


Introduction to the
Team Software
ProcessSM



Dennis M. Ahern, et al., CMMI® SCAMPI Distilled.
ISBN: 0-321-22876-6

Dennis M. Ahern, et al., CMMI® Distilled, 
Second Edition. ISBN: 0-321-18613-3

Dennis M. Ahern, et al., CMMI® Distilled: A Practical
Introduction to Integrated Process Improvement, 
Third Edition. ISBN: 0-321-46108-8

Christopher Alberts and Audrey Dorofee, Managing
Information Security Risks. ISBN: 0-321-11886-3

Julia H. Allen, et al., Software Security Engineering: 
A Guide for Project Managers. ISBN: 0-321-50917-X

Len Bass, et al., Software Architecture in Practice, 
Second Edition. ISBN: 0-321-15495-9

Marilyn Bush and Donna Dunaway, CMMI® Assessments.
ISBN: 0-321-17935-8

Carnegie Mellon University, Software Engineering
Institute, The Capability Maturity Model. 
ISBN: 0-201-54664-7

Mary Beth Chrissis, et al., CMMI®, Second Edition.
ISBN: 0-321-27967-0

Paul Clements, et al., Documenting Software
Architectures. ISBN: 0-201-70372-6

Paul Clements, et al., Evaluating Software Architectures. 
ISBN: 0-201-70482-X

Paul Clements and Linda Northrop, Software Product
Lines. ISBN: 0-201-70332-7

Bill Curtis, et al., The People Capability Maturity Model®. 
ISBN: 0-201-60445-0

William A. Florac and Anita D. Carleton, Measuring the
Software Process. ISBN: 0-201-60444-2

Brian P. Gallagher, et al., CMMI®-ACQ: Guidelines for
Improving the Acquisition of Products and Services.
ISBN: 0321580354

Suzanne Garcia and Richard Turner, CMMI® Survival
Guide. ISBN: 0-321-42277-5

Hassan Gomaa, Software Design Methods for Concurrent 
and Real-Time Systems. ISBN: 0-201-52577-1

Elaine M. Hall, Managing Risk. ISBN: 0-201-25592-8

Hubert F. Hofmann, et al., CMMI® for Outsourcing. 
ISBN: 0-321-47717-0

Watts S. Humphrey, Introduction to the Personal 
Software ProcessSM. ISBN: 0-201-54809-7

Watts S. Humphrey, Managing the Software Process.
ISBN: 0-201-18095-2

Watts S. Humphrey, A Discipline for Software
Engineering. ISBN: 0-201-54610-8

Watts S. Humphrey, Introduction to the Team Software
ProcessSM. ISBN: 0-201-47719-X

Watts S. Humphrey, Winning with Software.
ISBN: 0-201-77639-1

Watts S. Humphrey, PSPSM: A Self-Improvement Process
for Software Engineers. ISBN: 0-321-30549-3

Watts S. Humphrey, TSPSM—Leading a Development
Team. ISBN: 0-321-34962-8

Watts S. Humphrey, TSPSM—Coaching Development
Teams. ISBN: 0-201-73113-4

Robert C. Seacord, Secure Coding in C and C++.
ISBN: 0-321-33572-4

Robert C. Seacord, The CERT® C Secure Coding
Standard. ISBN: 0321563212

Jeannine M. Siviy, et al., CMMI® and Six Sigma:
Partners in Process Improvement. ISBN: 0321516087

Richard D. Stutzke, Estimating Software-Intensive
Systems. ISBN: 0-201-70312-2

Sami Zahran, Software Process Improvement.
ISBN: 0-201-17782-X

The SEI Series in Software Engineering represents a collaboration between the Software Engineering 
Institute of Carnegie Mellon University and Addison-Wesley to develop and publish a body of work on
selected topics in software engineering. The common goal of the SEI and Addison-Wesley is to provide the
most current software engineering information in a form that is easily usable by practitioners and students.

For more information point your browser to www.awprofessional.com/seiseries



Introduction to the
Team Software
ProcessSM

Watts S. Humphrey
with Support Tool by
James W. Over

An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California • Don Mills, Ontario • Sydney
Bonn • Amsterdam • Tokyo • Mexico City



Software Engineering Institute

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison Wesley
Longman, Inc. was aware of a trademark claim, the designations have been printed in ini-
tial capital letters or all capital letters.

The author and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers discounts of this book when ordered in quantity for special sales. For
more information, please contact:

Computer and Engineering Publishing Group
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867
(781) 944-3700

Copyright © 2000 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

ISBN 0-201-47719-X
Text printed in the United States at Demand Print Center in Old Tappan, New Jersey. 
11th printing, June 2009

Trademark acknowledgments and credits appear on page 463, which is a continuation of
this copyright page.



IN MEMORY OF MY FATHER, WATTS S. HUMPHREY (1896–1968)

He provided critical support at a difficult time in my life.



This page intentionally left blank 



vii

FACULTY FOREWORD

The increasing complexity of software development and the demand by industry
for better-qualified and better-prepared software engineers means software devel-
opment curricula must provide students with knowledge and experience related to
the practice of software engineering. The Embry-Riddle Aeronautical University
Industrial Advisory Board1 has identified the following issues as critical for the
preparation of entry-level software engineers:

communication (both oral and written)

ability to work as part of a team

front-end part of software development (requirements and high-level design)

professional attitude toward work

knowledge and skills in using software processes

computing fundamentals

breadth of knowledge (ability to learn new technologies)

In my eight years of teaching an introductory software engineering course, I
have tried to provide to students an overview of the full “life-cycle” development
of software and to have them work as part of a team. I have tried real projects, toy
projects, small-team development, large-team development, extensive tool use, al-
most no tool use, emphasis on product issues, and emphasis on process issues.
Until recently, I have had only limited success. Most of the time, I have tried to do

1The Advisory Board members come from several organizations, including Boeing, Harris,
Lockheed-Martin, Motorola, and the Software Engineering Institute.



too much, with the result that both the students and the teacher ended up frustrated
and disappointed.

This past year, I used a draft of Introduction to the Team Software Process SM

(TSPi) and had the best success in my experience. Although the TSPi is no silver
bullet, it has had a dramatic effect in improving our delivery of software engi-
neering education. The TSPi shows both teachers and students what to do, how
to do it, and when to do it. This book includes all the required TSPi materials:
the scripts, forms, and instructions for almost all aspects of student-team soft-
ware development. It does an excellent job of explaining and motivating the TSPi
activities, and it provides a complete description of each team role. It offers common-
sense advice on how to handle team management problems, and it specifies quan-
titative techniques for planning, tracking, and assessing performance and quality.

Although the book includes an initial statement of requirements for two proj-
ects, the TSPi is flexible enough to handle a variety of projects of modest size. The
TSPi could be adjusted for a maintenance project, used in a requirements/design
course, or adapted to just about any team software activity. For example, we are now
using the TSPi in our senior design course to develop a product for a real customer.
The TSPi incorporates an incremental development methodology that provides a
sound software development strategy and an excellent pedagogy. In the first incre-
ment (using a simple set of requirements), students learn the TSPi process and get
comfortable working with a team. In the subsequent one or two increments, the
teams can use their previous experience to improve their performance.

Although there is much to be gained by using the TSPi in a software engineer-
ing project course, students must have prior experience with the Personal Software
Process (PSP)SM, either through a previous course or by self-study. At Embry-Riddle,
we introduce our students to the PSP in their freshman programming courses; this
provides sufficient preparation for study and use of the TSPi. The TSPi course re-
quires a great deal of time on the part of both teacher and students. In several attitu-
dinal surveys (one at the end of each increment), students overwhelmingly endorsed
the TSPi. A common complaint concerned the collection and recording of data—
although most admitted they understood its importance.

In summary, if you have struggled with how to deliver a quality software en-
gineering project course, I strongly encourage you to look at the TSPi. It provides
the guidance, direction, and support for teaching students the practice of software
engineering and preparing them for the workplace.

Thomas B. Hilburn,
Embry-Riddle Aeronautical University

viii Faculty Foreword



ix

STUDENT FOREWORD

To help in preparing this student foreword, Professor Tom Hilburn selected three
students from his first TSPi course at Embry-Riddle. Two of these students had
worked as coops in industry, and all three were team leaders for their teams. Tom
asked these students what they would say to their classmates when asked about
this course; the following paragraphs are excerpts from what they wrote.

