for im-
plementing graph-processing algorithms. It allows a client to construct
an object that processes a graph so that it can answer queries about the
graph’s connectivity. The count member function returns the number of
connected components and the connect member function tests whether
two given vertices are connected. Program 18.4 is an implementation
of this interface.

template <class Graph>
class CC
{

private:
// implementation-dependent code

public:
CC(const Graph &);
int count();
bool connect(int, int);

};

where we want to intermix graph processing with edge and vertex
insertion and removal, take us into the realm of online algorithms
(also known as dynamic algorithms), which present a different set of
challenges. For example, the connectivity problem that we solved
with union-find algorithms in Chapter 1 is an example of an online
algorithm, because we can get information about the connectivity of
a graph as we insert edges. The ADT in Program 17.1 supports insert
edge and remove edge operations, so clients are free to use them to
make changes in graphs, but there may be performance penalties for
certain sequences of operations. For example, union-find algorithms
may require reprocessing the whole graph if a client uses remove edge.
For most of the graph-processing problems that we consider, adding or
deleting a few edges can dramatically change the nature of the graph
and thus necessitate reprocessing it.

One of our most important challenges in graph processing is to
have a clear understanding of performance characteristics of imple-
mentations and to make sure that client programs make appropriate
use of them. As with the simpler problems that we considered in

G R A P H P R O P E R T I E S A N D T Y P E S §17.2 23

Program 17.6 Example of a graph-processing client program

This program illustrates the use of the graph-processing ADTs described
in this section, using the ADT conventions described in Section 4.5. It
constructs a graph with V vertices, inserts edges taken from standard
input, prints the resulting graph if it is small, and computes (and prints)
the number of connected components. It assumes that Program 17.1,
Program 17.4, and Program 17.5 (with implementations) are in the
files GRAPH.cc, IO.cc, and CC.cc (respectively).

#include <iostream.h>
#include <stdlib.h>
#include "GRAPH.cc"
#include "IO.cc"
#include "CC.cc"
main(int argc, char *argv[])
{ int V = atoi(argv[1]);
GRAPH G(V);
IO<GRAPH>::scan(G);
if (V < 20) IO<GRAPH>::show(G);
cout << G.E() << " edges ";
CC<GRAPH> Gcc(G);
cout << Gcc.count() << " components" << endl;

}

Parts 1 through 4, our use of ADTs makes it possible to address such
issues in a coherent manner.

Program 17.6 is an example of a graph-processing client pro-
gram. It uses the basic ADT of Program 17.1, the input-output class
of Program 17.4 to read the graph from standard input and print it to
standard output, and the connectivity class of Program 17.5 to find its
number of connected components. We use similar but more sophisti-
cated clients to generate other types of graphs, to test algorithms, to
learn other properties of graphs, and to use graphs to solve other prob-
lems. The basic scheme is amenable for use in any graph-processing
application.

In Sections 17.3 through 17.5, we examine the primary classical
graph representations and implementations of the ADT functions in
Program 17.1. These implementations provide a basis for us to expand

24 §17.2 C H A P T E R S E V E N T E E N

the interface to include the graph-processing tasks that are our focus
for the next several chapters.

The first decision that we face in developing an ADT implementa-
tion is which graph representation to use. We have three basic require-
ments. First, we must be able to accommodate the types of graphs
that we are likely to encounter in applications (and we also would
prefer not to waste space). Second, we should be able to construct
the requisite data structures efficiently. Third, we want to develop
efficient algorithms to solve our graph-processing problems without
being unduly hampered by any restrictions imposed by the represen-
tation. Such requirements are standard ones for any domain that we
consider—we emphasize them again them here because, as we shall
see, different representations give rise to huge performance differences
for even the simplest of problems.

For example, we might consider a vector of edges representation
as the basis for an ADT implementation (see Exercise 17.16). That
direct representation is simple, but it does not allow us to perform effi-
ciently the basic graph-processing operations that we shall be studying.
As we will see, most graph-processing applications can be handled rea-
sonably with one of two straightforward classical representations that
are only slightly more complicated than the vector-of-edges representa-
tion: the adjacency-matrix or the adjacency-lists representation. These
representations, which we consider in detail in Sections 17.3 and 17.4,
are based on elementary data structures (indeed, we discussed them
both in Chapters 3 and 5 as example applications of sequential and
linked allocation). The choice between the two depends primarily on
whether the graph is dense or sparse, although, as usual, the nature
of the operations to be performed also plays an important role in the
decision on which to use.

Exercises

!17.12 Implement the scanEZ function from Program 17.4: write a function
that builds a graph by reading edges (pairs of integers between 0 and V − 1)
from standard input.

!17.13 Write an ADT client that adds all the edges in a given vector to a given
graph.

!17.14 Write a function that calls edges and prints out all the edges in the
graph, in the format used in this text (vertex numbers separated by a hyphen).

G R A P H P R O P E R T I E S A N D T Y P E S §17.3 25

0
0
0
0
0
0
1
1
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
1
1
0
1
0
0
0

0
0
0
0
0
0
0
0
1
1
0
0
1

0
0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0

1
1
1
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0
0
0

1
0
0
1
0
0
0
0
0
0
0
0
0

0
1
0
1
0
0
0
0
0
0
0
0
00

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

Figure 17.8
Adjacency-matrix graph rep-

resentation
This Boolean matrix is another rep-
resentation of the graph depicted
in Figure 17.1. It has a 1 (true)
in row v and column w if there
is an edge connecting vertex v
and vertex w and a 0 (false) in
row v and column w if there is no
such edge. The matrix is symmet-
ric about the diagonal. For exam-
ple, the sixth row (and the sixth
column) says that vertex 6 is con-
nected to vertices 0 and 4. For
some applications, we will adopt
the convention that each vertex is
connected to itself, and assign 1s
on the main diagonal. The large
blocks of 0s in the upper right and
lower left corners are artifacts of
the way we assigned vertex num-
bers for this example, not charac-
teristic of the graph (except that
they do indicate the graph to be
sparse).

◦17.15 Develop an implementation for the connectivity ADT of Program 17.5,
using a union-find algorithm (see Chapter 1).

• 17.16 Provide an implementation of the ADT functions in Program 17.1 that
uses a vector of edges to represent the graph. Use a brute-force implementation
of remove that removes an edge v-w by scanning the vector to find v-w or w-v
and then exchanges the edge found with the final one in the vector. Use a
similar scan to implement the iterator. Note: Reading Section 17.3 first might
make this exercise easier.

17.3 Adjacency-Matrix Representation

An adjacency-matrix representation of a graph is a V -by-V matrix of
Boolean values, with the entry in row v and column w defined to be 1
if there is an edge connecting vertex v and vertex w in the graph, and
to be 0 otherwise. Figure 17.8 depicts an example.

Program 17.7 is an implementation of the graph ADT interface
that uses a direct representation of this matrix, built as a vector of
vectors, as depicted in Figure 17.9. It is a two-dimensional existence
table with the entry adj[v][w] set to true if there is an edge con-
necting v and w in the graph, and set to false otherwise. Note that
maintaining this property in an undirected graph requires that each
edge be represented by two entries: the edge v-w is represented by
true values in both adj[v][w] and adj[w][v], as is the edge w-v.

The name DenseGRAPH in Program 17.7 emphasizes that the im-
plementation is more suited for dense graphs than for sparse ones, and
distinguishes it from other implementations. Clients may use typedef
to make this type equivalent to GRAPH or use DenseGRAPH explicitly.

In the adjacency matrix that represents a graph G, row v is a
vector that is an existence table whose ith entry is true if vertex i is
adjacent to v (the edge v-i is in G). Thus, to provide clients with the
capability to process the vertices adjacent to v, we need only provide
code that scans through this vector to find true entries, as shown in
Program 17.8. We need to be mindful that, with this implementation,
processing all of the vertices adjacent to a given vertex requires (at
least) time proportional to V , no matter how many such vertices exist.