Why learn TSPi? Why use it when it takes more time to fill out all the forms
than to do the project itself? These questions have very good answers. When you
learn something new, you do not want to try something so big that you cannot han-
dle it. You need to start small to get the hang of what is going on. That is how you
learn TSPi. You start with a small project that could probably be done without the
process. Once you have mastered the TSPi, you realize that it is a necessity. Al-
though the TSPi is not needed for most school assignments, it will be needed for
larger industrial projects. This is where a process like TSPi will help everyone un-
derstand how to do the project. So remember that you are just learning the process,
and the benefits of this knowledge will not show up until you are faced with a pro-
ject that cannot be cranked out at a terminal.

Most computer science students learn how to develop programs individually.
In their team projects, they would love to have a structured process to help them
in their next team experience. Team interaction is a whole new aspect of the soft-
ware process. Many issues, such as communication, trust, motivation, problem-
solving, commitment, dedication to quality, balancing workloads, allocating roles,
feelings of camaraderie, authority issues, and learning about your teammates and
how they work, are new issues that are factored into this team process. The TSPi
provides advice for handling many of these common issues. Students need to
adapt the process to their particular team situation and to learn how to handle other
issues that are not addressed.



Some key things we learned were the necessity of good communication and
trust among team members and how to work with people we do not know. Most
of the team wanted to complete the tasks early, to provide plenty of time for qual-
ity reviews. Team members either volunteered to take on additional tasks when the
work suited their skills or helped someone who was overloaded. This type of team-
work motivated us not to let the team down and to help out when and where we
could. Especially in the first stage of the project, our team was more motivated to
produce the product than to follow the process. In the second stage, the engineers
could see the value of the forms and planning. This provided more motivation to
follow the process.

We had few motivation or commitment problems, but when we did, we had
to only briefly discuss them. The hardest thing was to be objective in decisions
and dealings with other team members. If we had not communicated as well or as
often as we did, the project would have been half as effective, if that. We learned
the responsibilities of teamwork, how the roles interrelate, and the importance of
helping each other. Also, we learned that if you put forth the effort, the team will
be willing to help you. The TSPi gives students a great head start for what they
will be dealing with in industry. Ideally, curricula will be better structured in the
future to provide such courses.

A word on project management: TSPi requires a good deal of management
skill and competence. A wide variety of tools are available to the team through the
TSPi, but it is up to the team leader to set the stage for the project. As team leader,
I tried several approaches to project management; most worked, and at least one
did not. As leader, you must be willing to put in as much time as your teammates
and to “get down in the dirt” and help when needed. A leader must be a motivator—
by word, by deed, or by both. Give your team the room to work and be creative in
their designs, but guide them through the process and foster the teamwork that will
prove so valuable in the last days, when problems and failures are most likely. In
the short time available, be sure to involve the team in creating the plan, to get
everyone’s input for each step, and to watch the team’s schedule and determine a
plan of action if it begins to slip.

The team leader needs to plan for some situations before they occur. Maybe
a team member does not contribute or is lost due to injury or illness. Both these sit-
uations have happened on my projects. Such problems can tear a team apart and
ruin its effectiveness, or they can pull a team closer together and increase its pro-
ductivity. It all depends on how the situation is handled. That is when you must be
willing to lead. Enjoy the team experience, get to know your team, and try to help
them motivate themselves and the rest of the team. Work hard and plan. Learn how
to use a spreadsheet to save time in number crunching. Keep the lines of commu-
nications open, and meet often. Remember that when everything seems to hit you
at once, there is a way through it. “Never quit, never die!”

Celeste Berry, Ryan Hoppes, Marc Lovelace
Embry-Riddle Aeronautical University

x Student Foreword



xi

PREFACE

This book is for students and engineers who have already learned and, preferably,
applied the Personal Software Process (PSP)SM. You may have learned the PSP in
a graduate or senior-level course1 or in an earlier introductory course.2 Alterna-
tively, you may be a practicing engineer who seeks guidance on how to use the PSP
in an industrial team environment. In any case, when you have learned the PSP, you
have the background to use the methods and practices in this book.

After you have learned the PSP, you may need guidance on applying it to the
many tasks of the software process. This is the principal role of the Team Soft-
ware Process (TSP)SM: to provide a framework for using sound engineering meth-
ods while developing software.

There is a great deal to say about teamwork, and this book covers the basic
elements. TSPi (the introductory Team Software Process) introduces team con-
cepts and walks you through the steps of building teams and working on a team.
Note, however, that this text is designed for an introductory course and does not
cover all the material that you will need to use the TSP for larger-scale industrial
projects.

SMPersonal Software Process and PSP are service marks of Carnegie Mellon University.
1The advanced PSP course is taught from my text, A Discipline for Software Engineering,
Addison-Wesley (1995).
2The beginning PSP course uses my book Introduction to the Personal Software Process,
also from Addison-Wesley (1997).
SMTeam Software Process and TSP are service marks of Carnegie Mellon University.



How TSPi Helps Engineers

This book teaches engineers about software development teamwork. TSPi pro-
vides a structured set of steps, shows engineers what to do at each step, and demon-
strates how to connect these steps to produce a completed product. TSPi also
provides two interesting and reasonably challenging project exercises. Each is at
the same time small enough to be completed in a few weeks and large enough to
simulate a typical small project. When capable engineers follow the guidance pro-
vided in this book, they will invariably produce a finished working product.

In the suggested TSPi strategy, teams develop a product in two or three cycles.
In the first cycle, teams build a small working product kernel. With each succeed-
ing cycle function is added to this base. This strategy demonstrates the benefits of
using data from a prior project to plan a new project. Also, by taking new roles for
each cycle, engineers will have two or three quite different experiences in just one
project. After several development cycles, engineers will have had a broad expo-
sure to teaming methods, and they are likely to continue using the TSPi methods
on their own.

Why TSPi Courses Are Needed

Because project courses have proven to be effective in preparing students for soft-
ware engineering careers, a growing number of universities now offer them. These
courses are often oversubscribed. Students seek material that applies to their future
jobs, and they see team courses as meeting this need. After graduation, students
and employers report that software project courses are useful preparation for work
in industry.

There is now a large body of experience with team project courses.3 Although
many of these courses have been successful, three problems are common. First, the
students often attempt projects that are too large. Second, they frequently concen-
trate on the product and ignore the process. Finally, one or more team members are
disruptive. Although TSPi cannot prevent all these problems, it provides guidance
on how to avoid or mitigate them.

xii Preface

3See, for example, A.T. Berztiss, “Failproof Team Projects in Software Engineering
Courses,” Frontiers in Education Conference (IEEE, 1997); D.H. Hutchens, “Using Itera-
tive Enhancement in Undergraduate Software Engineering Courses,” SIGCSE ’96; T.J.
Scott, “Team Selection Methods For Student Programming Projects,” 8th CSEE, ’95; and
J.E. Tomayko, “Carnegie Mellon Software Development Studio: A Five-Year Retrospec-
tive,” Proceedings of the Ninth Conference on Software Engineering Education (IEEE
Computer Society Press, 1996).



To make effective use of curriculum time, team software courses should be
carefully structured and based on proven project experience. Without a defined
process or a structured team framework, engineers must figure out for themselves
how to run their projects. Without this process and structure, these groups must
learn team-building and teamwork basics through an often painful trial-and-error
process. This is both expensive and unnecessary because teamwork principles are
well known and straightforward.

TSPi guides engineers in effective teamwork methods. It does this by walking
them through a team-building process and then using a measured and defined
framework for developing products. Assuming that the engineers are PSP-trained,
they can follow the TSPi scripts and use the TSPi support tool to plan and manage
their work.4 Following TSPi makes engineers’ projects much more efficient and
permits them to concentrate on learning about software engineering rather than
spend an excessive amount of time on team-building and team management issues.

TSPi provides defined team roles that are allocated among the team members.
Each role specifies what is expected and when and how each task is to be done.
When all team members know what they and everyone else should do, they are in
a better position to work effectively as a team. If a team member does not do his
or her job, the other team members will know it, and they can deal with the prob-
lem. When teams cannot solve interpersonal problems themselves, they are told to
call on their instructor or manager for help. The Instructor’s Guide for this book
suggests methods for handling many common teamwork issues.

When student team members have explicit roles and the role responsibilities
are clearly defined and visible, instructors can provide fairer and more specific
grades. Each student can then be rated on individual performance as well as on the
overall team’s results. Not only does this approach motivate better performance,
but it is also a fairer way to grade team courses.

The Organization of This Book

This book is designed to lead teams through the TSPi process. Following the first
two introductory chapters (Part I), the chapters in Part II walk teams through a
complete development cycle. The text explains the process scripts and gives ex-
amples of the completed TSPi forms.

Part III provides detailed descriptions of the TSPi team-member roles: team
leader, development manager, planning manager, quality/process manager, and
support manager. After reading the chapter on your personal role, you can use
these TSPi role scripts for reference while working on the project.