As mentioned in Section 17.2, our interface requires that the
number of vertices is known to the client when the graph is initial-
ized. If desired, we could allow for inserting and deleting vertices (see
Exercise 17.21). A key feature of the constructor in Program 17.7 is

26 §17.3 C H A P T E R S E V E N T E E N

Program 17.7 Graph ADT implementation (adjacency matrix)

This class is a straightforward implementation of the interface in Pro-
gram 17.1 that is based on representing the graph with a vector of
boolean vectors (see Figure 17.9). Edges are inserted and removed in
constant time. Duplicate edge insert requests are silently ignored, but
clients can use edge to test whether an edge exists. Constructing the
graph takes time proportional to V 2.

class DenseGRAPH
{ int Vcnt, Ecnt; bool digraph;
vector <vector <bool> > adj;

public:
DenseGRAPH(int V, bool digraph = false) :

adj(V), Vcnt(V), Ecnt(0), digraph(digraph)
{
for (int i = 0; i < V; i++)
adj[i].assign(V, false);

}
int V() const { return Vcnt; }
int E() const { return Ecnt; }
bool directed() const { return digraph; }
void insert(Edge e)

{ int v = e.v, w = e.w;
if (adj[v][w] == false) Ecnt++;
adj[v][w] = true;
if (!digraph) adj[w][v] = true;

}
void remove(Edge e)

{ int v = e.v, w = e.w;
if (adj[v][w] == true) Ecnt--;
adj[v][w] = false;
if (!digraph) adj[w][v] = false;

}
bool edge(int v, int w) const

{ return adj[v][w]; }
class adjIterator;
friend class adjIterator;

};

G R A P H P R O P E R T I E S A N D T Y P E S §17.3 27

0 1 1 0 0 1 1 0 0 0 0 0 00

1 0 0 0 0 0 0 0 0 0 0 0 01

1 0 0 0 0 0 0 0 0 0 0 0 02

0 0 0 0 1 1 0 0 0 0 0 0 03

0 0 0 1 0 1 1 0 0 0 0 0 04

1 0 0 1 1 0 0 0 0 0 0 0 05

1 0 0 0 1 0 0 0 0 0 0 0 06

0 0 0 0 0 0 0 0 1 0 0 0 07

0 0 0 0 0 0 0 1 0 0 0 0 08

0 0 0 0 0 0 0 0 0 0 1 1 19

0 0 0 0 0 0 0 0 0 1 0 0 010

0 0 0 0 0 0 0 0 0 1 0 0 111

0 0 0 0 0 0 0 0 0 1 0 1 012

Figure 17.9
Adjacency matrix data struc-

ture
This figure depicts the C++ rep-
resentation of the graph in Fig-
ure 17.1, as an vector of vectors.

Program 17.8 Iterator for adjacency-matrix representation

This implementation of the iterator for Program 17.7 uses an index i
to scan past false entries in row v of the adjacency matrix (adj[v]).
A call to beg() followed by a sequence of calls to nxt() (checking that
end() is false before each call) gives a sequence of the vertices adjacent
to v in G in order of their vertex index.

class DenseGRAPH::adjIterator
{ const DenseGRAPH &G;
int i, v;

public:
adjIterator(const DenseGRAPH &G, int v) :
G(G), v(v), i(-1) { }

int beg()
{ i = -1; return nxt(); }

int nxt()
{

for (i++; i < G.V(); i++)
if (G.adj[v][i] == true) return i;

return -1;
}

bool end()
{ return i >= G.V(); }

};

that it initializes the graph by setting the matrix entries all to false.
We need to be mindful that this operation takes time proportional to
V 2, no matter how many edges are in the graph. Error checks for
insufficient memory are not included in Program 17.7 for brevity—it
is prudent programming practice to add them before using this code
(see Exercise 17.24).

To add an edge, we set the indicated matrix entries to true (one
for digraphs, two for undirected graphs). This representation does
not allow parallel edges: If an edge is to be inserted for which the
matrix entries are already 1, the code has no effect. In some ADT
designs, it might be preferable to inform the client of the attempt to
insert a parallel edge, perhaps using a return code from insert. This

28 §17.3 C H A P T E R S E V E N T E E N

representation does allow self-loops: An edge v-v is represented by a
nonzero entry in a[v][v].

To remove an edge, we set the indicated matrix entries to false.
If a nonexistent edge (one for which the matrix entries are already
false) is to be removed, the code has no effect. Again, in some
ADT designs, we might wish to arrange to inform the client of such
conditions.