Preface xiii

4The TSPi support tool, the TSPi Instructor’s Guide, and other support supplements for this
text are described on the Supplements page in the back of this book.



At the start of the TSPi course, each student completes an INFO form (see
Appendix F) describing his or her interests and background. The instructor uses
this information to divide the class into five-engineer teams and to assign initial
roles to the team members. If one or two teams have four or six members, the in-
structor must make some role adjustments. All the roles must be assigned, and
each engineer should have at least one role. For a four-engineer team, the support
manager role should be distributed among the team members. For a six-engineer
team, the quality/process manager role should be split into two: the quality man-
ager and the process manager.

With the teams selected and roles assigned, the teams start their projects and
report on their progress. At the end of each development cycle, the engineers as-
sess the team’s overall performance as well as that of each individual role. With
this information, the instructor can evaluate the work and better assign team-
member roles for the next development cycle. If necessary, the instructor may
make some team membership changes, but, unless there are serious problems,
teams should be kept together throughout the course.

Using Standard, Predefined Problems

Although TSPi will work for almost any project, this book provides two standard,
predefined problems that are designed to meet the needs of a wide variety of
courses. Although there could be advantages to using actual customer problems,
this practice is not recommended for three reasons. First, courses have firm and un-
varying schedules. Although most customers will initially agree to a fixed time
scale, few customers know how long it really takes to develop software. Also, be-
cause beginning engineers do not generally know how to manage projects on firm
schedules, the chances of project failure are high. This problem is compounded by
the fact that actual customer requirements are notoriously vague and unstable, lead-
ing to frequent changes and extensive delays.

The second reason to use a standard, predefined exercise is that a teamwork
course should be designed to teach specific lessons. Although one goal of the pro-
ject should be to build a working product, the principal course objective should be
to demonstrate the benefits of using proven software engineering methods. With
an actual customer problem, the first priority must be to satisfy the customer. As
the requirements change or the customer takes time to answer questions, the work
will slip. As the schedule gets compressed, teams often concentrate on finishing
the product and ignore the process. Unfortunately, the principal lesson often learned
from such courses is how not to develop software.

The third reason to use a standard, predefined problem is that it permits each
team to compare its performance with that of other teams. With several implemen-

xiv Preface



tations of the same problem, all the teams can participate in the class evaluations.
Each team can describe its approach and answer questions about its design, im-
plementation, and test choices. This process graphically shows the effectiveness of
various development approaches and provides a body of reference data for evalu-
ating future teams.

Although there are advantages to using standard predefined exercises, they do
not expose students to some important issues. For example, without actual expe-
rience, it is hard to appreciate the confusion and imprecision of customer need
statements. Struggling with vague and changing requirements is an important
experience, but it can be taught best in a course that concentrates on the require-
ments process. The approach recommended here is to first teach effective team-
work and process methods and then, in later courses, focus on the complex issues
of larger-scale development projects.

Suggestions for Instructors

This book can be used in several ways. The principal use is in a full one- or two-
semester team course. In this configuration, TSPi is used to develop a single prod-
uct such as either of the two described in Appendix A. A one-semester course
would take two or three cycles, whereas a two-semester course would use three or
more cycles to build a larger product or a full-function version of the Appendix A
products. Depending on the scale of the job, the various process steps could be ex-
panded or reduced. Three course options are shown in Figures P.1, P.2, and P.3.

For each development cycle in Figure P.1, the team plans and tracks its work
and completes a full miniproject, including requirements, design, code, and test.
At the end of each development cycle, the team assesses team and role perfor-
mance, and the instructor reassigns the team roles. In a three-cycle project, the en-
gineers gain experience with three essentially complete projects and three different
team roles. They also have data from each cycle and can see how their experience
from one cycle can be used for the next one.

This book can also be used for teamwork exercises in other courses. Small
projects could be done in a single cycle of three to seven weeks. A short require-
ments cycle could take three or four weeks, whereas a design cycle would take
four or five weeks. The shortest initial full development project would take six or
seven weeks. Figure P.2 shows a several-week team project to develop a set of
requirements in a requirements course. Similarly, a design project might be con-
figured as in Figure P.3. The text can also be used for courses that run on a quar-
ter system. Whereas the full three-cycle course takes 15 weeks, a two-cycle
course can be done in 11 weeks, and a one-cycle development project would take
7 weeks.

Preface xv



xvi Preface

FIGURE P.1 THE THREE-CYCLE TSPi COURSE

Cycle Week Cycle 1 Cycle 2 Cycle 3

1 Course introduction, review

2 Launch, strategy

3 Plan

4 Requirements

5 Design

6 Implementation

7 Test

8 Postmortem Launch, strategy, plan

9 Requirements, design

10 Implementation, test

11 Postmortem Launch, strategy, plan

12 Requirements, design

13 Implementation, test

14 Test, documentation

15 Postmortem and evaluation

FIGURE P.2 A SHORT TSPi REQUIREMENTS PROJECT

Cycle Week Cycle 1

1 Launch, plan

2 Requirements

3 Requirements

4 Postmortem



In any of these course configurations, the standard TSPi scripts guide the stu-
dents through forming their teams and planning and implementing their projects.
Unless a team has already had experience with a full TSPi course, they will prob-
ably not complete any project cycle in less than three or four full weeks. The rea-
son is that it takes time for new team members to learn the process and to figure
out how to work together as a team. This is why the first TSPi cycle is planned for
seven weeks even though the same work would take only four weeks in a subse-
quent cycle.

Preparation for This Course

The principal prerequisite for this course is completion of a full PSP course. This
PSP course can be either a graduate or an introductory course. If the students took
the PSP several semesters ago, they should have used the PSP in their intervening
courses. If they have not, they will need a brief refresher lecture or two about PSP
planning, data gathering, and quality management. Also, students who have little
or no experience using the PSP will almost certainly need careful monitoring and
support throughout the team course.

Before attempting a team project, students should have a background in soft-
ware design and software requirements. Exposure to configuration management,
project management, and software testing is also helpful. The students must also
be fluent in the programming language and the tools they will use.

Preface xvii

FIGURE P.3 A SHORT TSPi DESIGN PROJECT

Cycle Week Cycle 1

1 Launch, plan

2 Requirements

3 Design

4 Design

5 Postmortem



Acknowledgments

In writing a book, I often become so immersed in the material that I find it hard to
see many of the problems that could trouble first-time readers. This is the princi-
pal reason that I seek informed reviewers. I have been particularly fortunate with
this book, both because many people were willing to help and because their broad
range of backgrounds enabled them to make many helpful suggestions. I particu-
larly appreciate the help and support of Susan Brilliant, Dan Burton, Bob Cannon,
Audrey Dorofee, Pat Ferguson, Marsha Pomeroy Huff, Mark Klein, Susan Lisack,
Rick Long, Steve Masters, Mark Paulk, Bill Peterson, Bill Pollack, Dan Roy, Jeff
Schwalb, Girish Seshagiri, Steve Shook, Laurie Williams, Ralph Young, Dave
Zacharias, and Sami Zahran. Julia Mullaney was a great help in combing through
the manuscript to find problems and inconsistencies in the manuscript and text. I
also wish to thank my brother Philip Humphrey for his continued support and in-
formed comments on much of the teamwork material.

I am also particularly indebted to Tom Hilburn and Iraj Hirmanpour at Embry
Riddle Aeronautical University. Both of them have been long-term supporters of
my PSP and TSP work. Tom has also taught team courses using the manuscript for
this book. The data from his first course provided much of the material for the ex-
amples in the text.

As we at the Software Engineering Institute (SEI) have gained experience
with the PSP and TSP, the importance of tool support has become increasingly
clear. Jim Over has developed a marvelous tool to support TSPi teams, and he has
adapted it specifically to support this book. He has also provided many helpful
comments on both the process and the text. For that I am deeply grateful.

Again, I am indebted to Peter Gordon and Helen Goldstein and the profes-
sional staff at Addison-Wesley. Their help and guidance were invaluable in mak-
ing the book a reality. Finally, I must again thank Barbara, my wife, for her
continued support and good-natured encouragement through yet another book.

I dedicate this book to the memory of my father, Watts S. Humphrey, whose
trust, confidence, and enthusiastic support helped and sustained me through my
formative years. One of my very earliest memories is of failing first grade. In those
days, they did not know about learning disabilities, but my father instinctively
knew that I could learn, given proper guidance and instruction. He insisted that I
had not flunked, but the school had, so he moved our family to a town where my
brothers and I could attend a school that would give me individual instruction. I
was extraordinarily fortunate to have had such a father, and I am deeply grateful
for his help and support. Although he died many years ago, I still miss him.

Watts S. Humphrey Sarasota, Florida

xviii Preface



xix

CONTENTS

PREFACE XI

Part I INTRODUCTION 1

Chapter 1 TSPi OVERVIEW 3

1.1 What Is TSPi? 4

1.2 TSPi Principles 5

1.3 The TSPi Design 5

1.4 TSPi Structure and Flow 9

1.5 The TSPi Process 10

1.6 The Textbook Structure and Flow 13

1.7 Summary 13

Chapter 2 THE LOGIC OF THE TEAM SOFTWARE 

PROCESS 15

2.1 Why Projects Fail 16

2.2 Common Team Problems 17

2.3 What Is a Team? 19

2.4 Building Effective Teams 20

2.5 How Teams Develop 22

2.6 How TSPi Builds Teams 23

2.7 Summary 25

2.8 References 26



Part II THE TSPi PROCESS 27

Chapter 3 LAUNCHING A TEAM PROJECT 29

3.1 Why Conduct a Team Launch? 29

3.2 Team Goals 30

3.3 Team-Member Goals 34

3.4 The Role Goals 35

3.5 The TSPi Launch Scripts 38

3.6 Summary 48

Chapter 4 THE DEVELOPMENT STRATEGY 49

4.1 Planning First 50

4.2 What Is a Strategy? 51

4.3 The Conceptual Design 52

4.4 Risk Management 52

4.5 A Reuse Strategy 54

4.6 The Strategy Scripts 54

4.7 Summary 63

Chapter 5 THE DEVELOPMENT PLAN 65

5.1 The Need for Planning 65

5.2 The TSPi Planning Process 71

5.3 The TSPi Support Tool 73

5.4 The Development Plan Scripts 74

5.5 Tracking the Work 91

5.6 The Quality Plan 97

5.7 Summary 107

5.8 Reference 108

Chapter 6 DEFINING THE REQUIREMENTS 109

6.1 What Are Requirements? 109

6.2 Why We Need Requirements 110

6.3 Requirements Changes 111

6.4 The Software Requirements Specification 112

xx Contents



6.5 The TSPi Requirements Scripts 114

6.6 Summary 120

6.7 References 120

Chapter 7 DESIGNING WITH TEAMS 121

7.1 Design Principles 122

7.2 Designing in Teams 123

7.3 Design Standards 125

7.4 Designing for Reuse 128

7.5 Designing for Usability 130

7.6 Designing for Testability 130

7.7 Design Reviews and Inspections 131

7.8 The TSPi Design Scripts 132

7.9 Summary 138

7.10 References 139

Chapter 8 PRODUCT IMPLEMENTATION 141

8.1 Design Completion Criteria 141

8.2 Implementation Standards 143

8.3 The Implementation Strategy 148

8.4 Reviews and Inspections 149

8.5 The IMP Scripts 151

8.6 Summary 161

8.7 Reference 162

Chapter 9 INTEGRATION AND SYSTEM TESTING 163

9.1 Testing Principles 163

9.2 The TSPi Testing Strategy 165

9.3 The Build and Integration Strategy 166

9.4 The System Test Strategy 168

9.5 Test Planning 169

9.6 Tracking and Measuring Testing 170

9.7 Documentation 173

Contents xxi



9.8 The TSPi TEST Scripts 177

9.9 Summary 182

9.10 References 183

Chapter 10 THE POSTMORTEM 185

10.1 Why We Need a Postmortem 185

10.2 What a Postmortem Can Do for You 186

10.3 The Process Improvement Proposal 186

10.4 The TSPi Postmortem Scripts 187

10.5 Summary 196

10.6 Reference 196

Part III THE TEAM ROLES 197

Chapter 11 THE TEAM LEADER ROLE 201

11.1 The Team Leader’s Goals 202

11.2 Helpful Team Leader Skills and Abilities 204

11.3 The Team Leader’s Principal Activities 208

11.4 The Team Leader’s Project Activities 216

11.5 Summary 216

Chapter 12 THE DEVELOPMENT MANAGER ROLE 219

12.1 The Development Manager’s Goals 220

12.2 Helpful Development Manager Skills and Abilities 221

12.3 The Development Manager’s Principal Activities 224

12.4 The Development Manager’s Project Activities 232

12.5 Summary 232

Chapter 13 THE PLANNING MANAGER ROLE 235

13.1 The Planning Manager’s Goals 236

13.2 Helpful Planning Manager Skills and Abilities 238

13.3 The Planning Manager’s Principal Activities 238

13.4 The Planning Manager’s Project Activities 248

13.5 Summary 248

xxii Contents



Chapter 14 THE QUALITY/PROCESS MANAGER ROLE 251

14.1 The Quality/Process Manager’s Goals 252

14.2 Helpful Quality/Process Manager Skills 

and Abilities 255

14.3 The Quality/Process Manager’s Principal 

Activities 257

14.4 The Quality/Process Manager’s Project 

Activities 264

14.5 Summary 264

14.6 References 265

Chapter 15 THE SUPPORT MANAGER ROLE 267

15.1 The Support Manager’s Goals 268

15.2 Helpful Support Manager Skills and Abilities 270

15.3 The Support Manager’s Principal Activities 272

15.4 The Support Manager’s Project Activities 276

15.5 Summary 276

Part IV USING THE TSPi 279

Chapter 16 MANAGING YOURSELF 281

16.1 Being Responsible 282

16.2 Striving for Defined Goals 285

16.3 Living by Sound Principles 287

16.4 Your Opinion of Yourself 288

16.5 Your Opinion of Others 289

16.6 Your Commitment to Excellence 289

16.7 Summary 292

16.8 Reference 292

Chapter 17 BEING ON A TEAM 293

17.1 The Jelled Team 293

17.2 Teamwork Obligations 294

17.3 Communication Among Team Members 294

17.4 Making and Meeting Commitments 298

Contents xxiii



17.5 Participation in the Team’s Activities 300

17.6 Team-building Obligations 302

17.7 Accepting and Performing a Team Role 302

17.8 Establishing and Striving to Meet Team Goals 303

17.9 Building and Maintaining the Team 304

17.10 Summary 306

17.11 References 307

Chapter 18 TEAMWORK 309

18.1 Reference 311

Appendix A NEED STATEMENTS FOR THE TSPi SAMPLE 

EXERCISES 313

Purpose 313

The Change Counter Functional Need Statement 314

The Program Analyzer Functional Need Statement 317

References 319

Appendix B SOFTWARE CONFIGURATION MANAGEMENT 321

The Software Configuration Management Problem 321

Software Configuration Management Overview 322

The SCM Plan 323

The System Baseline 326

Automating the SCM Process 328

The Software Configuration Management Process 328

Appendix C SOFTWARE INSPECTIONS 335

What Are Inspections? 335

What Makes Inspections Effective? 336

Inspection Methods 339

Inspection Data 340

The Inspection Report: Form INS 342

xxiv Contents



Estimating Remaining Defects 345

The Importance of High Personal Yields 350

Scheduling Inspections 351

The TSPi Inspection Script 352

References 356

Appendix D THE TSPi SCRIPTS 359

Appendix E ROLE SCRIPTS 383

Appendix F TSPi FORMS AND INSTRUCTIONS 395

Appendix GTHE TSPi STANDARDS AND SPECIFICATIONS 443

INDEX 449

Contents xxv



This page intentionally left blank 



PART ONE

Introduction

Part I of this book describes the introductory Team Software Process (TSPi) and ex-
plains why it is needed and how it works. Chapter 1 covers the benefits that you can
expect from a TSPi course and the principles behind TSPi’s design and structure.
Chapter 2 describes teams: what they are and what makes them work. The material
in Chapter 2 also includes a discussion of teamwork problems and describes how
the TSPi can help in handling these problems. Chapter 2 briefly deals with the
people-related issues of teams and teamwork. These topics are covered in consid-
erably more detail in the chapters in Part IV.

1



This page intentionally left blank 



3

1
TSPi Overview

Most industrial software is developed by teams. Thus, to be an effective engineer,
you need to be able to work on a team. If you have good sense and a willingness to
cooperate, you have the basic equipment to be a successful team member. Team-
work, however, is more than just getting along. Teams must plan their projects,
track their progress, and coordinate their work. They also must agree on goals,
have a common working process, and communicate freely and often.

To meet aggressive schedules and produce high-quality products, practiced
teamwork is essential. However, practiced teamwork requires experience and calls
for a specific set of skills and methods. This textbook and its accompanying course
provide a comprehensive introduction to team software development. The ap-
proach is to expose you to realistic teamwork problems and to give you practical
teamwork experience. With the experience gained from this course, you will be
prepared to participate in a large-scale industrial software project.