If we are processing huge graphs or huge numbers of small
graphs, or space is otherwise tight, there are several ways to save space.
For example, adjacency matrices that represent undirected graphs are
symmetric: a[v][w] is always equal to a[w][v]. Thus, we could
save space by storing only one-half of this symmetric matrix (see Ex-
ercise 17.22). Another way to save a signigicant amount of space is
to use a matrix of bits (assuming that vector<bool> does not do so).
In this way, for instance, we could represent graphs of up to about
64,000 vertices in about 64 million 64-bit words (see Exercise 17.23).
These implementations have the slight complication that we need to
add an ADT operation to test for the existence of an edge (see Exer-
cise 17.20). (We do not use such an operation in our implementations
because we can test for the existence of an edge v-w by simply testing
a[v][w].) Such space-saving techniques are effective, but come at the
cost of extra overhead that may fall in the inner loop in time-critical
applications.

Many applications involve associating other information with
each edge—in such cases, we can generalize the adjacency matrix to
hold any information whatever, not just bools. Whatever data type
that we use for the matrix elements, we need to include an indication
whether the indicated edge is present or absent. In Chapters 20 and 21,
we explore such representations.

Use of adjacency matrices depends on associating vertex names
with integers between 0 and V − 1. This assignment might be done in
one of many ways—for example, we consider a program that does so in
Section 17.6). Therefore, the specific matrix of 0-1 values that we rep-
resent with a vector of vectors in C++ is but one possible representation
of any given graph as an adjacency matrix, because another program
might assign different vertex names to the indices we use to specify
rows and columns. Two matrices that appear to be markedly different
could represent the same graph (see Exercise 17.17). This observa-

G R A P H P R O P E R T I E S A N D T Y P E S §17.3 29

tion is a restatement of the graph isomorphism problem: Although we
might like to determine whether or not two different matrices repre-
sent the same graph, no one has devised an algorithm that can always
do so efficiently. This difficulty is fundamental. For example, our abil-
ity to find an efficient solution to various important graph-processing
problems depends completely on the way in which the vertices are
numbered (see, for example, Exercise 17.26).

Program 17.3, which we considered in Section 17.2, prints out
a table with the vertices adjacent to each vertex. When used with the
implementation in Program 17.7, it prints the vertices in order of their
vertex index, as in Figure 17.7. Notice, though, that it is not part
of the definition of adjIterator that it visits vertices in index order,
so developing an ADT client that prints out the adjacency-matrix rep-
resentation of a graph is not a trivial task (see Exercise 17.18). The
output produced by these programs are themselves graph representa-
tions that clearly illustrate a basic performance tradeoff. To print out
the matrix, we need room on the page for all V 2 entries; to print out
the lists, we need room for just V + E numbers. For sparse graphs,
when V 2 is huge compared to V + E, we prefer the lists; for dense
graphs, when E and V 2 are comparable, we prefer the matrix. As
we shall soon see, we make the same basic tradeoff when we compare
the adjacency-matrix representation with its primary alternative: an
explicit representation of the lists.

The adjacency-matrix representation is not satisfactory for huge
sparse graphs: We need at least V 2 bits of storage and V 2 steps just to
construct the representation. In a dense graph, when the number of
edges (the number of 1 bits in the matrix) is proportional to V 2, this
cost may be acceptable, because time proportional to V 2 is required
to process the edges no matter what representation we use. In a sparse
graph, however, just initializing the matrix could be the dominant
factor in the running time of an algorithm. Moreover, we may not
even have enough space for the matrix. For example, we may be faced
with graphs with millions of vertices and tens of millions of edges, but
we may not want—or be able—to pay the price of reserving space for
trillions of 0 entries in the adjacency matrix.

On the other hand, when we do need to process a huge dense
graph, then the 0-entries that represent absent edges increase our space
needs by only a constant factor and provide us with the ability to

30 §17.3 C H A P T E R S E V E N T E E N

determine whether any particular edge is present in constant time.
For example, disallowing parallel edges is automatic in an adjacency
matrix but is costly in some other representations. If we do have space
available to hold an adjacency matrix, and either V 2 is so small as to
represent a negligible amount of time or we will be running a complex
algorithm that requires more than V 2 steps to complete, the adjacency-
matrix representation may be the method of choice, no matter how
dense the graph.

Exercises
!17.17 Give the adjacency-matrix representations of the three graphs depicted

in Figure 17.2.