This chapter describes the introductory Team Software Process (TSPi), the
principles behind the TSPi design, and the overall structure and flow of the TSPi
process. It also describes why TSPi is needed and discusses the benefits you can
expect from a TSPi course.



1.1 What Is TSPi?

TSPi is a defined framework for a graduate or upper-level undergraduate course in
team software engineering. It provides a balanced emphasis on process, product,
and teamwork, and it capitalizes on the broad base of industrial experience in plan-
ning and managing software projects. TSPi guides you through the steps of a team
software project course, and it shows you how to apply known software engineer-
ing and process principles in a teamwork environment. Assuming that you have al-
ready learned the Personal Software Process (PSP)SM, TSPi will show you how to
plan and manage a team project. It also defines roles for you and your teammates.
When everyone on the team has an explicit role with clearly defined responsibili-
ties, you can see what you are supposed to do at each step of the process. By fol-
lowing the TSPi process, you will get practical experience with proven engineering
and teamwork methods.

The TSPi design is based on the Team Software Process (TSP)SM, an indus-
trial process for teams of as many as 20 engineers who develop or enhance large-
scale software-intensive systems. Because the TSP is designed for large projects
that often take several years to complete, it is a larger and more complex process
than you will need. TSPi is thus a reduced-scale version of TSP. It does, however,
retain the same basic concepts and methods. After using TSPi, you will find the
TSP quite familiar and easy to use.

Why Engineering Teams Need a Process

Merely giving a group of engineers a job does not automatically produce a team.
The steps required to build a team are not obvious, and new teams often waste a sub-
stantial amount of time handling teamwork mechanics. They must figure out how to
work together as a team, how to define the job they need to do, and how to devise a
strategy for doing the work. They must allocate the tasks among team members, co-
ordinate each of these tasks, and track and report on their progress. Although these
team-building tasks are not trivial, they are not very difficult. There are known meth-
ods for doing every one of them, and you and your teammates need not reinvent
these methods for yourselves.

Teams don’t just happen, and superior team performance is not an accident.
Although skilled members and a defined process are essential, teams are more than
a collection of talented individuals. To build and maintain effective working rela-
tionships, you need common goals, an agreed plan of action, and appropriate lead-
ership. You also need to understand one another’s strengths and weaknesses, support
your teammates, and be willing to call for help when you need it.

4 Chapter 1 TSPi Overview

SMPersonal Software Process and PSP are service marks of Carnegie Mellon University.
SMTeam Software Process and TSP are service marks of Carnegie Mellon University.



TSPi will also improve your productivity. Although the early planning and
team-forming steps may seem to take a great deal of time, they are an essential
part of doing a team project. It is a little like the huddle in a football game: expe-
rienced teams first agree on the play and each team member’s role in it. If football
teams didn’t huddle, they would do a lot of running around, but they wouldn’t win
many games.

1.2 TSPi Principles

The TSPi is based on the following four basic principles.

1. Learning is most effective when you follow a defined process and get rapid
feedback. The TSPi scripts and forms provide a defined, measured, and re-
peatable framework for team software engineering. The TSPi provides rapid
performance feedback because the team produces the product in several short
development cycles and evaluates results after each cycle.

2. Productive teamwork requires a combination of specific goals, a supportive
working environment, and capable coaching and leadership. The project goal
is to build a working product. The TSPi provides the supportive environment,
one of your team members will be the team leader, and the instructor pro-
vides the coaching.

3. When you have struggled with actual project problems and have been guided
to effective solutions, you will appreciate the benefits of sound development
practices. Without the precise guidance of the TSPi, however, you could waste
considerable time in defining your own practices, methods, and roles.

4. Instruction is most effective when it builds on the available body of prior
knowledge. There has been a great deal of experience with software teams
and software team courses. TSPi builds on this foundation.

1.3 The TSPi Design

There are many ways to design a process. In the case of TSPi, there were seven
principal design decisions.

1. Provide a simple framework that builds on the foundation of the Personal
Software Process (PSP).

2. Develop products in several cycles.

1.3 The TSPi Design 5



3. Establish standard measures for quality and performance.

4. Provide precise measures for teams and students.

5. Use role and team evaluations.

6. Require process discipline.

7. Provide guidance on teamwork problems.

The following sections discuss each of these topics in turn.

Provide a Simple Framework That Builds on the Foundation 
of the PSP

The purpose of a process is to help you do a task, such as developing a product or
learning how to do a team project. When the process is too complex, you spend so
much time figuring out what to do that you can easily lose sight of the objective. On
the other hand, if the process is too simplistic, it does not provide enough guidance.
You must then invent your own process as you go along. This approach can lead to
wasted time, costly mistakes, and even a complete project failure.

Although TSPi has many forms and scripts, most of them are similar to ones
you have already used with the PSP. Thus, if you have been PSP-trained, you will
need to learn the overall TSPi approach, but you already understand the “language”
of the TSPi. If you have not yet been PSP-trained, however, the TSPi process will
likely seem overpowering. This is one reason that prior PSP training is a prereq-
uisite for a TSPi course.

Even with PSP training, you must learn a number of new tasks and activities.
However, with the role assignments, TSPi permits you to focus on the elements that
you personally need to learn. The TSPi roles specify who does each of the team’s
planning, tracking, quality, support, and leadership tasks. The roles also reduce the
amount of material you must understand at the outset. You can concentrate on your
specific role tasks and not worry about the other role responsibilities, at least not yet.

During a multicycle TSPi project, try to get experience with several team roles.
This experience will provide you the broadest exposure to the TSPi process, and it
will give you a deeper understanding of more aspects of team software development.
It will also help you to better appreciate your personal interests and abilities.

Develop Products in Several Cycles

In a full TSPi course, you will complete two or three development cycles in one
semester. Each of these cycles includes a full requirements, design, implementation,
and test development process. In the first cycle, you build a minimum-function
subset of the ultimate product. By quickly getting this kernel product running, you
can be sure to have a working product at the end of the course. You will also have

6 Chapter 1 TSPi Overview



a solid base for each of the subsequent cycles. This strategy is also more likely to
identify design, performance, or usability problems at the beginning of the project
when they are easiest to fix.

The second TSPi cycle builds on the results of the first cycle. You might
change team roles, adjust the process, or use more disciplined quality methods. At
the end of the second cycle, you will have data on two complete projects. Assum-
ing that there is time, you could repeat these cycles for a third and even a fourth
time. After two or more cycles, you will feel like an old hand at the development
business. You will have clear and convincing evidence of what works best for your
team, and you will have the confidence to continue using these methods in practice.

Establish Standard Measures for Quality and Performance

Measurements are an essential part of doing consistently high-quality work. The
PSP provides the basic measures and measurement skills you need to measure and
evaluate the quality of your work. Until you have lived through a project that uses
these measures, however, it is hard to appreciate their value. TSPi shows you how
to interpret the PSP measures and how to apply them to a project.

TSPi requires that you and your teammates set personal as well as team goals.
Although this task may not seem important, a key part of an engineering education
is learning to establish ambitious but attainable goals. The TSPi emphasis on goals
and measures helps you to see the benefits of quality measurements and the value
of project planning and tracking. Sound planning and tracking also help you to
manage your work on a daily basis.

Provide Precise Measures for Teams and Students

With the TSPi measures, your performance and that of your teammates will be ob-
vious. Although it is important for everyone to try hard and to do good work, a
common team problem is that some members contribute much less than their fair
share of the work.

Although the principal purpose of the TSPi measures is to help you do better
work, these measures also make your personal performance visible to your team-
mates. This, however, is the nature of teamwork: Everyone knows what everyone
else is doing. Therefore, if you do not make a reasonable effort, you can expect
comments from your teammates.

Use Role and Team Evaluations

Some groups like to use peer evaluations, and others do not. The TSPi provides a
peer evaluation capability that can be used if the instructor so desires. The advan-
tage of peer evaluations is that the students are best informed about the team’s and

1.3 The TSPi Design 7



one another’s performance. If they can be persuaded to make an honest evaluation,
the instructor will be best informed and best able to give fair and equitable grades.

Because students are naturally reluctant to evaluate their peers, the TSPi calls
for team and role evaluations. The idea is to evaluate how each role was performed
and not how the people behaved. Although a role evaluation could be read as a
judgment of the person who performed that role, the TSPi emphasis is on evaluat-
ing how the process worked and not on how the people performed.

Require Process Discipline

It is hard for software engineers to consistently do disciplined personal work.
There are three reasons for this.

1. Software engineering has no tradition of disciplined personal performance.
Thus, neither students nor working engineers have role models to emulate.