◦17.18 Give an implementation of show for the representation-independent io
package of Program 17.4 that prints out a two-dimensional matrix of 0s and
1s like the one illustrated in Figure 17.8. Note: You cannot depend upon the
iterator producing vertices in order of their indices.

17.19 Given a graph, consider another graph that is identical to the first,
except that the names of (integers corresponding to) two vertices are inter-
changed. How are the adjacency matrices of these two graphs related?

!17.20 Add a function edge to the graph ADT that allows clients to test
whether there is an edge connecting two given vertices, and provide an imple-
mentation for the adjacency-matrix representation.

◦17.21 Add functions to the graph ADT that allow clients to insert and delete
vertices, and provide implementations for the adjacency-matrix representation.

!17.22 Modify Program 17.7, augmented as described in Exercise 17.20, to
cut its space requirements about in half by not including array entries a[v][w]
for w greater than v.

17.23 Modify Program 17.7, augmented as described in Exercise 17.20, to
ensure that, if your computer has B bits per word, a graph with V vertices is
represented in about V 2/B words (as opposed to V 2). Do empirical tests to
assess the effect of packing bits into words on the time required for the ADT
operations.

17.24 Describe what happens if there is insufficient memory available to repre-
sent the matrix when the constructor in Program 17.7 is invoked, and suggest
appropriate modifications to the code to handle this situation.

17.25 Develop a version of Program 17.7 that uses a single vector with V 2

entries.

◦17.26 Suppose that all k vertices in a group have consecutive indices. How
can you determine from the adjacency matrix whether or not that group of
vertices constitutes a clique? Write a client ADT function that finds, in time
proportional to V 2, the largest group of vertices with consecutive indices that
constitutes a clique.

G R A P H P R O P E R T I E S A N D T Y P E S §17.4 31

6 5 1 20

01

02

5 43

6 5 34

3 0 45

0 46

87

78

12 11 109

910

12 911

9 1112

Figure 17.10
Adjacency-lists data structure
This figure depicts a representa-
tion of the graph in Figure 17.1 as
an array of linked lists. The space
used is proportional to the number
of nodes plus the number of edges.
To find the indices of the vertices
connected to a given vertex v, we
look at the vth position in an ar-
ray, which contains a pointer to a
linked list containing one node for
each vertex connected to v. The
order in which the nodes appear
on the lists depends on the method
that we use to construct the lists.

17.4 Adjacency-Lists Representation

The standard representation that is preferred for graphs that are not
dense is called the adjacency-lists representation, where we keep track
of all the vertices connected to each vertex on a linked list that is
associated with that vertex. We maintain a vector of lists so that,
given a vertex, we can immediately access its list; we use linked lists so
that we can add new edges in constant time.

Program 17.9 is an implementation of the ADT interface in Pro-
gram 17.1 that is based on this approach, and Figure 17.10 depicts an
example. To add an edge connecting v and w to this representation
of the graph, we add w to v’s adjacency list and v to w’s adjacency
list. In this way, we still can add new edges in constant time, but the
total amount of space that we use is proportional to the number of
vertices plus the number of edges (as opposed to the number of ver-
tices squared, for the adjacency-matrix representation). For undirected
graphs, we again represent each edge in two different places: an edge
connecting v and w is represented as nodes on both adjacency lists. It is
important to include both; otherwise, we could not answer efficiently
simple questions such as, “Which vertices are adjacent to vertex v?”
Program 17.10 implements the iterator that answers this question for
clients, in time proportional to the number of such vertices.

The implementation in Programs 17.9 and 17.10 is a low-level
one. An alternative is to use the STL list to implement each linked
list (see Exercise 17.30). The disadvantage of doing so is that STL
list implementations need to support many more operations than we
need and therefore typically carry extra overhead that might affect the
performance of all of our algorithms (see Exercise 17.31). Indeed,
all of our graph algorithms use the Graph ADT interface, so this im-
plementation is an appropriate place to encapuslate all the low-level
operations and concentrate on efficiency without affecting our other
code. Another advantage of using the linked-list representation is that
it provides a concrete basis for understanding the performance char-
acteristics of our implementations.

But an important factor to consider is that the linked-list–based
implementation in Programs 17.9 and 17.10 is incomplete, because it
lacks a destructor and a copy constructor. For many applications, this
defect could lead to unexpected results or severe performance prob-