2. The software process does not impose a natural discipline on engineers. Soft-
ware development differs from hardware engineering, in which engineers
release designs to a factory for volume production. Hardware production engi-
neers must review and accept a released design before they commit to manu-
facture a product on a schedule, for a cost, and at a scheduled production rate.
With software, we have no factory and no production engineers. Therefore,
software engineers must discipline themselves.

3. Consistently disciplined work in any field requires high standards and com-
petent support. That is why professionals in the sports and performing arts have
coaches, trainers, conductors, and directors. In industry, some accomplished
managers have learned to fulfill this coaching role; in academic courses, the
instructor acts as the team coach. Unfortunately, however, few people know
how to be effective coaches, and coaching is not widely practiced in the soft-
ware field.

With TSPi, the instructor will require you to follow the process and to gather the
data. You must complete the forms and analyze and use the data. If you do not do
this, you will not reap the full benefits of the TSPi course.

Provide Guidance on Teamwork Problems

Even in the best-run projects it is common to have teamwork problems. You and
your teammates have different roles, and each of these roles has its own objec-
tives. When these objectives conflict, disagreements are likely. In fact, it would be
surprising if you did not have some disagreements with your teammates. Don’t as-
sume that these are personality problems, however, unless the conflicts become

8 Chapter 1 TSPi Overview



unresolvable. Initially, the best assumption is that your teamwork issues are caused
by process problems.

Occasionally, students have problems working on a team. This is not only be-
cause they are inexperienced but also because they have backgrounds or personal-
ities that make teamwork difficult. However, with guidance and support, most
engineers can be effective team members. The most powerful force for resolving
team problems is peer pressure. Most people are concerned about their peers’ opin-
ions and are eager to be respected and to fit into the group. Given time and proper
coaching, most bright and motivated engineers can learn how to be fully effective
team members.

If your team members cannot work together effectively, ask the instructor for
help. The instructor, in cooperation with your team, can often help you to over-
come the problems. If even this does not work, it may be necessary to remove
some member from the team. Although this is a sensitive step, it is usually not a
problem if the rest of the team asks the instructor to remove the problem member.
For more guidance on these topics, consult Chapters 11, 16, and 17.

1.4 TSPi Structure and Flow

Figure 1.1 shows how the TSPi uses multiple development cycles to build a final
product. Cycle 1 starts with a launch, in which the instructor describes the overall
product objectives. The team then follows TSPi through its seven process steps:
strategy, planning, requirements, design, implementation, test, and postmortem. In
cycle 2, the engineers repeat the same steps, this time enhancing the base product
produced in cycle 1. If there is time, they can add further enhancements in subse-
quent cycles.

The Cyclic Development Strategy

When you start a cyclic development strategy, the best plan is to begin with the
smallest viable product version. In deciding the size and content of each cycle,
you should consider the following constraints.

1. Each cycle should produce a testable version that is a proper subset of the ul-
timate product.

2. Each cycle should be small enough to be readily developed and tested in the
available time.

3. When combined, the cycle products should produce the desired final product.

1.4 TSPi Structure and Flow 9



The TSPi starts by having teams produce a development strategy. Start by picking
the smallest reasonable base to develop during the first cycle. Then estimate the
sizes of the functions you plan to add in each subsequent cycle. This approach al-
most guarantees that you will complete a working initial subset of the product. With
the data from this initial cycle, you can accurately plan what to add in each subse-
quent cycle. Don’t defer too much function to cycles 2 and 3, however, because the
course schedule provides less time for these later cycles.

1.5 The TSPi Process

The development script (DEV) in Table 1.1 shows the overall TSPi flow. Each
script step is supported by one or more detailed scripts. Each of these scripts is de-
scribed in a chapter devoted to that process step. All the TSPi scripts are also in-
cluded in Appendix D. Table 1.1 also shows a typical TSPi script structure. Here,

10 Chapter 1 TSPi Overview

Strategy 1

Cycle 1 Launch

Plan 1

Requirements 1

Design 1

Implementation 1

Test 1

Postmortem 1

Strategy 2

Cycle 2 Launch

Plan 2

Requirements 2

Design 2

Implementation 2

Test 2

Postmortem 2

Strategy 3

Cycle 3 Launch

Plan 3

Requirements 3

Design 3

Implementation 3

Test 3

Postmortem 3

Finished Product

Final Evaluation

Product Need Statement

FIGURE 1.1 TSPi STRUCTURE AND FLOW



1.5 THE TSPi PROCESS 11

TABLE 1.1 TSPi DEVELOPMENT: SCRIPT DEV

Purpose To guide a team through developing a software product

Entry Criteria • An instructor guides and supports one or more five-student
teams.

• The students are all PSP-trained (Discipline for Software
Engineering or Introduction to the Personal Software
Process).

• The instructor has the needed materials, facilities, and
resources to support the teams.

• The instructor has described the overall product objectives.

General The TSPi process is designed to support three team modes.
1. Develop a small- to medium-sized software product in two

or three development cycles.
2. Develop a smaller product in a single cycle.
3. Produce a product element, such as a requirements

document, a design specification, a test plan, and so on, in
part of one cycle.

Follow the scripts that apply to your project and mode of
operation.

Week Step Activities

1 Review • Course introduction and PSP review.
• Read textbook Chapters 1, 2, and Appendix A.

2 LAU1 • Review course objectives and assign student teams and
roles.

• Read textbook Chapter 3, Appendix B, and one of Chapters
11–15.

STRAT1 • Produce the conceptual design, establish the development
strategy, make size estimates, and assess risk.

• Read textbook Chapter 4.

3 PLAN1 • Produce the cycle 1 team and engineer plans.
• Read textbook Chapter 5 and Appendix C.

4 REQ1 • Define and inspect the cycle 1 requirements.
• Produce the system test plan and support materials.
• Read textbook Chapter 6 and the test sections of Chapter 9.

5 DES1 • Produce and inspect the cycle 1 high-level design.
• Produce the integration test plan and support materials.
• Read textbook Chapter 7.

6 IMP1 • Implement and inspect cycle 1.
• Produce the unit test plan and support materials.
• Read textbook Chapter 8.

7 TEST1 • Build, integrate, and system test cycle 1.
• Produce user documentation for cycle 1.
• Read textbook Chapter 9.



12 Chapter 1 TSPi Overview

Week Step Activities

8 PM1 • Conduct a postmortem and write the cycle 1 final report.
• Produce role and team evaluations for cycle 1.
• Read textbook Chapters 10, 16, 17, and 18.

LAU2 • Re-form teams and roles for cycle 2.
• Read the rest of textbook Chapters 11–15.

STRAT2, • Produce the strategy and plan for cycle 2.
PLAN2 • Assess risks.

9 REQ2 • Update the requirements and system test plan for cycle 2.

DES2 • Produce and inspect the cycle 2 high-level design.
• Update the integration plan for cycle 2.

10 IMP2 • Implement and inspect cycle 2, produce unit test plan.

TEST2 • Build, integrate, and system test cycle 2.
• Produce user documentation for cycle 2.

11 PM2 • Conduct a postmortem and write the cycle 2 final report.
• Produce role and team evaluations for cycle 2.

LAU3 • Re-form teams and roles for cycle 3.

STRAT3, • Produce the strategy and plans for cycle 3.
PLAN3 • Assess risks.

12 REQ3 • Update the requirements and system test plan for cycle 3.

DES3 • Produce and inspect the high-level design for cycle 3.
• Update the integration plan for cycle 3.

13 IMP3 • Implement and inspect cycle 3, produce unit test plans.

TEST3 • Build, integrate, and system test cycle 3.

14 TEST3 • Produce and review the user manual for the finished product.
• Review and update the user manual for usability and

accuracy.

15 PM3 • Conduct a postmortem and write the cycle 3 final report.
• Produce role and team evaluations for cycle 3.
• Review the products produced and the processes used.
• Identify the lessons learned and propose process

improvements.

Exit Criteria • Completed product or product element and user
documentation.

• Completed and updated project notebook.
• Documented team evaluations and cycle reports.

TABLE 1.1 (continued)



the left column contains a sequence number indicating the order of the script steps,
or, in this case, the week when that script is scheduled. The second column briefly
names the topic of that script section, and the third column contains the descrip-
tive text for each script step.

Every script starts with a brief statement of the overall purpose of the activity.
This activity could be, for example, to develop a requirements document, produce
a design, or conduct a test. Every script also has entry and exit criteria. These spec-
ify what you need to have done before you start the script and what you should have
accomplished by the time you finish. Following the entry criteria, there is a “Gen-
eral” section that provides general information about the script. Finally, the num-
bered script rows are the activities that you are to follow in enacting the script.

1.6 The Textbook Structure and Flow

This textbook has a preface, four main parts, several appendixes, and an index.
The Preface discusses where and how this textbook should be used. Part I provides
an introduction to the TSPi process and explains what it is and why it is structured
the way it is. Part II walks you through the TSPi process, one major step at a time.
In Part III you will find a chapter on each of the five standard TSPi roles. Part IV
offers guidance on dealing with some of the issues you will likely face in working
on a software engineering team.

The seven textbook appendixes contain basic reference materials: the exer-
cise need statements, descriptions of the configuration management and inspection
processes, the process and role scripts, the TSPi forms, and the TSPi standards and
specifications. Inside the front and back covers you will also find a glossary of the
special terms used in the text. Finally, at the back of the book is a complete sub-
ject index.

It is most important that you read the textbook chapters on each of the
process steps before you attempt that step. The suggested order for reading the
textbook chapters and appendixes is given in the DEV script (Table 1.1).

1.7 Summary

The four basic TSPi principles are as follows.

1. Learning is most effective when students follow defined and repeatable steps
and get rapid feedback on their work.

1.7 Summary 13



2. Productive teamwork requires a defined team goal, an effective working en-
vironment, and capable coaching and leadership.

3. When students are exposed to the problems of realistic development projects
and then guided to effective solutions, they gain a better appreciation of the
value of sound engineering.

4. Instruction is most effective when it builds on the available body of prior en-
gineering, scientific, and pedagogical experience.

Starting from these four principles, the TSPi design involves seven choices.

1. Provide a simple framework that builds on the foundation of the PSP.

2. Develop products in several cycles.

3. Establish standard measures for quality and performance.

4. Provide precise measures for teams and students.

5. Use role and team evaluations.

6. Require process discipline.

7. Provide guidance on teamwork problems.

The TSPi process follows a cyclic development strategy. By starting with a
small set of initial functions, the team can quickly complete a working first version
of the product. When members have produced this initial version, they can better
plan and develop the second cycle product. If there is time for a third cycle, this
learning process is further reinforced. The cyclic development strategy is much
like the processes followed by successful large-scale software development groups.

14 Chapter 1 TSPi Overview



15

2
The Logic of the 
Team Software Process

This chapter discusses the introductory Team Software Process and explains how
and why it works. It also defines teams, explains how they work, and discusses some
common teamwork problems.

Much has been written about teamwork, and there are many examples of
good and bad teams. This chapter cannot possibly cover all this material, but it hits
the highlights. For further information about teamwork issues, see Chapters 16 and
17. This chapter is only an introduction. As you use the TSPi, you should read
each of the book chapters as you encounter the topics it covers. The contents of
this chapter are as follows.

▫ Why projects fail. A principal problem for software teams is learning how to
handle pressure. A poor or ineffective response to pressure is often the cause
of project failure. We open the chapter with a discussion of pressure and how
TSPi can help teams to handle the normal pressures of software work.

▫ Common team problems. A number of studies of student teams have identi-
fied their most common problems. We also describe some of the problems
that the TSPi process is designed to address.

▫ What is a team? Before discussing teams, we must agree on what a team is.

▫ Effective teams. Some teams are more effective than others. This chapter sec-
tion discusses the conditions and characteristics that differentiate successful
teams from all the others.



▫ How teams develop. Effective teams don’t just appear; they usually develop.
This chapter section summarizes the process through which effective software
teams develop, either by chance or through a deliberate team-building process.

▫ How TSPi builds teams. The next topic is a brief review of the steps TSPi uses
to build effective teams.

2.1 Why Projects Fail

When software projects fail, it is generally because of teamwork problems and not
technical issues. DeMarco [DeMarco 88, page 2] says that

The success or failure of a project is seldom due to technical issues. You
almost never find yourself asking ‘has the state of the art advanced far
enough so that this program can be written?’ Of course it has. If the project
does go down the tubes, it will be non-technical, human interaction prob-
lems that do it in. The team will fail to bind, or the developers will fail to
gain rapport with the users, or people will fight interminably over meaning-
less methodological issues.

One significant “people” problem is the inability of software teams to handle pres-
sure, especially the pressure to meet an aggressive development schedule. Often,
teams respond to this pressure by taking shortcuts, using poor methods, or gam-
bling on a new (to them) language, tool, or technique.

Excessive pressure can be destructive. It causes people to worry and to imag-
ine problems and difficulties that may not be real. Rather than help you to cope in
an orderly and constructive way, pressure causes worry about many unknown (and
often phantom) issues. And sometimes pressure can cause you to act as if the
phantom issues were real. This behavior can have untold consequences for your
project, your organization, and even your self-esteem.

When your team knows how to handle the pressure of a tight schedule, you
can feel the difference. Before starting a job, you generally don’t know precisely
what is involved. But after you make a plan and get started, you feel relieved. This
is true even if the job is larger than you thought. The reason you feel relieved is
that you are now dealing with a known problem rather than an unknown worry.

Handling Pressure

Pressure is something that you feel. For example, you may need to do a task
whether or not you think you can do it. The greater the need and the more doubt you
have about your ability to do the task, the greater the pressure. Because pressure is
internally generated, you have the power to manage it yourself, but first you must

16 Chapter 2 The Logic of the Team Software Process



find the source of the pressure and then figure out how to deal with it. The appar-
ent source of pressure in software projects is the need to meet a tight schedule. This
schedule could come from management, your instructor, or your peers.

The real source of pressure, however, is ourselves. It comes from our natural
desire to accomplish what our managers, instructors, or peers want. When this
pressure is coupled with normal self-doubts about our ability to perform, it can
become destructive. This is particularly true for new software teams that have not
yet learned how to handle the normal challenges of their projects. Teams need to
know how to work efficiently and to produce quality products, especially when
they are under intense schedule pressure.

By guiding teams through a strategy and planning process, the TSPi shows
teams how to handle pressure. They analyze the job, devise a strategy for doing the
work, estimate the sizes of the products they will build, and then make a plan. Be-
cause unrealistic schedules are the principal cause of software project problems,
the TSPi helps teams manage their projects more effectively. When they are able
to manage their work, teams are much more likely to do a quality job.

2.2 Common Team Problems

Although working on teams can have tremendous advantages, there can also be
problems. Studies have found that the most common problems for student teams
concern leadership, cooperation, participation, procrastination, quality, function
creep, and evaluation [Pournaghshbanb].

Ineffective Leadership

Without effective leadership, teams generally have trouble sticking to their plans
and maintaining personal discipline. Although effective leadership is essential,
few people are natural leaders. Most of us need to develop our leadership skills and
to get practice using them. Until engineers have seen effective leadership in action,
however, they often don’t know what skills to practice.

Failure to Compromise or Cooperate

Occasionally one or more team members may not be willing or able to work co-
operatively with the team. Although this does not happen often, teams need to deal
with this problem when it arises. Peer pressure can often resolve such problems,
but if a person continues to be intractable you should discuss the problem with
your instructor.

2.2 Common Team Problems 17



Lack of Participation

Team members have different skills and abilities as well as different motivations,
energy, and levels of commitment. This means that every member makes a differ-
ent level of contribution to the team’s performance. In fact, the variation among
the members’ contributions generally increases with increasing group size [Shaw,
page 202].

Although some degree of variation in participation is normal, it is important
that all team members strive to meet the team’s goals. If it becomes clear that
someone is not making a serious effort, team spirit generally suffers. Nothing can
be more disruptive than to have some people in a group openly getting away with
something. Lee Iacocca calls this the equality of sacrifice: “If everybody is suf-
fering equally, you can move a mountain. But the first time you find someone
goofing off or not carrying his share of the load, the whole thing can come unrav-
eled” [Iacocca, page 230].

Procrastination and Lack of Confidence

Some teams do not set deadlines or establish goals and milestones. Others set dead-
lines they never meet. Such teams generally don’t track performance and often fail
to make decisions in a timely or logical way. They take excessive time to get
started, and they drift through their projects rather than attacking them. These prob-
lems generally stem from one or more of the following three things: inexperienced
leadership, a lack of clear goals, or the lack of a defined process and plan.

Poor Quality

Quality problems can come from many sources. Examples are a superficial re-
quirements inspection, a poorly documented design, or sloppy implementation
practices. When teams do not use personal reviews or team inspections, they usu-
ally have quality problems, resulting in extensive testing, delayed schedules, long
hours, and an unsatisfactory final product.

Function Creep

During product design and implementation, engineers often see ways to improve
their products. These well-intentioned modifications are hard to control because
they originate from a legitimate desire to produce a better result [Robillard, page
89]. This problem is particularly difficult because there is no clear dividing line be-
tween the functions that stem from interpretations of the requirements and those
that are true additions to the requirements.

18 Chapter 2 The Logic of the Team Software Process



Ineffective Peer Evaluation

Experience has shown that peer evaluation can be invaluable for student teams
[Scott, page 302]. However, students are often reluctant to grade their teammates
and rarely do so with complete candor. As a result, students often feel that the
grading in team courses is not entirely fair, particularly to the highly motivated
students. This perception can cause competition among team members and can re-
duce the willingness of team members to fully cooperate.

2.3 What Is a Team?

There are many definitions of teams. The one I like best is by Dyer [Dyer, page
286]:

A team consists of

(a) at least two people, who

(b) are working toward a common goal/objective/mission, where

(c) each person has been assigned specific roles or functions to perform,
and where

(d) completion of the mission requires some form of dependency among the
group members.

Team Size

Teams can be of almost any size from two to dozens or even hundreds of people.
In practical situations, however, teams are most effective when they develop close
relationships among all the members. This is most likely when the teams are small
and when the members develop a network of interdependencies. In industry, team
size is generally limited by management span of control. Although some projects
can be very large, generally there are smaller subgroups of 20 or fewer people, each
of them working under the direction of a supervisor or manager. These subgroups
form the close-knit teams that the TSP and TSPi are designed to support.

Student teams typically range from about four to 12 students, depending on
class size and faculty preferences. Although there have been few studies of the
effects of software team size, my experience has been that teams of four to eight
engineers are likely to be the most effective. With fewer than four members, there
are not enough people to properly handle all the team role assignments. With
teams of more than eight members, it is harder for the team to develop the close
relationships needed for teams to jell. TSPi is designed for teams of five students,

2.3 What Is a Team? 19



although it can be used with modest changes for teams of four or six students. For
teams of other sizes, more role adjustments are required but the other scripts and
forms apply.

The Jelled Team

When design and development groups work together smoothly and efficiently, we
call them jelled teams. DeMarco and Lister, in their marvelous book Peopleware,
talk about the jelled team [DeMarco 87, page 123]:

A jelled team is a group of people so strongly knit that the whole is greater
than the sum of the parts. The production of such a team is greater than that
of the same people working in unjelled form. Just as important, the enjoy-
ment that people derive from their work is greater than what you’d expect
given the nature of the work itself.

Basic Teamwork Conditions

Not all groups are teams. There are three basic conditions that must be met for a
group to operate successfully as a team [Cummings, page 627; Dyer, page 286;
Mohrman, page 279].

1. The tasks to be done are clear and distinct; that is, the job for the team is ex-
plicitly defined, the work is meaningful to the team, and the group knows
what it must do.

2. The team is clearly identified; the members know the scope of the group, who
is in it, and who is not. Everyone on the team is known to the others, every-
one’s work is visible, and everyone knows everyone else’s team role.

3. The team has control over its tasks; members know what to do, how to do it,
when to do it, and when they are finished. The members know that they are
responsible for the work, and they control the processes they use. They also
have the capability to do the job, and they know that no one else is charged
with doing it.

2.4 Building Effective Teams

To build effective teams, you need more than just the right kinds of tasks and
working conditions. The team must have an important job to do and must be in an
environment that supports teamwork. The team must face an aggressive challenge
and must be encouraged to plan and manage its own tasks. These needs are met by

20 Chapter 2 The Logic of the Team Software Process



providing the team with four additional kinds of support: cohesion, goals, feedback,
and a common working framework.

Team Cohesion

Cohesion refers to the tight knitting of the team members into a unified working
group that physically and emotionally acts as a unit. Members of highly cohesive
groups communicate freely and often. Although they need not be good friends,
they work closely together and respect and support one another. In less-cohesive
groups, members tend to function as individuals. They have trouble compromis-
ing and do not have common values and goals. Cohesive teams, however, share a
common physical space, spend a lot of time together, and supportively cooperate
and interact during these times together.

Challenging Goals

Goals are also a critical element of the jelled team. First, these goals must be spe-
cific and measurable. Studies show that teams that have measurable goals are con-
sistently more effective than those that do not [Mohrman, page 176]. Examples of
such goals are detailed plans, performance targets, quality objectives, schedule
milestones, and so on. And each of the team members must accept these goals as
his or her own.

Second, the team’s goals must represent a significant challenge [Katzenbach,
page 3]. No team jells without a performance challenge that is meaningful to those
involved. Although good personal chemistry and the desire to become a team can
foster teamwork values, these characteristics alone will not automatically produce
a jelled team.

Finally, the goals must be tracked and progress visibly displayed so that the
team members can see how they are progressing toward their goals.

Feedback

Goal tracking and feedback are critically important. Effective teams are aware of
their performance and can see the progress they are making toward their goals
[Stevens, page 515]. In a study of air defense crews, those with frequent and pre-
cise feedback on goal performance improved on almost every criterion. This com-
pares with the stable, unimproving performance of crews that did not get feedback
[Dyer, page 309].

The team members must also be able to distinguish their personal performance
from that of the team as a whole. When they cannot do this, team performance gen-
erally suffers. Called shirking, this results from people expending less personal effort
when the results of their work are not apparent to the rest of the team. The basic

2.4 Building Effective Teams 21



cause of shirking is the lack of a team member’s personal commitment to the team’s
common goals. The presence of one or more shirkers generally prevents a team from
jelling. Shirking is not primarily a measurement problem, but precise measures gen-
erally reveal such problems so that the team can deal with them.

Common Working Framework

Whereas the team’s goals must be challenging and clear, the path to achieving
them must also be clear: “Team members need to see how to achieve the goal and
know what is expected of them” [Shaw, page 388]. This means that all the team
members must feel that the tasks are achievable, must understand their roles and
responsibilities, and must agree on how to accomplish them. They must know

What tasks must be done?

When?

In what order?

By whom?

In summary, to jell, teams must be cohesive, have challenging goals, get frequent
performance feedback, and have an agreed-upon process or framework for doing
the work.

2.5 How Teams Develop

Teams don’t just happen; they generally develop over time. This development can
happen by luck, or it can result from a conscious team-building process. At the out-
set, most teams start with individuals who have diverse goals. As teams jell, the
members come to accept a common set of team goals. When they do, these goals
take on a special significance. Even though the goals may be arbitrary, the team
members will pursue them with enormous energy. They do this not because of the
nature of the goals but rather because the goals are important to the team.

How Teams Jell

The first step in creating a jelled team is for the team members to converge on a com-
mon understanding of the product that they intend to build. This forms a starting
point for the team to develop its goals and to make a plan. After the team defines its
goals, the members agree on a strategy and a plan for developing the product.

22 Chapter 2 The Logic of the Team Software Process



Studies have found that knowledge work can be viewed as an iterative process
that begins with several engineers, each of whom has a different understanding of
what he or she is to do. Then, through a series of steps, they converge on a com-
mon viewpoint and result [Mohrman, page 52]. As the team members increase
their common understanding of the product to be built, they also converge on a
common approach for doing the work. Throughout this convergence process, the
team is gradually becoming a more cohesive unit.

In the beginning, the engineers are not sure what the product will look like or
how they should build it. Although they cannot yet agree on the product or the full
development process, they can usually agree on the current unknowns and on how
to clarify them. Then they proceed in iterative steps: identifying the confusions
and disagreements, agreeing on how to resolve them, and resolving them. They
then move to a more detailed level, identify additional confusions and disagree-
ments, and resolve them. As they converge on a common understanding, they si-
multaneously converge on the details of the intended product and the processes
for producing it.

What many engineers find surprising is that conflict, confusion, and disagree-
ment are natural parts of this convergence process. It is how the team identifies the
issues to work on, and it is what generates the creative process that we call design.

The TSPi supports this jelling process by walking teams through a launch
procedure that addresses the conditions required for jelled teams.

2.6 How TSPi Builds Teams

Most small groups can become effective teams by focusing on the basic techniques
of team development. These techniques help teams to build the understandings
and relationships they need to work together and to support one another. The TSPi
guides teams through the team-building steps to set goals, select roles, establish
plans, and maintain communication among the team members.

Goals

As teams begin to jell, they first define and accept a set of common goals. The TSPi
helps the members accept the team goals by having all team members participate
in defining them. Because goal setting is difficult, particularly for new teams, the
TSPi defines an initial set of team and team-member goals (see Chapters 11–15 for
the role specifications). For the second and subsequent TSPi cycles, teams should
review and adjust these goals based on their experience with the first development
cycle.

2.6 How TSPi Builds Teams 23


